Thermoelectric control for field emission display

Information

  • Patent Grant
  • 6507328
  • Patent Number
    6,507,328
  • Date Filed
    Thursday, May 6, 1999
    25 years ago
  • Date Issued
    Tuesday, January 14, 2003
    22 years ago
Abstract
An active matrix display that does not require a transistor or similar current switching device at each pixel. Instead, the display employs in each pixel a temperature-controlled current source that provides to the field emitters of the pixel an amount of electrical current which varies in response to the temperature of a temperature sensor. Each pixel further includes a thermoelectric heat transfer circuit which transfers heat to or from the sensor in an amount which varies in response to the video signal. Consequently, the video signal controls the temperature of the sensor within a pixel's temperature-controlled current source, which controls the current flow through the pixel's field emitters.
Description




FIELD OF THE INVENTION




This invention relates generally to field emission displays, and, more specifically, to a method and apparatus for controlling the brightness of a pixel by controlling the temperature of a temperature sensor in the pixel.




BACKGROUND OF THE INVENTION




In field emission displays, fast response time and high contrast are best achieved by active matrix designs—i.e., designs that employ a current switching device, conventionally one or more transistors, at each pixel of the display.




Conventional active matrix displays are fabricated on either a silicon substrate or a dielectric (typically glass) substrate.




An active matrix flat panel display having transistors fabricated from single-crystal silicon on a silicon substrate currently is feasible only for small displays. For a display area larger than several square centimeters, it is impractical to produce such a large transistor array without excessive defects, and such a large silicon substrate is undesirably fragile.




An active matrix flat panel display having thin film transistors (TFT's) fabricated on a glass substrate is much more suitable for a large area display. Such TFT designs are conventionally used for liquid crystal displays because they overcome the stated shortcomings of displays fabricated on silicon substrates. However, TFT designs are much less suitable for field emission displays, because thin film transistors typically have much higher leakage current than single-crystal silicon transistors. This leakage current is acceptable for liquid crystal displays, but not for field emission displays, because the latter are current-controlled rather than voltage-controlled and typically have time-averaged pixel currents on the order of only 10


−8


ampere or less.




Accordingly, there is a need for a field emission display that overcomes the shortcomings of single-crystal transistor arrays on silicon substrates and TFT arrays on dielectric substrates.




SUMMARY OF THE INVENTION




The invention is an active matrix display that does not require a transistor or similar current switching device at each pixel. Instead, the display employs in each pixel a temperature-controlled current source which provides to the field emitters of the pixel an amount of electrical current that varies in response to the temperature of a temperature sensor. Each pixel further includes a thermoelectric heat transfer circuit which transfers heat to or from the sensor in an amount that varies in response to the video signal. Consequently, the video signal controls the temperature of the sensor within a pixel's temperature-controlled current source, which controls the current flow through the pixel's field emitters.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic, sectional view of one pixel of the presently preferred embodiment of the display of the invention.





FIG. 2

is a schematic, plan view of four pixels of the embodiment of FIG.


1


.





FIG. 3

is a schematic, sectional view of one pixel of an alternative embodiment in which the field emission current for a pixel is controlled by a single PN junction common to the entire pixel.





FIG. 4

is a flow chart of a process for manufacturing the display of the invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIGS. 1 and 2

show the presently preferred embodiment of the field emission display of the invention. The display includes a plurality of pixel circuits


8


fabricated on a substrate


14


. The pixel circuits


8


are arranged in a matrix or array of rows and columns as shown in FIG.


2


. Each row is associated with a distinct row conductor line


50


which connects to each pixel circuit in that row, and each column is associated with a distinct column conductor line


32


which connects to each pixel circuit in that column.




In

FIG. 2

, the pixel located at the intersection of the i-th row and the k-th column of the matrix is denoted


8


(


i, k


), the i-th row conductor is denoted


50


(


i


), and the k-th column conductor is denoted


32


(


k


). A display suitable for use as a computer or television monitor would include at least 100,000 pixels arranged in an array having at least hundreds of rows and columns.

FIG. 2

illustrates just a small portion of the display: two rows, two columns, and four pixels.




Each pixel circuit


8


includes a number of field emitter tips


10


and at least one grid electrode


12


. In the preferred embodiment, a single grid electrode


12


is common to all the pixel circuits of the display. Each field emitter tip is adjacent an aperture of the grid electrode. To simplify the drawings, each pixel is depicted as having only sixteen emitter tips, and the size of each emitter tip is exaggerated. A display large enough to be used as a computer or television monitor would have about a thousand emitter tips in each pixel.




Each field emitter tip


10


preferably is the sharp apex of a cone-shaped field emitter base


24


formed of electrically conductive material such as doped semiconductor material. To reduce the grid-to-emitter voltage required to induce field emission from the field emitter tip, the field emitter base or cone


24


may be coated with a low work function material, not shown. Examples of low work function materials, and processes for fabricating the field emitter tips and gate electrode, are described in commonly assigned U.S. Pat. Nos. 5,186,670 and 5,229,331, both to Doan et al., the entire contents of each of which are hereby incorporated by reference into this patent specification.




An anode electrode


16


is separated from the grid electrode by dielectric spacers, not shown. The anode is transparent and has an cathodoluminescent coating on its inner surface, facing the field emitters.




A power supply


18


provides a relatively negative cathode voltage V


E


to the field emitters, a more positive voltage V


G


to the grid, and a much more positive voltage V


A


to the anode. Typically, V


E


approximately equals electrical ground potential, i.e., zero volts. The difference between the grid voltage V


G


and the more negative voltage at the field emitters must be great enough to induce field emission of electrons from the outer surface of the field emitters. Because the anode voltage V


A


is much more positive than the grid voltage V


G


, almost all the electrons emitted from the field emitter tips are accelerated past the grid electrode and strike the cathodoluminescent coating on the anode electrode, causing the coating to emit light. The brightness of the emitted light is proportional to the current flow through the field emitters.




The just described components of the display are conventional, but the remaining components are unique to the invention.




In each pixel, the current flow through the field emitter tips


10


is regulated by a temperature-controlled current source. In the preferred embodiment, the temperature-controlled current source in each pixel comprises a plurality of reverse-biased PN junctions


22


, there being one PN junction for each emitter tip. Each PN junction is connected between its corresponding field emitter


10


and the negative terminal V


E


of the power supply


18


.




To form the PN junctions, each pixel includes a P





doped semiconductor cathode layer


26


underlying the N


+


field emitter bases or cones of that pixel. The P





cathode layer extends across the lateral area of the pixel so as to contact, and form a PN junction


22


with, the bottom surface of each of the N


+


field emitter cones


24


in the pixel. A power supply cathode bus conductor


28


connects the P





doped cathode layer to the cathode voltage V


E


that is negative relative to the grid voltage V


G


, thereby reverse biasing each PN junction.




It is well known that the current through a reverse-biased PN junction (called the saturation current) is an exponential function of temperature. Because each reverse-biased PN junction


22


is connected in series between its corresponding field emitter tip


10


and the power supply voltage V


E


, the PN junction regulates the current through that field emitter tip as a function of the temperature of the PN junction. Increasing the temperature of each PN junction in a pixel will increase the current through the field emitter tips of the pixel, thereby increasing the brightness of that pixel in the display. Therefore, the reverse-biased PN junctions


22


in each pixel collectively function as a temperature sensor.




Each pixel additionally includes a thermoelectric heat transfer circuit to adjust the temperature of the temperature sensor of the pixel (i.e., PN junctions


22


) in response to a video signal, thereby adjusting the brightness of the pixel. In the preferred embodiment, the thermoelectric heat transfer circuit is a conventional Peltier thermocouple cooling device (i.e., heat pump) that pumps heat away from the temperature sensor of the pixel in response to the video signal. Alternatively, a conventional resistive heating device could be used to supply heat to the temperature sensor of the pixel in response to the video signal.




The Peltier thermocouple cooling device consists of first and second oppositely doped semiconductor regions


33


,


34


called the two “legs” of the thermocouple, plus an overlying metal layer


36


called the “bridge” electrode. The bridge electrode


36


extends between, and electrically and thermally connects, the top surfaces of the two legs at first and second ohmic junctions


37


,


38


. The first and second legs


33


and


34


are doped as N type and P type semiconductors, respectively.




Peltier thermocouples, including choice of materials and geometry for maximum efficiency, are described in detail in the following publications, the entire contents of which are hereby incorporated by reference into this patent specification: Fink, editor, “Electronic Engineers Handbook”, McGraw Hill, pages 27.2-27.12 (1975); U. Birkholz et al., “Fast semiconductor thermoelectric devices”, Sensors and Actuators, vol. 12, pages 179-184 (1987); and L. A. Johnson, “Controlling temperatures of diode lasers and detectors thermoelectrically”, Lasers and Optronics, April 1988, pages 109-114.




Although the above-referenced publications describe the design, fabrication, and operation of Peltier thermocouples in detail, the basic principles can be summarized as follows.




An electrical conductor or semiconductor material can be characterized by a Peltier coefficient which is proportional to the heat carrying capacity of the conduction electrons of the material. For P type semiconductors, where electrical current is conducted by holes, the Peltier coefficient has a sign opposite that of N type semiconductors and most metals in which current is conducted by electrons. Lightly doped semiconductors generally used in the legs of a Peltier thermocouple have Peltier coefficients 100 times greater than the Peltier coefficients of metals. Therefore, the Peltier coefficient of the metal bridge can be considered zero.




If electrical current flows from a first material to a second material, and if the Peltier coefficient of the second material is more positive than that of the first material, then the junction between the two materials will absorb heat, i.e., it will be cooled. At junction


37


, the first material is the N leg


33


having a negative Peltier coefficient, and the second material is the metal bridge


36


having an essentially zero Peltier coefficient, which is more positive than the negative coefficient of the N leg. Similarly, at junction


38


, the first material is the metal bridge


36


and the second material is the P leg


34


having a positive Peltier coefficient. Therefore, if a voltage is applied between the respective lower surfaces of the N type leg


33


and the P type leg


34


of a pixel so as to produce a positive current flow up the N leg


33


, through the first junction


37


, across the metal bridge


36


, through the second junction


38


, and down the P leg


34


, then both of the junctions


37


,


38


will be cooled. This, in turn, will cool the temperature sensor (reverse-biased PN junctions


22


) of the pixel, which will decrease the current through field emitter tips


10


and hence decrease the pixel brightness.




The substrate


14


functions a heat sink so that its temperature remains fairly constant, approximately equal to that of the ambient environment. The dielectric layer


46


should be thin enough to provide a thermal resistance between the heat sink and the lower surfaces


37


,


38


of the two legs


33


,


34


that is substantially less than the thermal resistance between the upper and lower surfaces of each leg. This will maintain the temperature of the lower surfaces of the two legs close to the temperature of the heat sink (substrate


14


). Consequently, the temperature of the metal bridge electrode


36


, and hence the temperature of the temperature sensor


22


, will be determined primarily by the amount of cooling produced by the Peltier thermocouple.




In the preferred embodiment, the row conductors


50


and the column conductors


32


supply the electrical current that powers the Peltier thermocouples. Specifically, in the pixel


8


(


i,k


) located at the i-th row and the k-th column of the display, the i-th row conductor


50


(


i


) connects to the lower surface of the N type leg


33


through metal contact


31


, and the k-th column conductor


32


(


k


) connects to the lower surface of P type leg


34


. Therefore, in order for the thermocouples to produce cooling, the voltage on the row conductors should be positive relative to the voltage on the column conductors.




The column conductors


32


are either highly doped semiconductor material or, much more preferably, metal. In either case, the Peltier coefficients of metal contacts


31


and column conductors


32


are close to zero. In response to electrical current flow from the row conductor


50


to the column conductor


32


, the junction


51


between the N leg


33


and the metal contact


31


will release heat, and the junction


52


between the P leg


34


and the column conductor


32


will release heat, because the current flow across both junctions is from a material having a higher Peltier coefficient to a material having a lower Peltier coefficient. The heating of the lower junctions


51


,


52


could offset to some extent the cooling at the upper junctions


37


,


38


, but this offset will be negligible if the thermal resistance of the dielectric layer


46


to vertical heat flow is sufficiently low as described above.




In the preferred embodiment, the output of a variable voltage source or current source (not shown) whose output varies in response to the video or luminance signal for a pixel


8


(


i,k


) is applied between the row conductor line


50


(


i


) and the column conductor line


32


(


k


) associated with that pixel. This can be accomplished by a conventional video detector circuit (not shown) that activates each row line sequentially, and that applies to the k-th column line a voltage or current source output that varies in response to the desired luminance of the k-th pixel in the currently activated row. A suitable video detector (including row and column driver circuits) is described in U.S. Pat. No. 5,075,596 to Young et al., the entire contents of which are hereby incorporated by reference into this patent specification.




“Activating” a row line means completing a path for current to flow back to the variable voltage or current source. In the preferred embodiment, each column line


32


spans all rows of the display. Therefore, only one row line


50


should be active at a time. When a row line is inactive, the video detector circuit disconnects or opens the path so that no current can flow to the thermocouples in that row.




If the temperature sensor has a positive temperature coefficient so that the field emission current increases with temperature, as is true for the PN junctions


22


of the preferred embodiment, then the voltage or current that the variable current source applies to each pixel should be logically inverted; i.e., the voltage or current applied across the thermocouple of each pixel should decrease in proportion to the desired brightness of that pixel.




One suitable implementation would be to apply a fixed voltage V


2


to whichever row line currently is active, and to apply to each column line a voltage ranging between V


1


and V


2


corresponding to a range of intended pixel brightness between minimum and maximum, where V


2


>V


1


. For maximum pixel brightness, a voltage of V


2


would be applied to the column line, so that the voltage applied between the two legs of the thermocouple of that pixel would be zero, hence the thermocouple would not cool the PN junctions


22


, and hence the temperature of the PN junctions and the field emission current would be maximized. For minimum pixel brightness, a voltage of V


1


would be applied to the column line, so that the voltage applied between the two legs of the thermocouple of that pixel would be the maximum possible value of (V


2


−V


1


), hence the thermocouple would produce a maximum rate of cooling of the PN junctions


22


, and hence the temperature of the PN junction and the field emission current would be minimized.




The preceding description assumes the Peltier thermocouples function as cooling devices. If the polarity of the variable voltage or current is reversed, then the thermocouples will release heat in proportion to the applied current. Such an implementation also will work, but using a Peltier thermocouple for controllable heating rather than controllable cooling generally is less efficient than using a resistive heater, because, as described in the above-referenced publication by Johnson, the Peltier thermocouple dissipates substantial power in resistive heating of the legs. In fact, as stated earlier, simple resistive heating can be used instead of a Peltier thermocouple as a controllable heat transfer device. However, for the extremely low currents employed in field emission displays (time-average currents of 10


−8


ampere or less), cooling the PN junctions


22


to controllably reduce the field emission current is likely to be more practical than heating the PN junctions to controllably increase the current.




As described in the above-referenced publications by Fink, Birkholz and Johnson, the efficiency of the thermocouple is a function of the material of which the two legs


33


,


34


are composed. The material should have a large magnitude Peltier coefficient and a high ratio of electrical conductivity to thermal conductivity. The material generally recognized as maximizing the efficiency of the thermocouple is bismuth telluride semiconductor that is lightly doped as N type and P type in the respective legs


33


and


34


.




These three publications also discuss optimizing the length and cross-sectional area of the legs


33


,


34


of the thermocouple.




A dielectric layer


40


electrically isolates the P





cathode region


26


from the thermocouple bridge electrode


36


. To maximize heat transfer from the thermocouple


33


-


38


to the temperature sensor (PN junctions


22


), the dielectric


40


preferably has low thermal resistance in the vertical direction and low thermal mass, which means it should be a material having high thermal conductivity and low thermal mass, and it should be no thicker than necessary for electrical isolation. However, it must be thick enough to prevent electrical breakdown in response to the maximum voltage difference between the P





cathode region


26


and the bridge electrode


36


. The same considerations apply to the dielectric


46


that separates the row conductors


50


from the column conductors


32


, so as to minimize thermal resistance between the lower surfaces


51


,


52


of the thermocouple legs and the substrate


14


. The dielectric


46


is included to permit the column lines to cross over the row lines without electrical contact, as shown in FIG.


2


.




Dielectric material


41


occupies the space between the P and N regions


33


,


34


of the Peltier device. It preferably has low thermal conductivity to maximize the temperature differential between the bridge electrode


36


and the substrate


14


in response to the variable current applied to the thermocouple. Additional dielectric material


42


,


44


laterally separates adjacent pixels from each other. It also should have low thermal conductivity to maximize thermal isolation between pixels, so that the temperature (and hence brightness) of one pixel will not noticeably affect the temperature (and hence brightness) of an adjacent pixel.




The cathode bus conductor


28


can undesirably conduct heat between adjacent pixels. To minimize such heat transfer, the cathode bus preferably comprises wide main portions


28




a


that span the entire width of the display (parallel to either the X or Y axis) and much thinner transverse branch portions


28




b


that connect each pixel to the main portion


28




a


. The main portions


28




a


extend along every alternate column of the dielectric


42


,


44


, and they are wide and deep enough to conduct the field emission current with negligible resistive power dissipation, i.e., negligible voltage drop. Each branch portion


28




b


should be sufficiently thin in depth and narrow in width so that its thermal resistance is large enough to prevent the heat transfer between the cathode layers


26


of adjacent pixels from substantially reducing the intended temperature differential between pixels.




Some heat transfer between the cathode layers of adjacent pixels may be unavoidable. The consequence of such heat transfer would be a slight reduction in the sharpness of the displayed image. This can be corrected by subjecting the video signal to a conventional video signal processing circuit for boosting or exaggerating image sharpness before applying the video signal to the display pixels.




The P





doped semiconductor layer


26


in the temperature controlled current source preferably has high thermal conductivity so as to minimize the time required for heat transfer between each PN junction


22


and the corresponding thermoelectric heat transfer circuit


31


-


38


. A preferred material for both the P





layer


26


and the N


+


layer


24


is germanium because it has relatively high thermal conductivity. In contrast, silicon is less preferred because it has lower thermal conductivity. However, silicon may be preferred from the standpoint of manufacturability, because silicon fabrication processes currently are more mature and extensively developed than germanium processes.




The substrate


14


can be a dielectric, a semiconductor, or a conductor. A currently preferred substrate for fabricating a large area flat panel display is a glass plate because of its strength and rigidity. As explained above, the substrate


14


preferably should be maintained at a substantially constant temperature. Merely exposing the substrate to the ambient atmosphere may provide sufficient temperature regulation. Alternatively, the substrate


14


can be thermally coupled to a heat sink or a temperature regulation apparatus.




Fabrication Process




The field emission display shown in

FIG. 1

can be manufactured by the following sequence of process steps. Each step can be performed by conventional semiconductor fabrication processes. (The step numbers


101


-


109


refer to the flow chart in

FIG. 4.

)




Step


101


: Deposit and pattern the row conductor lines


50


on the substrate


14


.




Step


102


: Deposit an inter-metal dielectric layer


46


to cover the row address lines and the exposed surface of the substrate.




Step


103


: Etch openings in the dielectric layer


46


at each location that is to be filled by a metal contact


31


.




Step


104


: Deposit a blanket layer of metal so as to cover the dielectric


46


and fill the openings created in the preceding step.




Step


105


: Pattern the metal to form the contacts


31


and column conductor lines


32


.




Step


106


: Deposit a blanket layer of in situ doped N type polysilicon, then pattern it to form the N type legs


33


overlying the contacts


31


.




Step


107


: Deposit a blanket layer (not shown) of a “sacrificial” dielectric. The portion of the dielectric covering the N type legs is called “sacrificial” because it will be removed in the planarizing process of Step


110


after the P type legs are deposited. Its function is to protect the N type legs from contamination during the deposition of the P type legs.




Step


108


: Etch openings in the sacrificial dielectric at the locations to be filled by the P type legs


34


, so as to expose the portions of the column conductor lines


32


that underlie the intended locations of the P type legs (see FIG.


2


).




Step


109


: Deposit a blanket layer of in situ doped P type polysilicon, then pattern it to form the P type legs


34


.




Step


110


: Deposit dielectric


41


,


42


to a depth sufficient to fill all the spaces between the legs


33


,


34


of the Peltier thermocouples, and so that the top surface of dielectric


41


,


42


is coplanar with the top surfaces


37


,


38


of the legs. Preferably, this step is performed by depositing the dielectric


41


,


42


to a thickness slightly greater than the height of the legs


33


,


34


, and then removing the top surface of the dielectric by a planarizing process, such as chemical-mechanical polishing, so as to expose the top surfaces


37


,


38


of the legs


33


,


34


.




Step


111


: Deposit and pattern the Peltier bridge electrode


36


.




Step


112


: Deposit the thin dielectric layer


40


.




Step


113


: Deposit and pattern the cathode bus conductor lines


28


. (See

FIG. 2.

)




Step


114


: Deposit and pattern the P





type cathode regions


26


.




Step


115


: Deposit a layer of N


+


type semiconductor material, then perform masking and etching steps so as to form field emitter tips


24


from the N


+


material. Suitable masking and etching processes for fabricating field emitter tips are described in U.S. Pat. No. 3,970,887 to Smith et al. and commonly assigned U.S. Pat. No. 5,391,259 to Cathey et al. The entire contents of both patents are hereby incorporated by reference into this patent specification.




Step


116


: Deposit dielectric


44


to a thickness such that the lowest point of the dielectric surface is approximately coplanar with the tips of the field emitters


10


.




Step


117


: Deposit a blanket layer of the electrically conductive material that will be patterned (in Step


119


) to form the grid electrode


12


.




Step


118


: Planarize the dielectric


44


and the grid electrode material so that the top surface of the grid electrode material is approximately coplanar with the tips of the field emitters


10


. Suitable planarization processes using chemical-mechanical polishing are described in the above-referenced U.S. Pat. Nos. 5,186,670 and 5,229,331, both to Doan et al.




Step


119


: Pattern the grid electrode


12


over the top surface of the dielectric


44


.




Other process steps different from those just described also can be used to fabricate similar structures. For example, the N and P type legs


33


,


34


of the Peltier thermocouple can be fabricated by ion implantation, rather than by deposition of in situ doped polysilicon as described in Steps


6


-


9


.




Alternative Temperature-Controlled Current Source




Other designs are possible for the temperature-controlled current source


22


-


26


. The

FIG. 1

embodiment includes a distinct PN junction


22


for each emitter tip


10


.

FIG. 3

shows an alternative embodiment in which each pixel includes only one PN junction


22


connected to all the emitter tips


10


in the pixel. Specifically, each pixel includes a single N


+


region


24


that overlies the entire area of the P





region


26


beneath the emitter tips in the pixel.




In the

FIG. 3

design, the single PN junction


22


will control the total current through the field emitters in the pixel, but it will not ensure that this total current is equally apportioned among the individual field emitter tips


10


within the pixel.




In contrast, the

FIG. 1

design provides a plurality of distinct, non-contiguous N


+


regions


24


between the P





region


26


and the respective field emitter tips


10


. Accordingly, the current through each field emitter is individually controlled by a distinct PN junction


22


underlying that emitter tip.




In the

FIG. 3

design, to more equally apportion the current through the field emitters within a pixel, each field emitter preferably includes a relatively high resistance layer


56


which functions as a resistor connected in series between the emitter tip and the PN junction


22


. Optionally, the high resistance layer


56


in each field emitter underlies a lower resistance layer


58


in the field emitter. The fabrication of field emitters having such high and low resistance layers is described in detail in commonly-assigned U.S. Pat. No. 5,770,919 to Tjaden et al., the entire contents of which are hereby incorporated by reference into this patent specification.




Similarly, the emitter tips of the

FIG. 1

design need not be composed of a monolithic material. The bottom portion of each emitter tip can be N


+


material to form the PN junctions


22


as described, and another material can be deposited over the N


+


material to form the top portion of each emitter tip. Such multi-layer tips can be fabricated by the same process steps described in the above-referenced Tjaden patent for fabricating tips having high and low resistance layers.




In another alternative implementation, the two semiconductor layers


24


,


26


could be replaced by a single, lightly doped, semiconductor layer. A lightly doped semiconductor will have an electrical resistance with declines with increasing temperature, thereby conducting a current flow from the power supply


18


to the field emitters


10


which increases with increasing temperature.




In the illustrated preferred embodiment, the temperature-controlled current source consists of a temperature sensor (e.g., a reverse-biased PN junction


22


) connected between a power supply


18


and the field emitters


10


, the field emitter current flows through the temperature sensor. This is the simplest possible implementation. However, a more complex temperature-controlled current source is possible in which the temperature sensor, such as a reverse-biased PN junction, controls a separate current regulator (such as a transistor) connected between the power supply


18


and the field emitters.




Non-Display Applications




Although field emitters are most commonly used in flat panel displays, field emitters conventionally are also used in other current switching circuits. In any electrical circuit which includes field emitters, the present invention can be used to control the electron emission from the field emitters. The implementation and the operation of the invention would remain as described above, except that the field emitters need not be arranged in an array or matrix pattern as in a display, and the electrical signal applied across the first and second conductors of the Peltier device could be any electrical input signal rather than row and column address signals.



Claims
  • 1. A field emission display, responsive to a video signal, comprising:a plurality of pixels, wherein each pixel includes at least one field emitter; a temperature-controlled current source circuit including a temperature sensor having an electrical characteristic which changes in response to the temperature of the sensor, wherein the temperature-controlled current source is connected to said at least one field emitter of the pixel so as to supply to said at least one field emitter an amount of electrical current which varies in response to the temperature of the temperature sensor; and a thermoelectric heat transfer circuit, thermally coupled to the temperature sensor of the pixel and electrically coupled to the video signal, which transfers heat between the temperature sensor and the heat transfer circuit in an amount which varies in response to the video signal.
  • 2. A display according to claim 1, wherein the temperature sensor of each pixel comprises a reverse-biased PN junction.
  • 3. A display according to claim 2, wherein:the temperature-controlled current source circuit of each pixel further comprises an electrical power supply; and the reverse-biased PN junction in the temperature-controlled current source circuit of each pixel is connected between the electrical power supply and said at least one field emitter of the pixel.
  • 4. A display according to claim 1, wherein the temperature-controlled current source of each pixel further comprises:a P type semiconductor layer over the thermoelectric heat transfer circuit of the pixel; and an N type semiconductor layer over the P type layer of the temperature-controlled current source of the pixel and electrically connected to said at least one field emitter of the pixel.
  • 5. A display according to claim 4, wherein:the temperature-controlled current source circuit of each pixel further comprises an electrical power supply connected to the P type semiconductor layer of the temperature-controlled current source.
  • 6. A display according to claim 1, wherein:said at least one field emitter comprises a plurality of field emitters, wherein each field emitter includes a field emission surface from which field emission of electrons can occur in response to an electric field; and the temperature-controlled current source of each pixel further comprises a P type semiconductor layer over the thermoelectric heat transfer circuit of the pixel, and a plurality of distinct, non-contiguous N type semiconductor layers over the P type layer of the temperature-controlled current source of the pixel, each one of the plurality of N type layers being electrically connected to the field emission surface of a corresponding one of the field emitters.
  • 7. A display according to claim 6, wherein:the temperature-controlled current source circuit of each pixel further comprises an electrical power supply connected to the P type semiconductor layer of the temperature-controlled current source.
  • 8. A display according to claim 1, wherein the thermoelectric heat transfer circuit of each pixel comprises:a Peltier thermocouple; and a circuit for supplying to the Peltier thermocouple an amount of electrical current which is responsive to the video signal.
  • 9. A display according to claim 1, wherein the thermoelectric heat transfer circuit of each pixel comprises an electrical heater circuit.
  • 10. A display according to claim 1, wherein the thermoelectric heat transfer circuit of each pixel comprises an electrical cooling circuit.
  • 11. A display according to claim 1, wherein each thermoelectric heat transfer circuit comprises:first and second conductors; a P type semiconductor layer over the first conductor; an N type semiconductor layer over the second conductor; and a third conductor over both the P type semiconductor layer and the N type semiconductor layer.
  • 12. A display according to claim 11, wherein each pixel further comprises:a dielectric layer over the third conductor of the thermoelectric heat transfer circuit of the pixel; wherein the temperature-controlled current source of the pixel is over the dielectric layer of the pixel.
  • 13. A display according to claim 12, wherein:each field emitter includes a surface from which field emission of electrons can occur in response to an electric field; and the temperature-controlled current source of each pixel further comprises a P type semiconductor layer over the dielectric layer of the pixel, and an N type semiconductor layer between the surface of each field emitter of the pixel and the P type layer of the temperature-controlled current source of the pixel.
  • 14. A field emission device, responsive to an electrical input signal, comprising:at least one field emitter; a temperature-controlled current source circuit including a temperature sensor having an electrical characteristic which changes in response to the temperature of the sensor, wherein the temperature-controlled current source is connected to said at least one field emitter so as to supply to said at least one field emitter an amount of electrical current which varies in response to the temperature of the temperature sensor; and a thermoelectric heat transfer circuit, thermally coupled to the temperature sensor and electrically coupled to the input signal, which transfers heat between the temperature sensor and the heat transfer circuit in an amount which varies in response to the input signal.
  • 15. A field emission device according to claim 14, wherein the temperature sensor comprises a reverse-biased PN junction.
  • 16. A field emission device according to claim 15, wherein:the temperature-controlled current source circuit further comprises an electrical power supply; and the reverse-biased PN junction in the temperature-controlled current source circuit is connected between the electrical power supply and said at least one field emitter.
  • 17. A field emission device according to claim 14, wherein:each field emitter includes a surface from which field emission of electrons can occur in response to an electric field; and the temperature-controlled current source further comprises a P type semiconductor layer over the thermoelectric heat transfer circuit, and an N type semiconductor layer between the surface of each field emitter and the P type layer of the temperature-controlled current source.
  • 18. A field emission device according to claim 17, wherein:the temperature-controlled current source circuit further comprises an electrical power supply connected to the P type semiconductor layer of the temperature-controlled current source.
  • 19. A field emission device according to claim 14, wherein the thermoelectric heat transfer circuit comprises:a Peltier thermocouple; and a circuit for supplying to the Peltier thermocouple an amount of electrical current which is responsive to the input signal.
  • 20. A field emission device according to claim 14, wherein the thermoelectric heat transfer circuit comprises an electrical heater circuit.
  • 21. A field emission device according to claim 14, wherein the thermoelectric heat transfer circuit comprises an electrical cooling circuit.
  • 22. A field emission device according to claim 14, wherein the thermoelectric heat transfer circuit comprises:first and second conductors; a P type semiconductor layer over the first conductor; an N type semiconductor layer over the second conductor; and a third conductor over both the P type semiconductor layer and the N type semiconductor layer.
  • 23. A field emission device according to claim 22, further comprising:a dielectric layer over the third conductor of the thermoelectric heat transfer circuit; wherein the temperature-controlled current source overlies the dielectric layer.
  • 24. A field emission device according to claim 23, wherein:each field emitter includes a surface from which field emission of electrons can occur in response to an electric field; and the temperature-controlled current source further comprises a P type semiconductor layer over the dielectric layer, and an N type semiconductor layer between the surface of each field emitter and the P type layer of the temperature-controlled current source.
  • 25. A method of controlling electron emission from at least one field emitter in response to an electrical input signal, comprising the steps of:providing at least one field emitter; providing a temperature sensor having an electrical characteristic whose value changes in response to the temperature of the sensor; transferring heat to the sensor in an amount which varies in response to an electrical input signal; and supplying to the at least one field emitter an amount of electrical current, and varying the amount of current in response to the value of said electrical characteristic of the sensor.
  • 26. A method according to claim 25, wherein the step of transferring heat comprises:positioning a Peltier thermocouple in thermal communication with the temperature sensor; and supplying to the Peltier thermocouple an amount of electrical current which is responsive to the input signal.
  • 27. A method of controlling electron emission from at least one field emitter in response to an electrical input signal, comprising the steps of:providing at least one field emitter from which field emission of electrons can occur in response to an electric field; providing a semiconductor PN junction device comprising a PN junction between a P type semiconductor material and an N type semiconductor material; connecting said N type material to the at least one field emitter; connecting said P type material to a power supply voltage which reverse biases the PN junction; and transferring heat to the PN junction in an amount which varies in response to an electrical input signal.
  • 28. A method according to claim 27, wherein the step of transferring heat comprises:positioning a Peltier thermocouple in thermal communication with the PN junction; and supplying to the Peltier thermocouple an amount of electrical current which is responsive to the input signal.
  • 29. A method of controlling electron emission from at least one field emitter in response to an electrical input signal, comprising the steps of:providing at least one field emitter from which field emission of electrons can occur in response to an electric field; providing a temperature sensor comprising a PN junction between a P type semiconductor material and an N type semiconductor material; connecting said N type material to the at least one field emitter; connecting said P type material to a power supply voltage which reverse biases the PN junction; and transferring heat to the sensor in an amount which varies in response to an electrical input signal.
  • 30. A method according to claim 29, wherein the step of transferring heat comprises:positioning a Peltier thermocouple in thermal communication with the PN junction; and supplying to the Peltier thermocouple an amount of electrical current which is responsive to the input signal.
  • 31. A field emission device, responsive to an electrical input signal, comprising:at least one field emitter, a semiconductor PN junction device comprising a PN junction between a P type semiconductor material and an N type semiconductor material, wherein the N type material is connected to the at least one field emitter; a power supply connected to apply to the P type material of the PN junction device a voltage which reverse biases the PN junction; and a thermoelectric heat transfer circuit, thermally coupled to the PN junction and electrically coupled to the input signal, wherein the heat transfer circuit transfers heat between the PN junction and the heat transfer circuit in an amount which varies in response to the input signal.
  • 32. A field emission device according to claim 31, wherein the thermoelectric heat transfer circuit comprises an electrical heater circuit in thermal communication with the PN junction.
  • 33. A field emission device according to claim 31, wherein the thermoelectric heat transfer circuit comprises an electrical cooling circuit in thermal communication with the PN junction.
Government Interests

This invention was made with Government support under Contract No. DABT63-93-C-0025 awarded by Advanced Research Projects Agency (ARPA). The Government has certain rights in this invention.

US Referenced Citations (12)
Number Name Date Kind
3970887 Smith et al. Jul 1976 A
5075596 Young et al. Dec 1991 A
5186670 Doan et al. Feb 1993 A
5229331 Doan et al. Jul 1993 A
5391259 Cathey et al. Feb 1995 A
5587128 Wilding et al. Dec 1996 A
5721472 Browning et al. Feb 1998 A
5770919 Tjaden et al. Jun 1998 A
5909200 Hush Jun 1999 A
5910792 Hansen et al. Jun 1999 A
5970719 Merritt Oct 1999 A
6034480 Browning et al. Mar 2000 A
Non-Patent Literature Citations (5)
Entry
U. Birkholz et al., “Fast semiconductor thermoelectric devices”, Sensors and Actuators, vol. 12, pp. 179-184 (1987).
Fink, editor, “Electronic Engineers Handbook”, McGraw Hill, article entitled “Electronic Energy Conversion Methods” at pp. 27.2-27.12 (1975).
A. Hochbaum, “Thermally addressed smectic liquid crystal displays”, Optical Engineering, vol. 23, No. 3, pp. 253-260 (1984).
L.A. Johnson, “Controlling temperatures of diode lasers and detectors thermoelectrically”, Lasers and Optronics, Apr. 1988, pp. 109-114.
Lu and Davies, “Thermally and electrically addressed dye switching LCDs”, Mol. Cryst. Liq. Cryst., vol. 94, pp. 167-189 (1983).