1. Field of the Invention
The present invention relates to heating and air conditioning and, more particularly, is concerned with providing localized thermal comfort in the workplace. In addition, the invention can also be applied in many circumstances in living areas of homes and apartments. The deployment and use of the invention is similar to that in the workplace, being focused on individual localized comfort.
2. Description of the Related Art
Generally, where work places or dwelling are climate controlled, the climate control is provided by large compressor-based systems to large zones encompassing many individual work areas. This situation results in high costs of conditioning the spaces not occupied and also forces within a single controlled zone to accept that climate output whether or not it satisfies an individual's preference or sense of comfort. Further, such control over large zones is not uniform, so that some present are exposed to areas that are hot while others are too cold.
Compressor-based systems for individual climate control are impractical because of their size, cost, and noise output. Others have addressed the need for individual climate control using thermoelectric devices. For example U.S. Pat. No. 5,193,347 discloses a helmet with a thermoelectric cooler supplying a cool breeze to the face of the wearer. Such systems are not suitable for most practical work or dwelling situations. Another example is the system described in U.S. Pat. No. 4,905,475. In its description, the patent presents a system with airflow directed to the head and neck of the individual, and with only rudimentary control over the air temperature produced. Many workers, particularly those with sedentary jobs, have a need for more individualized climate control using an appliance not so intimately and closely coupled to their person as are present systems.
With appropriate technology, providing individual localized area climate control requires a small power input to achieve easily discernible effects on the individual. Zonal climate control temperatures may be adjusted to reduce the power required for overall space climate control and individual localized area climate control appliances used to fine-tune the environment for each individual. Overall, such systems will save energy. One example is using thermoelectric devices as described in the present application, which are advantageous because they are small, quiet, and can be quite efficient when employed properly.
Individualized climate control also will increase productivity, not only because the individuals can choose the temperature most comfortable to them, but because they are empowered to make the choice.
Therefore, one aspect of the present invention is to provide localized personal comfort to individuals with a range of controllability built into a device that is not intrusive to them or obstructive to their normal work or other environment. Preferably, localized control for the temperature in the proximate vicinity of one or more individuals. This is distinguished from mobile cooling systems, such as individually cooled and heated seats, which more directly cool or heat the seat occupant as opposed to the local environment. Preferably, the local workspace environment is controllable. A further object of this invention is to augment a personal environment appliance with additional features useful to an individual and synergistic with its fundamental design. Such features include localized air filtration, small area lighting, beverage heating/cooling, small personal refrigerator, and calming auditory environment.
The system described herein is generally intended for non-mobile applications, but could be implemented in a mobile environment or workspace or work area setting.
One aspect of the present invention involves a personal environment appliance that provides heating and/or cooling in a localized area, such as a work area. The appliance generally has at least one electric motor driving at least one fan, at least one inlet air path to a low pressure side of the at least one fan, at least one thermoelectric device, at least one main side heat exchanger in thermal communication with the at least one thermoelectric device, wherein inlet air passes the heat exchanger and changes temperature, and at least one outlet for air that has passed the heat exchanger to provide temperature control of the local area.
In one embodiment, the at least one insulative insert is enclosed within a housing and is shaped to provide at least one air pathway. For example, the at least one insulative insert is shaped to form the at least one inlet air path.
In one embodiment, an air filter is provided, preferably demountably so it can be replaced. Preferably, at least one flow directing device is provided for the outlet. In one embodiment, at least one AC to DC power supply is provided to supply electricity to the thermoelectric.
In one embodiment, a user operable control is provided. Preferably, the user operable control adjusts the air flow rate, and/or the amount of heating or cooling, and/or selects cooling, heating, operation of the fan without heating or cooling, and off.
The appliance may be constructed to rest on a surface, to be suspended from a surface, or to be attached to a surface. In one embodiment, the appliance is configured to mount on a computer monitor. In such an embodiment, an anti-glare screen may be provided.
In one embodiment, a light is included, such as a work surface light. In another embodiment, a sound generator is provided. The sound generator may generate white noise or other distraction eliminating, and may also provide active noise cancellation.
In one embodiment, the appliance include a thermoelectric beverage cooler and heater. A holder for desk implements and supplies may also be a part of the appliance.
In another embodiment, a thermoelectric refrigerator may be built into the appliance.
For improved efficiency, preferably, at least some of the at least one thermoelectric devices employ thermal isolation in the direction of flow.
In the context of this description, the term Thermoelectric Module or TE Module are used in the broad sense of their ordinary and accustomed meaning, which is (1) conventional thermoelectric modules, such as those produced by Hi Z Technologies, Inc. of San Diego, Calif., (2) quantum tunneling converters (3) thermoionic modules, (4) magneto caloric modules, (5) elements utilizing one, or any by combination of, thermoelectric, magneto caloric, quantum tunneling and thermoionic effects, and (6) any combination, array, assembly and other structure of (1) through (5) above.
In this description, the words cold, hot, cooler, hotter and the like are relative terms, and do not signify a particular temperature or temperature range. In addition, the embodiments described in this application are merely examples, and are not restrictive to the invention, which is defined in the claims.
The fan 108 pulls fresh air 109 through a filter 110 (preferably replaceable) located at the fresh air inlet port 111 and through a duct 112 to the low-pressure side 113 of the fan 108. Air exits the high pressure side 114 of the fan 108 and passes through both the main side air input duct 115 and the waste side input duct 116 which are connected to the main side heat exchanger 103 and the waste side heat exchanger 104 respectively. Advantageously, to maximize the performance of the appliance and the comfort to the user, the air flow through the main side should be approximately 5 to 10 CFM while that on the waste side should be somewhat more, preferably from 1.5 to 3 times the main flow. The air flow from the waste side heat exchanger 104 passes through the waste side output duct 117, exiting the appliance at the waste outlet port 118, preferably pointing away from both the fresh air port 111 and the main outlet port 119. The waste may also be vented outside, to another room, or into a crawl or attic space, or the like. The airflow from the main side heat exchanger 103 passes through the main side output duct 120 and through a flow-directing device 121 such as one with adjustable louvers or one with fixed vanes within a ball directionally adjustable in socket, as examples.
As air passes through the main side heat exchanger 103, its temperature is changed from that of the air entering by the amount and in the direction as selected by the user controls 106. As air passes through the waste side heat exchanger 104, its temperature is changed in the opposite direction. Thus, the temperature of the air exiting the main side is cooler if the user has selected cooling mode, and warmer if the heating mode is selected with the amount of temperature differential determined by the user's selection of high or low. As shown, the adjustment of the amount of temperature change has only two discrete levels. Any number of discrete levels may be used, or the adjustment may be continuous. This control may also be combined with the on/off switch into a physically single control.
Preferably, the ducts 112, 115, 116, 117, and 120 are made of thermally insulative material. As shown in
The performance of the personal environment appliance may be improved by modifications to the thermoelectric module and heat exchanger portion as shown in
The thermoelectric module 201 is in good thermal contact with a plurality of heat exchangers 202 on its main side 203 and in good thermal contact with a plurality of heat exchangers 204 on its waste side 205. As shown in
The personal environment appliance 101 may be configured to be situated within the work area in a variety of ways. For example, it may simply rest on a work surface, in which case the air inlet advantageously is at the bottom, with the bottom surface raised from the work surface to allow air to enter. As another example, the appliance may be suspended from a work surface such as a bookshelf by means of a slot, located below, but near the upper surface of the appliance, which hooks over a portion of the shelf. In such configuration, the air intake would be on the bottom of the appliance. As yet another example, mounting holes or mounting brackets could be supplied serving to permanently attach the appliance to a convenient surface in the work area.
Another example is to configure the housing and the internal organization of the appliance to mount on and around the periphery of a computer monitor.
Other features may be added to the thermoelectric personal environment appliance. In the examples of the appliance suspended from or attached to work place furniture, in one embodiment, a light is added to provide illumination of a work surface below the appliance. Preferably, the light is fluorescent to minimize heat generation and provide diffused light.
The use of sound machines is well known to be beneficial in producing a calming and pleasant environment. The fan of the personal environmental appliance disclosed above produces a slight noise and, by suitable design, can be adjusted in amplitude and character. In addition, speakers may be added to the appliance to generate sound from an external signal source such as a computer CDROM drive and sound card. The speakers are powered either by the power supply 105 or by an external supply. The speakers or yet a separate sound system may be added to cancel unwanted noise either from the environment or noise emanating from the device itself. These configurations can be within the framework of those described above or can be integrated with a configuration designed to be mounted on a computer monitor as shown in
By taking advantage of the presence of the thermoelectric cooling present in the appliance, a small refrigerator may be added. In operation for personal heating or cooling, cool air is always generated whether on the main or the waste side. A portion of this air may be routed to an insulated box suitable for holding a small quantity of food or beverages, augmenting the number of thermoelectric elements and the capacity of the DC power supply as needed to supply the additional cooling required. In this configuration, the user controls are configured to allow the user to control the personal heating and cooling as desired while leaving the refrigerator running. To route cool air to the refrigerator regardless of the state of the heat/cool control, an electrically operated valve or vane, for example, is operated in response to the heat/cool switch setting to obtain the cool air from the proper duct. When the user has turned off the personal heating or cooling, the thermoelectric module and fan are under the control of a standby circuit by which the proper amount of air circulation and power to the TE module are determined and adjusted on the basis of a temperature measurement, by a thermistor, for example, of the refrigerator compartment.
A workspace or work area organizer feature may be added to the appliance. For example, this is an appendage to the housing with compartments for writing implements, memo pads, and other materials commonly found in the work place.
Air enters the housing at its base through one or more ports 515 in the housing 502. The air passes through the filter 503, being drawn in by the fan 504. The air leaving the fan enters the main side duct 507 and the waste side duct 508 so as to pass through the main side heat exchanger 510 and the waste side heat exchanger 511 in opposite directions as shown. By rearrangement of the ducts 507 and 508, the flow can also be in the same direction. Advantageously, the assembly consisting of the thermoelectric module 509, the main side heat exchanger 510, and the waste side heat exchanger 511 are constructed with thermal isolation in the direction of flow as described above in
A small motor cooling duct 516 leads off the waste side duct 558 prior to its entrance to the waste side heat exchanger 511 and supplies air to cool the motor 505. After passing around the motor 505, the air leaves the motor cavity via another small motor air exit duct 517 that rejoins the waste side duct 508 after the waste side heat exchanger 511. All of the air passing through the waste side duct 508 is expelled from the device through vents 518 positioned advantageously to direct the air away from the side of the device where the flow director 512 is located. As shown in
Air within the main side duct 507 passes through the main side heat exchanger 510 where it is cooled or heated according to the setting of the user operable controls 514. Air leaving the main side heat exchanger 510 passes through the flow director 512 that the user may adjust to direct the flow according to desires.
Preferably, the fan motor 505 is a two speed, AC fan and the DC for the thermoelectric module 509 is produced from the AC according to methods known in the art, such as full wave (user operable controls 514 set to high) or half wave (user operable controls 514 set to low) rectification without the need for filtering.
Several filtration systems can be used to improve the quality of air conditioned by the appliance in all the configurations of the present invention. Electrostatic filtration is well known to the art and can be incorporated in either the stream of the conditioned air or within the inlet so that both the conditioned and waste air are filtered. Alternately, electrostatic filtration may be used for the same purposes. Organic vapors and other contaminants can be removed by incorporating an absorptive filter medium such as an activated charcoal, or a combination of several media with complementary absorptive properties. Alternately, humidity, air freshening aromas, cleansing agents, disinfectants and/or other air modifiers can be added to the air streams to improve system functionality. The filter may also include ionic functionality
The conditioned air can be controlled in any of the devices herein in several ways. The air can be guided so as to sweep periodically through an angle, such as by automatically swiveling the nozzle back and forth. The outlet can be provided with the capability of focus in the conditioned air into a narrow angle, or dispersed over a broad angle by incorporating a suitable diffuser mechanism into the nozzle, for example as has been done in some aircraft passenger ventilator systems. Provisions can be designed to allow the air output direction to be manually adjusted.
In some circumstances, it may be desirable for the appliance to operate during a specific period of time, or to turn itself off after a given amount of time has elapsed. To provide this capability, a timer control mechanism including a clock is incorporated into the appliance control system 106. A user either sets the times the appliance is to start and stop, or alternately, the user sets the length of time the appliance is to operate, with the appliance turning itself off when the specified time has elapsed.
As an additional feature, a clock and alarm is incorporated into the appliance. An additional configuration of the appliance is to integrate the appliance into the base of a freestanding desk lamp, combining the functionality of the two devices. Various configurations of the appliance could be integrated in this manner.
Although various specific embodiments of the present invention have been disclosed, the embodiments are not intended to limit, but only illustrate examples of the present invention. Accordingly, many other configurations and uses are possible. Accordingly, the inventions are not limited to any particular embodiment, or specific disclosure. Rather, the inventions are defined by the appended claims, in which terms are presented to have their ordinary and accustomed meaning.
This application is a continuation from U.S. patent application Ser. No. 10/215,163, filed Aug. 7, 2002 now U.S. Pat. No. 7,426,835 and incorporated in its entirety by reference herein, which claims the benefit of U.S. Provisional Patent Application No. 60/310,565, filed Aug. 7, 2001.
Number | Name | Date | Kind |
---|---|---|---|
38128 | Routh | Apr 1863 | A |
1120781 | Altenkirch et al. | Dec 1914 | A |
2362259 | Findley | Nov 1944 | A |
2363168 | Findley | Nov 1944 | A |
2519241 | Findley | Aug 1950 | A |
2944404 | Fritts | Jul 1960 | A |
2949014 | Belton, Jr. et al. | Aug 1960 | A |
2984077 | Gaskill | May 1961 | A |
2992538 | Siegfried | Jul 1961 | A |
3004393 | Alsing | Oct 1961 | A |
3006979 | Rich | Oct 1961 | A |
3019609 | Pietsch | Feb 1962 | A |
3071495 | Hanlein | Jan 1963 | A |
3085405 | Frantti | Apr 1963 | A |
3125860 | Reich | Mar 1964 | A |
3129116 | Corry | Apr 1964 | A |
3137142 | Venema | Jun 1964 | A |
3138934 | Roane | Jun 1964 | A |
3178895 | Mole et al. | Apr 1965 | A |
3197342 | Neild, Jr. | Jul 1965 | A |
3212275 | Tillman, Jr. | Oct 1965 | A |
3213630 | Mole et al. | Oct 1965 | A |
3236056 | Phillips et al. | Feb 1966 | A |
3252504 | Newton | May 1966 | A |
3391727 | Armenag Topouszian | Jul 1968 | A |
3505728 | Hare et al. | Apr 1970 | A |
3527621 | Newton | Sep 1970 | A |
3554815 | Osborn | Jan 1971 | A |
3599437 | Panas | Aug 1971 | A |
3607444 | DeBucs | Sep 1971 | A |
3626704 | Coe, Jr. | Dec 1971 | A |
3635037 | Hubert | Jan 1972 | A |
3663307 | Mole | May 1972 | A |
3681929 | Schering | Aug 1972 | A |
3779307 | Weiss et al. | Dec 1973 | A |
3779814 | Miles et al. | Dec 1973 | A |
3817043 | Zoleta | Jun 1974 | A |
3859143 | Krebs | Jan 1975 | A |
3885126 | Sugiyama et al. | May 1975 | A |
4038831 | Gaudel et al. | Aug 1977 | A |
4047093 | Levoy | Sep 1977 | A |
4055053 | Elfving | Oct 1977 | A |
4065936 | Fenton | Jan 1978 | A |
4125122 | Stachurski | Nov 1978 | A |
4281516 | Berthet et al. | Aug 1981 | A |
4297841 | Cheng | Nov 1981 | A |
4297849 | Buffet | Nov 1981 | A |
4402188 | Skala | Sep 1983 | A |
4420940 | Buffet | Dec 1983 | A |
4448028 | Chao et al. | May 1984 | A |
4494380 | Cross | Jan 1985 | A |
4499329 | Benicourt et al. | Feb 1985 | A |
4634803 | Mathiprakasam | Jan 1987 | A |
4665707 | Hamilton | May 1987 | A |
4730459 | Schlicklin et al. | Mar 1988 | A |
4731338 | Ralston et al. | Mar 1988 | A |
4753682 | Cantoni | Jun 1988 | A |
4802929 | Schock | Feb 1989 | A |
4823554 | Trachtenberg et al. | Apr 1989 | A |
4848090 | Peters | Jul 1989 | A |
4858069 | Hughes | Aug 1989 | A |
4905475 | Toumi | Mar 1990 | A |
4907060 | Nelson et al. | Mar 1990 | A |
4922721 | Robertson et al. | May 1990 | A |
4922998 | Carr | May 1990 | A |
4988847 | Argos et al. | Jan 1991 | A |
4989626 | Takage et al. | Feb 1991 | A |
5006178 | Bijvoets | Apr 1991 | A |
5029446 | Suzuki | Jul 1991 | A |
5038569 | Shirota et al. | Aug 1991 | A |
5092129 | Bayes et al. | Mar 1992 | A |
5097829 | Quisenberry | Mar 1992 | A |
5111664 | Yang | May 1992 | A |
5119640 | Conrad | Jun 1992 | A |
5167129 | Akasaka | Dec 1992 | A |
5171372 | Recine, Sr. | Dec 1992 | A |
5180293 | Hartl | Jan 1993 | A |
5193347 | Aprisdorf | Mar 1993 | A |
5198930 | Muratomi | Mar 1993 | A |
5228923 | Hed | Jul 1993 | A |
5232516 | Hed | Aug 1993 | A |
5254178 | Yamada et al. | Oct 1993 | A |
5291960 | Brandenburg et al. | Mar 1994 | A |
5300197 | Mitani et al. | Apr 1994 | A |
5316078 | Cesaroni | May 1994 | A |
5385020 | Gwilliam et al. | Jan 1995 | A |
5407130 | Uyeki et al. | Apr 1995 | A |
5419780 | Suski | May 1995 | A |
5429680 | Fuschetti | Jul 1995 | A |
5431021 | Gwilliam et al. | Jul 1995 | A |
5448891 | Nakagiri et al. | Sep 1995 | A |
5450894 | Inoue et al. | Sep 1995 | A |
5483807 | Abersfelder et al. | Jan 1996 | A |
5499504 | Mill et al. | Mar 1996 | A |
5544487 | Attey et al. | Aug 1996 | A |
5549153 | Baruschke et al. | Aug 1996 | A |
5561981 | Quisenberry et al. | Oct 1996 | A |
5584183 | Wright et al. | Dec 1996 | A |
5592363 | Atarashi et al. | Jan 1997 | A |
5594609 | Lin | Jan 1997 | A |
5605047 | Park et al. | Feb 1997 | A |
5653111 | Attey et al. | Aug 1997 | A |
5682748 | De Viilbiss et al. | Nov 1997 | A |
5722249 | Miller, Jr. | Mar 1998 | A |
5724818 | Iwata et al. | Mar 1998 | A |
5725048 | Burk et al. | Mar 1998 | A |
5802856 | Schaper et al. | Sep 1998 | A |
5860472 | Batchelder | Jan 1999 | A |
5867990 | Ghoshal | Feb 1999 | A |
5890371 | Rajasubramanian et al. | Apr 1999 | A |
5900071 | Harman | May 1999 | A |
5901572 | Peiffer et al. | May 1999 | A |
RE36242 | Apisdorf | Jun 1999 | E |
5918930 | Kawai et al. | Jul 1999 | A |
5921088 | Imaisumi et al. | Jul 1999 | A |
5959341 | Tsuno et al. | Sep 1999 | A |
5964092 | Tozuka et al. | Oct 1999 | A |
5966941 | Ghoshal | Oct 1999 | A |
5977785 | Burward-Hoy | Nov 1999 | A |
5987890 | Chiu et al. | Nov 1999 | A |
6000225 | Ghoshal | Dec 1999 | A |
6028263 | Kobayashi et al. | Feb 2000 | A |
6059198 | Moroi et al. | May 2000 | A |
6082445 | Dugan | Jul 2000 | A |
6084172 | Kishi et al. | Jul 2000 | A |
6096966 | Nishimoto et al. | Aug 2000 | A |
6105659 | Pocol et al. | Aug 2000 | A |
6127766 | Roidt | Oct 2000 | A |
6138749 | Kawai et al. | Oct 2000 | A |
6158225 | Muto et al. | Dec 2000 | A |
6205805 | Takahashi et al. | Mar 2001 | B1 |
6223539 | Bell | May 2001 | B1 |
6270015 | Hirota | Aug 2001 | B1 |
6282907 | Ghoshal | Sep 2001 | B1 |
6302196 | Haussmann | Oct 2001 | B1 |
6319744 | Hoon et al. | Nov 2001 | B1 |
6324860 | Maeda et al. | Dec 2001 | B1 |
6334311 | Kim et al. | Jan 2002 | B1 |
6346668 | McGrew | Feb 2002 | B1 |
6347521 | Kadotani et al. | Feb 2002 | B1 |
6366832 | Lomonaco et al. | Apr 2002 | B2 |
6367261 | Marshall et al. | Apr 2002 | B1 |
6385976 | Yamamura et al. | May 2002 | B1 |
6393842 | Kim | May 2002 | B2 |
6401462 | Bielinski | Jun 2002 | B1 |
6412287 | Hughes et al. | Jul 2002 | B1 |
6446442 | Batchelor et al. | Sep 2002 | B1 |
6457324 | Zeigler et al. | Oct 2002 | B2 |
6464027 | Dage et al. | Oct 2002 | B1 |
6477844 | Ohkubo et al. | Nov 2002 | B2 |
6481213 | Carr et al. | Nov 2002 | B2 |
6499306 | Gillen | Dec 2002 | B2 |
6510696 | Guttman et al. | Jan 2003 | B2 |
6530231 | Nagy et al. | Mar 2003 | B1 |
6530842 | Wells et al. | Mar 2003 | B1 |
6530920 | Whitcroft et al. | Mar 2003 | B1 |
6539725 | Bell | Apr 2003 | B2 |
6539729 | Tupis et al. | Apr 2003 | B2 |
6548750 | Picone | Apr 2003 | B1 |
6560968 | Ko | May 2003 | B2 |
6563039 | Caillat et al. | May 2003 | B2 |
RE38128 | Gallup et al. | Jun 2003 | E |
6580025 | Guy | Jun 2003 | B2 |
6598403 | Ghoshal | Jul 2003 | B1 |
6598405 | Bell | Jul 2003 | B2 |
6606866 | Bell | Aug 2003 | B2 |
6606877 | Tomita et al. | Aug 2003 | B2 |
6625990 | Bell | Sep 2003 | B2 |
6637210 | Bell | Oct 2003 | B2 |
6650968 | Hallum et al. | Nov 2003 | B2 |
6653002 | Parise | Nov 2003 | B1 |
6672076 | Bell | Jan 2004 | B2 |
6682844 | Gene | Jan 2004 | B2 |
6705089 | Chu et al. | Mar 2004 | B2 |
6722139 | Moon et al. | Apr 2004 | B2 |
6732534 | Spry | May 2004 | B2 |
6779348 | Taban | Aug 2004 | B2 |
6807811 | Lee | Oct 2004 | B2 |
6812395 | Bell | Nov 2004 | B2 |
6862892 | Meyer et al. | Mar 2005 | B1 |
6880346 | Tseng et al. | Apr 2005 | B1 |
6886356 | Kubo et al. | May 2005 | B2 |
6896047 | Currle et al. | May 2005 | B2 |
6907739 | Bell | Jun 2005 | B2 |
6948321 | Bell | Sep 2005 | B2 |
6959555 | Bell | Nov 2005 | B2 |
6973799 | Kuehl et al. | Dec 2005 | B2 |
6986247 | Parise | Jan 2006 | B1 |
7007491 | Grimm et al. | Mar 2006 | B2 |
7089756 | Hu | Aug 2006 | B2 |
7100369 | Yamaguchi et al. | Sep 2006 | B2 |
7111465 | Bell | Sep 2006 | B2 |
7134288 | Crippen et al. | Nov 2006 | B2 |
7231772 | Bell | Jun 2007 | B2 |
7246496 | Goenka et al. | Jul 2007 | B2 |
7273981 | Bell | Sep 2007 | B2 |
7310953 | Pham et al. | Dec 2007 | B2 |
7380586 | Gawthrop | Jun 2008 | B2 |
7421845 | Bell | Sep 2008 | B2 |
7426835 | Bell et al. | Sep 2008 | B2 |
7587902 | Bell | Sep 2009 | B2 |
7608777 | Bell et al. | Oct 2009 | B2 |
7743614 | Goenka et al. | Jun 2010 | B2 |
7779639 | Goenka | Aug 2010 | B2 |
7926293 | Bell | Apr 2011 | B2 |
7946120 | Bell et al. | May 2011 | B2 |
20010005990 | Kim | Jul 2001 | A1 |
20010029974 | Cohen et al. | Oct 2001 | A1 |
20020014261 | Caillat et al. | Feb 2002 | A1 |
20030029175 | Lee | Feb 2003 | A1 |
20030094265 | Chu et al. | May 2003 | A1 |
20030140636 | Van Winkle | Jul 2003 | A1 |
20040055312 | Bell | Mar 2004 | A1 |
20040076214 | Bell | Apr 2004 | A1 |
20040089336 | Hunt | May 2004 | A1 |
20040093889 | Bureau et al. | May 2004 | A1 |
20040177876 | Hightower | Sep 2004 | A1 |
20040237541 | Murphy | Dec 2004 | A1 |
20040261829 | Bell | Dec 2004 | A1 |
20040261831 | Tsuneoka et al. | Dec 2004 | A1 |
20050067862 | Iqbal et al. | Mar 2005 | A1 |
20050081834 | Perkins | Apr 2005 | A1 |
20050121065 | Otey | Jun 2005 | A1 |
20050139692 | Yamamoto | Jun 2005 | A1 |
20050178128 | Harwood et al. | Aug 2005 | A1 |
20050194034 | Yamaguchi et al. | Sep 2005 | A1 |
20050247336 | Inaoka | Nov 2005 | A1 |
20050257531 | Kadle et al. | Nov 2005 | A1 |
20050263177 | Bell | Dec 2005 | A1 |
20050268621 | Kadle et al. | Dec 2005 | A1 |
20050278863 | Bahash et al. | Dec 2005 | A1 |
20050279105 | Pastorino | Dec 2005 | A1 |
20060005548 | Ruckstuhl | Jan 2006 | A1 |
20060075758 | Rice et al. | Apr 2006 | A1 |
20060086118 | Venkatasubramanian et al. | Apr 2006 | A1 |
20060130888 | Yamaguchi et al. | Jun 2006 | A1 |
20060150657 | Spurgeon et al. | Jul 2006 | A1 |
20060157102 | Nakajima | Jul 2006 | A1 |
20060174633 | Beckley | Aug 2006 | A1 |
20060188418 | Park et al. | Aug 2006 | A1 |
20060254285 | Lin | Nov 2006 | A1 |
20070000255 | Elliot et al. | Jan 2007 | A1 |
20070017666 | Goenka et al. | Jan 2007 | A1 |
20070033951 | Goenka et al. | Feb 2007 | A1 |
20070056295 | De Vilbiss | Mar 2007 | A1 |
20070214799 | Goenka | Sep 2007 | A1 |
20070220902 | Matsuoka et al. | Sep 2007 | A1 |
20070272290 | Sims et al. | Nov 2007 | A1 |
20080028769 | Goenka | Feb 2008 | A1 |
20080035195 | Bell | Feb 2008 | A1 |
20080173342 | Bell et al. | Jul 2008 | A1 |
20080230618 | Gawthrop | Sep 2008 | A1 |
20080245398 | Bell et al. | Oct 2008 | A1 |
20080250794 | Bell | Oct 2008 | A1 |
20080289677 | Bell et al. | Nov 2008 | A1 |
20080307796 | Bell et al. | Dec 2008 | A1 |
20090000310 | Bell et al. | Jan 2009 | A1 |
20090007572 | Bell et al. | Jan 2009 | A1 |
20090007952 | Kondoh et al. | Jan 2009 | A1 |
20090139556 | Bell et al. | Jun 2009 | A1 |
20090293499 | Bell et al. | Dec 2009 | A1 |
20090301103 | Bell et al. | Dec 2009 | A1 |
20100024859 | Bell et al. | Feb 2010 | A1 |
20100031987 | Bell | Feb 2010 | A1 |
20100031988 | Bell | Feb 2010 | A1 |
20100052374 | Bell | Mar 2010 | A1 |
20100095996 | Bell | Apr 2010 | A1 |
20100101238 | LaGrandeur | Apr 2010 | A1 |
20100101239 | LaGrandeur | Apr 2010 | A1 |
20100155018 | Goenka et al. | Jun 2010 | A1 |
20100236595 | Bell | Sep 2010 | A1 |
20100287952 | Goenka | Nov 2010 | A1 |
20100291414 | Bell et al. | Nov 2010 | A1 |
20100313576 | Goenka | Dec 2010 | A1 |
20100331657 | Mensinger et al. | Dec 2010 | A1 |
20110067742 | Bell et al. | Mar 2011 | A1 |
20110079023 | Goenka et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
1195090 | Oct 1998 | CN |
1236429 | Nov 1999 | CN |
1249067 | Mar 2000 | CN |
1343294 | Apr 2002 | CN |
101720414 | Jun 2010 | CN |
1301454 | Aug 1969 | DE |
2319155 | Oct 1974 | DE |
43 29 816 | Mar 1994 | DE |
199 51 224 | May 2001 | DE |
0 389 407 | Sep 1990 | EP |
0 545 021 | Jun 1993 | EP |
0834421 | Apr 1998 | EP |
1 324 400 | Jul 2003 | EP |
1 366 328 | Dec 2003 | EP |
02 72 937 | Dec 2003 | EP |
1 475 532 | Nov 2004 | EP |
1 515 376 | Mar 2005 | EP |
1 641 067 | Mar 2006 | EP |
1 679 480 | Jul 2006 | EP |
1 280 711 | Jan 1962 | FR |
2 261 638 | Sep 1975 | FR |
2 419 479 | Oct 1979 | FR |
2543275 | Sep 1984 | FR |
2 550 324 | Feb 1985 | FR |
2806666 | Sep 2001 | FR |
2 879 728 | Jun 2006 | FR |
231 192 | May 1926 | GB |
817 077 | Jul 1959 | GB |
952 678 | Mar 1964 | GB |
1 040 485 | Aug 1966 | GB |
1151947 | May 1969 | GB |
2027534 | Feb 1980 | GB |
2267338 | Dec 1993 | GB |
2 333 352 | Jul 1999 | GB |
239697 | Mar 2010 | IN |
56-18231 | Feb 1981 | JP |
60-80044 | Jul 1985 | JP |
63-262076 | Oct 1988 | JP |
01 131830 | May 1989 | JP |
01-200122 | Aug 1989 | JP |
01-281344 | Nov 1989 | JP |
03-102219 | Oct 1991 | JP |
04 103925 | Apr 1992 | JP |
04-165234 | Jun 1992 | JP |
05-219765 | Aug 1993 | JP |
6-342940 | Dec 1994 | JP |
7-198284 | Jan 1995 | JP |
A-7-7187 | Jan 1995 | JP |
07-074397 | Mar 1995 | JP |
07-54189 | Jun 1995 | JP |
A-7-202275 | Aug 1995 | JP |
07-253224 | Oct 1995 | JP |
07253264 | Feb 1996 | JP |
A-8-293627 | Nov 1996 | JP |
09042801 | Feb 1997 | JP |
9-089284 | Apr 1997 | JP |
1997-092761 | Apr 1997 | JP |
09-254630 | Sep 1997 | JP |
10 012935 | Jan 1998 | JP |
10035268 | Feb 1998 | JP |
H10-163538 | Jun 1998 | JP |
H10-325561 | Aug 1998 | JP |
10238406 | Sep 1998 | JP |
10-275943 | Oct 1998 | JP |
10-290590 | Oct 1998 | JP |
H10-325561 | Dec 1998 | JP |
11 046021 | Feb 1999 | JP |
11-182907 | Jul 1999 | JP |
11-201475 | Jul 1999 | JP |
11-274574 | Oct 1999 | JP |
11-317481 | Nov 1999 | JP |
2000 018095 | Jan 2000 | JP |
H2000-58930 | Feb 2000 | JP |
2000-161721 | Jun 2000 | JP |
2000-185542 | Jul 2000 | JP |
H2000-214934 | Aug 2000 | JP |
2000-274788 | Oct 2000 | JP |
2000-274871 | Oct 2000 | JP |
2000-274874 | Oct 2000 | JP |
2000-286469 | Oct 2000 | JP |
2000-323759 | Nov 2000 | JP |
2001-24240 | Jan 2001 | JP |
2001-210879 | Aug 2001 | JP |
2001-267642 | Sep 2001 | JP |
2001304778 | Oct 2001 | JP |
2001-336853 | Dec 2001 | JP |
2002-13758 | Jan 2002 | JP |
2002059736 | Feb 2002 | JP |
2002-199761 | Jul 2002 | JP |
2002 232028 | Aug 2002 | JP |
2003-86223 | Mar 2003 | JP |
2003 332642 | Nov 2003 | JP |
2004 079883 | Mar 2004 | JP |
2004-360522 | Dec 2004 | JP |
2005-519256 | Jun 2005 | JP |
2005-212564 | Aug 2005 | JP |
H07-074397 | Sep 2005 | JP |
H07-111334 | Oct 2005 | JP |
2005 317648 | Nov 2005 | JP |
2006 214350 | Aug 2006 | JP |
H08-098569 | Oct 2006 | JP |
H08-222771 | Mar 2007 | JP |
2008 042994 | Feb 2008 | JP |
2008 274790 | Nov 2008 | JP |
2008 300465 | Dec 2008 | JP |
2009 033806 | Feb 2009 | JP |
2009-247206 | Oct 2009 | JP |
2009-544929 | Dec 2009 | JP |
2009-545164 | Dec 2009 | JP |
4460219 | Feb 2010 | JP |
66619 | Feb 1973 | LU |
2092753 | Oct 1997 | RU |
2 099 642 | Dec 1997 | RU |
2 142 178 | Nov 1999 | RU |
2 154 875 | Aug 2000 | RU |
2174475 | Oct 2001 | RU |
329870 | May 1969 | SE |
337227 | Aug 1971 | SE |
184886 | Jul 1966 | SU |
1142711 | Feb 1985 | SU |
1170234 | Jul 1985 | SU |
1196627 | Dec 1985 | SU |
WO 9501500 | Jan 1995 | WO |
WO 9605475 | Feb 1996 | WO |
WO 9722486 | Jun 1997 | WO |
WO 9747930 | Dec 1997 | WO |
WO 9856047 | Dec 1998 | WO |
WO 9910191 | Mar 1999 | WO |
WO 9958907 | Nov 1999 | WO |
WO 0152332 | Jul 2001 | WO |
WO 0200458 | Jan 2002 | WO |
PCTUS0203659 | Feb 2002 | WO |
PCTUS0203772 | Jul 2002 | WO |
WO 02065029 | Aug 2002 | WO |
WO 02065030 | Aug 2002 | WO |
WO 02081982 | Oct 2002 | WO |
PCTUS0225233 | Nov 2002 | WO |
WO 03014634 | Feb 2003 | WO |
PCTUS0317834 | Jun 2003 | WO |
PCTUS0324899 | Aug 2003 | WO |
WO 03074951 | Sep 2003 | WO |
WO 03090286 | Oct 2003 | WO |
WO 03104726 | Dec 2003 | WO |
WO 2004019379 | Mar 2004 | WO |
PCTUS2004026560 | Aug 2004 | WO |
PCTUS2005026757 | Aug 2004 | WO |
WO 2004092662 | Oct 2004 | WO |
PCTUS2004026757 | Mar 2005 | WO |
WO 2005020340 | Mar 2005 | WO |
WO 2005020422 | Mar 2005 | WO |
WO 2005023571 | Mar 2005 | WO |
WO 2005098225 | Oct 2005 | WO |
WO 2006037178 | Apr 2006 | WO |
WO 2006043514 | Apr 2006 | WO |
WO 2006064432 | Jun 2006 | WO |
WO 2007001289 | Jan 2007 | WO |
WO 2007109368 | Sep 2007 | WO |
WO 2008013946 | Jan 2008 | WO |
WO 2008042077 | Apr 2008 | WO |
WO 2008091293 | Jul 2008 | WO |
WO 2008123663 | Oct 2008 | WO |
WO 2008148042 | Dec 2008 | WO |
WO 2009149207 | Dec 2009 | WO |
WO 2010014292 | Feb 2010 | WO |
WO 2010014958 | Feb 2010 | WO |
WO 2010048575 | Apr 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20080250794 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60310565 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10215163 | Aug 2002 | US |
Child | 12100285 | US |