Thermoelectric smartwatch

Information

  • Patent Grant
  • D819627
  • Patent Number
    D819,627
  • Date Filed
    Friday, November 11, 2016
    8 years ago
  • Date Issued
    Tuesday, June 5, 2018
    6 years ago
  • US Classifications
    Field of Search
    • US
    • D14 344
    • D14 138 R
    • D14 144
    • D14 341
    • D14 358
    • D14 485-489
    • D14 218
    • D10 30- 39
    • D10 70
    • D10 98
    • D11 3
    • D11 93- 94
    • D24 167
    • D24 169
    • D24 186-187
    • 361 679030
    • 379 433100
    • D13 108
    • CPC
    • A41D1/002
    • G06F1/04
    • G06F1/08
    • G06F1/10
    • G06F1/14
    • G06F1/1626
    • G06F1/1628
    • G06F1/163
    • G06F1/1635
    • G06F1/3203
    • G06Q20/10
    • G06Q20/12
    • G06Q20/108
    • G06Q20/145
    • H04B1/3833
    • H04B1/385
    • H04B1/3888
    • H04M1/02
    • H04M1/03
    • H04M1/04
    • H04M1/05
    • H04M1/667
    • H04M1/6058
    • Y02B60/1217
  • International Classifications
    • 1402
    • Term of Grant
      15Years
Abstract
Description


FIG. 1 is a top perspective view of a thermoelectric smartwatch in accordance with the present design;



FIG. 2 is a front view of the thermoelectric smartwatch;



FIG. 3 is a back view of the thermoelectric smartwatch;



FIG. 4 is a right side view of the thermoelectric smartwatch;



FIG. 5 is a left side view of the thermoelectric smartwatch;



FIG. 6 is a top view of the thermoelectric smartwatch; and,



FIG. 7 is a bottom view of the thermoelectric smartwatch.


The broken lines shown in FIGS. 1-7 in the drawings depict portions of the thermoelectric smartwatch that form no part of the claimed design.


Claims
  • The ornamental design for a thermoelectric smartwatch, as shown and described.
US Referenced Citations (147)
Number Name Date Kind
365990 Giles Jul 1887 A
3653989 Alois Apr 1972 A
4070821 Somogyi Jan 1978 A
4078945 Gonsiorawski Mar 1978 A
4092445 Tsuzuki et al. May 1978 A
4106279 Martin et al. Aug 1978 A
4261049 Komiyama et al. Apr 1981 A
4681657 Hwang et al. Jul 1987 A
5089293 Bohara et al. Feb 1992 A
5139624 Searson et al. Aug 1992 A
D332408 Chodat Jan 1993 S
5206523 Goesele et al. Apr 1993 A
D365767 Hitter Jan 1996 S
5552328 Orlowski et al. Sep 1996 A
5565084 Lee et al. Oct 1996 A
5695557 Yamagata et al. Dec 1997 A
5767020 Sakaguchi et al. Jun 1998 A
5868947 Sakaguchi et al. Feb 1999 A
5873003 Inoue et al. Feb 1999 A
5889735 Kawata et al. Mar 1999 A
5895223 Peng et al. Apr 1999 A
D409097 Monachon May 1999 S
5970361 Kumomi et al. Oct 1999 A
5981400 Lo Nov 1999 A
5990605 Yoshikawa et al. Nov 1999 A
6017811 Winton et al. Jan 2000 A
6093941 Russell et al. Jul 2000 A
6194323 Downey et al. Feb 2001 B1
6222114 Mitamura Apr 2001 B1
6304520 Watanabe Oct 2001 B1
6304521 Kanesaka Oct 2001 B1
6313015 Lee et al. Nov 2001 B1
6407965 Matoge et al. Jun 2002 B1
6762134 Bohn et al. Jul 2004 B2
6790785 Li et al. Sep 2004 B1
6803260 Shin et al. Oct 2004 B2
6882051 Majumdar et al. Apr 2005 B2
D504624 Bodino May 2005 S
7075161 Barth Jul 2006 B2
7115971 Stumbo et al. Oct 2006 B2
7135728 Duan et al. Nov 2006 B2
7161168 Heath et al. Jan 2007 B2
D536994 Sugisawa Feb 2007 S
D538181 Sugiura Mar 2007 S
7189435 Tuominen et al. Mar 2007 B2
7190049 Tuominen et al. Mar 2007 B2
D540199 Nussbaumer Apr 2007 S
7254953 Callas et al. Aug 2007 B2
7291282 Tong Nov 2007 B2
7309830 Zhang et al. Dec 2007 B2
D578902 Hoshino Oct 2008 S
7465871 Chen et al. Dec 2008 B2
D590727 Wei Apr 2009 S
D591178 Magada Apr 2009 S
7569941 Majumdar et al. Aug 2009 B2
7572669 Tuominen et al. Aug 2009 B2
D601909 Behling Oct 2009 S
7629531 Stark Dec 2009 B2
7645625 Ono et al. Jan 2010 B2
7675084 Wierer, Jr. et al. Mar 2010 B2
7960258 Chao et al. Jun 2011 B2
D646183 De Witt Oct 2011 S
8087254 Arnold Jan 2012 B2
8101449 Liang et al. Jan 2012 B2
D655630 Behling Mar 2012 S
D660727 Parmigiani May 2012 S
8278191 Hildreth et al. Oct 2012 B2
8324699 Ichijo et al. Dec 2012 B2
8486843 Li et al. Jul 2013 B2
8641912 Heath et al. Feb 2014 B2
8773847 Byun Jul 2014 B2
D711750 Monachon Aug 2014 S
8980656 Li et al. Mar 2015 B2
D729638 Favre May 2015 S
9065016 Peter et al. Jun 2015 B2
D736103 Behling Aug 2015 S
D738227 Monachon Sep 2015 S
D744863 Behling Dec 2015 S
D744866 Behling Dec 2015 S
9209375 Boukai et al. Dec 2015 B2
9263662 Boukai et al. Feb 2016 B2
D752045 Kim Mar 2016 S
9515246 Boukai et al. Dec 2016 B2
D804966 Inoue Dec 2017 S
20040152240 Dangelo Aug 2004 A1
20050133254 Tsakalakos Jun 2005 A1
20050176264 Lai et al. Aug 2005 A1
20050215063 Bergman Sep 2005 A1
20050253138 Choi et al. Nov 2005 A1
20060032526 Fukutani et al. Feb 2006 A1
20060118158 Zhang et al. Jun 2006 A1
20060185710 Yang et al. Aug 2006 A1
20070258213 Chen et al. Nov 2007 A1
20070277866 Sander et al. Dec 2007 A1
20080019876 Chau et al. Jan 2008 A1
20080173344 Zhang et al. Jul 2008 A1
20080271772 Leonov et al. Nov 2008 A1
20080314429 Leonov Dec 2008 A1
20090020148 Boukai et al. Jan 2009 A1
20090020188 Ulicny et al. Jan 2009 A1
20090069045 Cheng Mar 2009 A1
20090117741 Heath et al. May 2009 A1
20100035163 Kobrin Feb 2010 A1
20100065810 Goesele et al. Mar 2010 A1
20100126548 Jang et al. May 2010 A1
20100147350 Chou et al. Jun 2010 A1
20100193001 Hirono et al. Aug 2010 A1
20100248449 Hildreth et al. Sep 2010 A1
20110003279 Patel Jan 2011 A1
20110114145 Yang et al. May 2011 A1
20110114146 Scullin May 2011 A1
20110168978 Kochergin Jul 2011 A1
20110179806 Ipposhi et al. Jul 2011 A1
20110215441 Lin et al. Sep 2011 A1
20110263119 Li et al. Oct 2011 A1
20110266521 Ferrari et al. Nov 2011 A1
20120097204 Yu et al. Apr 2012 A1
20120152295 Matus et al. Jun 2012 A1
20120160290 Chen et al. Jun 2012 A1
20120167936 Park et al. Jul 2012 A1
20120174956 Smythe et al. Jul 2012 A1
20120217165 Feng et al. Aug 2012 A1
20120282435 Yang et al. Nov 2012 A1
20120290051 Boyden et al. Nov 2012 A1
20120295074 Yi et al. Nov 2012 A1
20120319082 Yi et al. Dec 2012 A1
20120326097 Ren et al. Dec 2012 A1
20130019918 Boukai et al. Jan 2013 A1
20130052762 Li et al. Feb 2013 A1
20130087180 Stark et al. Apr 2013 A1
20130143407 Lin et al. Jun 2013 A1
20130175484 Ren et al. Jul 2013 A1
20130186445 Lorimer et al. Jul 2013 A1
20140117380 Loboda et al. May 2014 A1
20140306250 Gardner et al. Oct 2014 A1
20140326287 Wiant et al. Nov 2014 A1
20140373888 Boukai et al. Dec 2014 A1
20150083180 Lang Mar 2015 A1
20150101788 Smith et al. Apr 2015 A1
20150162517 Kasichainula Jun 2015 A1
20150179911 Lemmer et al. Jun 2015 A1
20150216718 Diller et al. Aug 2015 A1
20150228883 Boukai et al. Aug 2015 A1
20150280099 Boukai et al. Oct 2015 A1
20150325772 Boukai et al. Nov 2015 A1
20160035956 Carroll et al. Feb 2016 A1
20160197259 Boukai et al. Jul 2016 A1
Foreign Referenced Citations (19)
Number Date Country
1382626 Dec 2002 CN
S63266829 Nov 1988 JP
H11317547 Nov 1999 JP
2004193526 Jul 2004 JP
2006261451 Sep 2006 JP
2007300127 Nov 2007 JP
2010192580 Sep 2010 JP
2010537430 Dec 2010 JP
WO-0223607 Mar 2002 WO
WO-2010003629 Jan 2010 WO
WO-2011049804 Apr 2011 WO
WO-2012068426 May 2012 WO
WO-2013012842 Jan 2013 WO
WO-2013109729 Jul 2013 WO
WO-2014028903 Feb 2014 WO
WO-2014070795 May 2014 WO
WO-2014179622 Nov 2014 WO
WO 2015134394 Sep 2015 WO
WO-2015148554 Oct 2015 WO
Non-Patent Literature Citations (150)
Entry
Garmin Forerunner 935 Running GPS Unit (Black), posted Apr. 14, 2017, [retrieved Jan. 2, 2018]. Retrieved from Internet, <URL: https://www.amazon.com/Garmin-Forerunner-Running-Unit-Black/dp/B06XGD6CS4 >.
Garmin Fenix 5 review The king of multisport watches is back with a bang, posted Apr. 5, 2017, [retrieved Jan. 2, 2018]. Retrieved from Internet, <URL: https://www.wareable.com/garmin/garmin-fenix-5-review >.
Montblanc TimeWalker Chronograph “On-the-Wrist” Review, posted Dec. 8, 2008, [retrieved Jan. 2, 2018]. Retrieved from Internet, <URL: http://www.watchprosite.com/page-wf.forumpost/fi-1006/ti-478416/pi-2864726/ >.
This Smart Watch Will Charge Itself Using Heat From Your Skin, posted Nov. 14, 2016, [retrieved Jan. 2, 2018]. Retrieved from Internet , <URL: https://spectrum.ieee.org/view-from-the-valley/consumer-electronics/gadgets/this-smart-watch-will-charge-itself-using-the-heat-of-your-skin >.
Advisory action dated Jul. 21, 2017 for U.S. Appl. No. 14/372,443.
Agnes, et al. Doping of the nanocrystalline semiconductor zinc oxide with the donor indium, Amer Institute of Phystcs, vol. 83, No. 6, 1204, (Aug. 11, 2003).
Beckman, et al., Bridging Dimensions: Demultiplexing Ultrahigh-Density nanowire Circuits, Science 2005, 310: 465-468.
Beckman, et al. Fabrication of Conducting. Silicon nanowire Arrays, J. Appi. Phys. 96 (10), 5921-5923'(2004).
Behnen. Quantitative examination of the thermoelectric power of n-typesilicon in the phono drag regime.Journal of Applied Physics, vol. 67, pp. 287-292, Jan. 1, 1990.
Bera, et al. Marked Effects of Alloying on the Thermal Conductivity of nanoporous Materials, Mar. 19, 2010, American Physical Society Physical Review Letters, 104, pp. 115502-01 to 115502-4.
Boukai, et al. Silicon nanowires as efficient thermoelectric materials. nature, vol. 451, pp. 168-171, Jan. 10, 2008.
Boukai, et al. Size-Dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires. Advanced Materials, 18, pp. 864-869, 2006.
Boukai. Thermoelectric properties of bismuth and silicon nanowires. Dissertation (Ph.D.), California Institute of Technology. 2008.
Bunimovich, et al. Quantitative Real-Time Measurements of DnA Hybridization with Alkylated nonoxidized Silicon nanowires in Electrolyte Solution, JACS 2006, 128: 16323-16331.
Chadwick, et al. Plane waves in an elastic solid conducting heat. Journal of the Mechanics and Physics of Solids 6, 223-230 (1958).
Chen, et al. Dispenser Printed Microscale Thermoelectric Generators for Powering Wireless Sensor Networks. Paper No. IMECE2009-11636, pp. 343-352; 10 pages.
Chen, et al. Recent developments in thermoelectric materials. International Materials Reviews, vol. 48, pp. 45-66, 2003.
Choi, et al. Fabrication of bismuth nanowires with a silver nanocrystal shadowmask, J. Vac. Sci. Tech. A-Vac. Surf. And Films, 18, 1236, 1328 (2000).
Choi, et al. Fabrication of nanometer size photoresist wire patterns With a silver nanocrystal shadowmask. J. Vac. Sci. & Tech. A-Vac. Surf. And Films, 17, 1425 (1999).
Chung, et al. Fabrication and Alignment of Wires in Two-Dimensions. The Journal of PhysiCal Chemistry B. 102. 6685 (1998).
Collier, et al. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 1998, 49: 371-404.
Co-pending U.S. Appl. No. 15/585,376, filed May 3, 2017.
Deresiewicz. Plane waves in a thermoelastic solid. Journal of the Acoustical Society of America 29, 204-209 (1957).
Diehl, et al. Self-Assembly of Deterministic Carbon nanottibe Wiring networks. Angew. 'Chem. Int Ed. 41, 353 (2002).
European search report and opinion dated Feb. 26, 2016 for EP Application No. 13829134.9.
European search report and opinion dated Mar. 25, 2014 for EP Application No. 11835180.8.
Extended European Search Report and Search Opinion dated Oct. 9, 2017 for European Patent Application No. EP 15768608.0.
Fan, et al. Self-Oriented Regular Arrays of Carbon nanotubes and their Field Emission Devices. Science, v. 283, p. 512 (Jan. 22, 1999).
Geballe, et al. Seebeck Effect in Silicon. Physical Review, vol. 98, pp. 940-947, May 15, 1955.
Green, et al., A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter, nature 2007, 445: 414-417.
Gurevich. Thermoelectric properties of conductors J. Phys. (U.S.S.R.) 9, 477 (1945).
Harman, et al. Quantum dot superlattice thermoelectric materials and devices. Science, vol. 297, pp. 2229-2232, Sep. 27, 2002.
Haynes, et al. nanosphere Lithography: A Versatile nanofabrication Tool for Studies of Size-Dependent nanoparticle Optics. J. Phys. Chem. B, 105, 5599-5611 (2001).
Heat sinks heat spreaders peltier coolers, novel concepts, Inc., 2014, Available at novelconceptsinc.com http://www.novelconceptsinc.com/heat-spreaders.htm, accessed on Aug. 21, 2017, 2 pages.
Heath, et al. A Defect-Tolerant Computer Architecture: Opportunities for nanotechnology, Science 1998, 280: 1716-1721.
Heath, et al. Pressure/Temperature Phase Diagrams and Superlattices of Organically Functionalized Metal nanocrystal Monolayers: The Influence of Particle Size, Size Distribution, and Surface Passivant, J. Phys. Chem. B 1997, 101: 189-197.
Herring. Theory of the thermoelectric power of semiconductors. Physical Review, vol. 96, No. 5, pp. 1163-1187, 1954.
Hicks, et al.. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B 47, 1 6631-1 6634 (1993).
Hochbaum, et al. Enchanced thermoelectric performance of rough silicon nanowires, Jan. 2008, nature Publishing Group, vol. 451, pp. 1-6.
Hsu, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high Figure of Merit. Science, vol. 303, pp. 818-821, Feb. 6, 2004.
Huang, et al. Metal-assisted chemical etching of silicon: a review. Adv Mater. Jan. 11, 2011;23(2):285-308. doi: 10.1002/adma.201001784.
Huang, et al. Spontaneous formation of nanoparticle strip patterns through dewetting. nature Materials vol. 4, p. 896 (2005).
Hulteen, et al. nanosphere lithography: A materials general fabrication process for periodic particle array surfaces, J. Vac. Sci. Technol. 1995, 13: 1553-1558.
Humphrey, et al. Reversible thermoelectric nanomaterials. Physical Review Letters 94, 096601 (2005).
Husain, et al. Nanowire-based very-high-frequency electromechanical resonator. Applied physics letters, vol. 83, No. 6, Aug. 11, 2003, pp. 1240-1242.
Ihab, et al. Manipulation of thermal phonons: a phononic crystal route to high-ZT thermoelectrics. Photonic and Phononic Properties of Engineered nanostructures, SPIE. 1000 20th St. Bellingham, WA 98225-6705. Feb. 10, 2011; 7946:1-9.
International search report and written opinion dated Feb. 9, 2009 for PCT/US2008/070309.
International search report and written opinion dated Apr. 7, 2017 for PCT Application No. US- 201664501.
International search report and written opinion dated Apr. 15, 2009 for PCT/US2008/064439.
International search report and written opinion dated Apr. 26, 2013 for PCT/U52013/021900.
International search report and written opinion dated May 29, 2012 for PCT/US2011/057171.
International search report and written opinion dated Jul. 3, 2015 for PCT Application No. US2015/022312.
International search report and written opinion dated Jul. 17, 2012 for PCT Application No. PCT/US2012/047021.
International search report and written opinion dated Aug. 7, 2017 for PCT Application US-201730868.
International search report and written opinion dated Dec. 27, 2013 for PCT/U52013/055462.
International search report dated Feb. 10, 2014 for PCT/US2013/067346.
Joannopoulos, et al. Photonic crystals: putting a new twist on light, nature 1997, 386: 143-149.
Jung, et al. Circuit Fabrication at 17 nm Half-Pitch by nanoimprinttithography. nanoLetters, 6, 351 (2006).
Koga, et al. Experimental proof-of-principle investigation of enhanced Z3DT in (100) oriented Si/Ge superlattices. Applied Physics Letters 77, 1490-1492 (2000).
Lee, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. nano. Lett. 2008; 8(12):4670-4674.
Lee, et al nanoporous Si as an Efficient Thermoelectric Material. nano Letter, 8, 2008, 3750-3754.
Lee, et al. nanostructured bulk thermoelectric materials and their properties. ICT 2005. 24th International Conference on Thermoelectrics (ICT). 2005 284-287.
Li, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. Journal of heart transfer, vol. 125, pp. 881-888, Oct. 2003.
Li et al. Thermal Conductivity of Individual Silicon Nanowires. Appl Phys Lett 83(14):2934-2936 (Oct. 6, 2003).
Lifshitz, et al. Thermoelastic damping in micro- and nanomechanical systems. Physical Review B 61, 5600-5609 (2000).
Liu, et al. Thermal conduction in ultrahigh pure and doped single-crystal silicon layers at high temperatures. Journal of Applied Physics 98, 123523 (2005).
Llaguno, et al. Observation of thermopower oscillations in the coulomb blockade regime in a semiconducting carbon nanotube. nano Lett. 4, 45-49 (2004).
Mahan, et al. The best thermoelectric. PnAS 93, 7436-7439 (1996).
Mahan, et al. Thermoelectric materials: new approaches to an old problem. Physics Today 50, pp. 42-47, Mar. 1997.
Majumdar. Thermoelectricity in Semiconductor nanostructures. Science Feb. 6, 2004; 303(5659):777-778. DOI: 10.1126/science.1093164.
Maranganti, et al. Length scales at which classical elasticity breaks down for various materials. Physical Review Letters 98, 195504 (2007).
Martin. nanomaterials—A membrane based synthetic approach. Science, v. 266, p. 1961-1966 (Dec. 23, 1994).
Melosh, et al. Ultra-high density nanowire lattices and circuits. Science, vol. 300, pp. 112-115,Apr. 4, 2003.
Morales, et al. A laser ablation method for the synthesis of semiconductor crystalline nanowires. Science, vol. 279, pp. 208-211, Jan. 9, 1998.
NDT Resource Center, Thermal Conductivity. Downloaded Nov. 26, 2013. https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm.
Notice of allowance dated Jan. 22, 2016 for U.S. Appl. No. 14/667,177.
Notice of allowance dated Jun. 15, 2016 for U.S. Appl. No. 13/278,074.
Notice of allowance dated Jul. 13, 2011 for U.S. Appl. No. 12/125,043.
Notice of allowance dated Jul. 29, 2015 for U.S. Appl. No. 12/175,027.
Notice of allowance dated Jul. 29, 2016 for U.S. Appl. No. 14/624,506.
Notice of allowance dated Aug. 18, 2017 for U.S. Appl. No. 14/700,082.
Notice of allowance dated Oct. 2, 2013 for U.S. Appl. No. 12/125,043.
Notice of allowance dated Oct. 8, 2015 for U.S. Appl. No. 14/667,177.
Notice of allowance dated Nov. 6, 2015 for U.S. Appl. No. 14/667,177.
Notice of allowance dated Dec. 10, 2015 for U.S. Appl. No. 14/667,177.
Office action dated Jan. 9, 2015 for U.S. Appl. No. 12/175,027.
Office action dated Jan. 23, 2015 for U.S. Appl. No. 13/278,074.
Office action dated Feb. 2, 2017 for U.S. Appl. No. 14/700,082.
Office action dated Feb. 12, 2015 for U.S. Appl. No. 13/550,424.
Office action dated Feb. 18, 2011 for U.S. Appl. No. 12/125,043.
Office action dated Apr. 19, 2017 for U.S. Appl. No. 14/372,443.
Office action dated Apr. 25, 2013 for U.S. Appl. No. 13/278,074.
Office action dated May 23, 2013 for U.S. Appl. No. 12/175,027.
Office action dated Jun. 16, 2015 for U.S. Appl. No. 13/278,074.
Office action dated Jun. 22, 2011 for U.S. Appl. No. 12/175,027.
Office action dated Jun. 23, 2016 for U.S. Appl. No. 14/372,443.
Office action dated Jun. 26, 2017 for U.S. Appl. No. 14/989,225.
Office action dated Jun. 28, 2016 for U.S. Appl. No. 14/624,506.
Office action dated Jun. 29, 2016 for U.S. Appl. No. 13/550,424.
Office action dated Jun. 30, 2014 for U.S. Appl. No. 12/175,027.
Office action dated Jul. 18, 2014 for U.S. Appl. No. 13/278,074.
Office action dated Aug. 7, 2013 for U.S. Appl. No. 13/278,074.
Office action dated Aug. 28, 2015 for U.S. Appl. No. 13/550,424.
Office action dated Oct. 7, 2016 for U.S. Appl. No. 14/989,225.
Office action dated Nov. 10, 2010 for U.S. Appl. No. 12/175,027.
Office action dated Nov. 17, 2015 for U.S. Appl. No. 14/372,443.
Office action dated Nov. 18, 2015 for U.S. Appl. No. 13/278,074.
Office action dated Nov. 27, 2013 for U.S. Appl. No. 12/175,027.
Pearson. Survey of thermoelectric studies of the group-1 metals at low temperatures carried out at the national-research-laboratories, Ottawa. Soviet Physics-Solid State 3, 1024-1033 (1961).
Peng, et al. Ordered silicon nanowire'arrays via nanosphere lithography and metal induced etching. Applied Physics Letters, v.90, article # 163123 (2007).
Prasher. Thermal conductivity of composites of aligned nanoscale and microscale wires and pores. Journal of Applied Physics, 100, 034307, 2006, p. 1-9.
Qiu, et al. Large complete band gap in two-dimensional photonic crystals with elliptic air holes, Physical Review B 1999, 60: 10 610-10 612.
Routkevitch, et al. Electrochemical Fabrication of CdS nanowires arrays in porous anodic aluminum oxide templates. The Journal of Physical Chemistry, v. 100, p. 14037-14047 (1996).
She, et al. Fabrication of vertically aligned Si nanowires and their application in a gated field emission device. Applied Physics Letters. v; 88. article # 013112 (2006).
Sialon Ceramics. Downloaded May 6, 2013. http://www.sialon.com.au/high-temperature-seebeck-probes.htm.
Silverstein, et al. Porous polymers. John Wiley & Sons, 2011.
Small, et al. Modulation of thermoelectric power of individual carbon nanotubes. Physical Review letters, vol. 91, pp. 256801-1 to 256801-4, 2003.
Snyder, et al. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. nature Material, vol. 2, pp. 528-531, Aug. 2003.
Tang, et al. Holey silicon as an efficient thermoelectric material. nano. Lett. 2010; 10:4279-4283.
Tao, et al. Langrfluir Blodgett Silver nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. nanoLetters 3, 1229 (2003).
Trzcinski, et al. Quenched Phonon Drag in Silicon Microcontacts. Physical Review Letters, vol. 56, No. 10, pp. 1086-1089, 1986.
Venkatasubramanian, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. nature, vol. 413, pp. 597-602, Oct. 11, 2001.
Vining. Desperately seeking silicon. nature, vol. 451, pp. 132-133, Jan. 10, 2008.
Vossmeyer, et al. Light-directed assembly of nanoparticles, Angew. Chem. Int. Ed. Engl. 1997, 36: 1080-1083.
Wang, et al. A new type of lower power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectronic Engineering. 2005; 77:223-229.
Wang, et al. Complementary Symmetry Silicon nanowire Logic: Power-Efficient Inverters with Gain**, Small 2006, 2: 1153-1158.
Wang, et al. Oxidation Resistant Germanium nanowires:. Bulk. Synthesis. Long Chain Alkahethioi Functionalization, and Langmuir-Blodgett Assembly. Journal of the American Chemical Society, 127, 11871 (2005). 0.
Wang, et al., Silicon p-FETs from Ultrahigh Density nanowire Arrays, nano Letters 2006, 6: 1096-1100.
Wang, et al. Surface Chemistry and Electrical Properties of Germanium nanowires, JACS 2004, 126: 11602-11611.
Wang, et al. Use of phopshine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. nano Letters. 2005; 5(11):2139-2143.
Weber, et al. Silicon-nanowire transistors with Intruded nickel-Silicide Contacts. nano Letters v. 6, p. 2660-2666 (2006).
Weber, et al. Transport properties of silicon. Applied Physics A: Solids and Surfaces, pp. 136-140, 1991.
Whang, et al. Large-Scale Hierarchical Organization of nanowire Arrays for Integrated nanosystems. nanoLetters 3, 1255-1259 (2003).
Williams, et al. Etch rates for micromachining processing. Journal of Microelectromechanical Systems 5, 256-269 (1996).
Wolfsteller; et al., Comparison of the top-down and bottom-up approach to fabricate nanowire-based silicon/germanium heterostructures. Thin Solid Films 518.9 (2010): 2555-2561.
Wu, et al. Single-crystal metallic nanowires and meta semiconductor nanowires heterostructures. nature, 430. p. 61'(2004).
Xu, et al. Controlled fabrication of long quasione-dimensional superconducting nanowire arrays. nano letters, vol. 8, No. 1, Dec. 6, 2007, pp. 136-141.
Yablonovitch. Photonic band-gap structures, J. Opt. Soc. Am. B. 1993, 10: 283-297.
Yang, et al. Encoding Electronic Properties.by Synthesis of Axial Modulation Doped Silicon nanowires. Science, 310, p. 1304 (2005).
Yang, et al. Single p-Type/Intrinsic/n-TypeSilicon nanowires as nanoscale Avalanche Photodetectors, nano Letters 2006, 6: 2929-2934.
Yang, et al. Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Physiucal Review B, 72, 125418, 2005, p. 1-7.
Yu, et al. Reduction of thermal conductivity in phononic nanomesh structures. nature nanotechnology. 2010; 5:718-721.
Yu-Ming, et al. Semimetal-semicinductor transition in bil_xSbx alloy nanowires and their thermoelectric properties. Applied Physics Letter, Volov. 81, No. 13, pp. 2403-2405, Sep. 23, 2002.
Zener, et al. Internal friction in solids III. Experimental demonstration of thermoelastic internal friction. Physical Review 53, 100-101 (1938).
Zener. Internal friction in solids I. Theory of internal friction in reeds. Physical Review 52, 230-235 (1937).
Zhong, et al. Nanowire Crossbar Arrays as Address Decoders for Integrated nanosystems, Science 2003, 302: 1377-1379.
Zhou. Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. nano Letters 7, 1649-1654 (2007).
Zhou, et al. Verticaly aligned Zn2SiO4 nanotube/ZnO nanowire Heterojunction Arrays. Small, v.3. p. 622-626 (2007).
Hicks, et al., Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B 47, 1 6631-6634 (1993).
Wallarah Minerals, Downloaded Mar. 26, 2015. http://www.wallarahminerals.com.au/high-temperature-seebeck-probes.htm.