The broken lines shown in
The broken lines shown in
Number | Name | Date | Kind |
---|---|---|---|
365990 | Giles | Jul 1887 | A |
3653989 | Alois | Apr 1972 | A |
4070821 | Somogyi | Jan 1978 | A |
4078945 | Gonsiorawski | Mar 1978 | A |
4092445 | Tsuzuki et al. | May 1978 | A |
4106279 | Martin et al. | Aug 1978 | A |
4261049 | Komiyama et al. | Apr 1981 | A |
4681657 | Hwang et al. | Jul 1987 | A |
5089293 | Bohara et al. | Feb 1992 | A |
5139624 | Searson et al. | Aug 1992 | A |
D332408 | Chodat | Jan 1993 | S |
5206523 | Goesele et al. | Apr 1993 | A |
D365767 | Hitter | Jan 1996 | S |
5552328 | Orlowski et al. | Sep 1996 | A |
5565084 | Lee et al. | Oct 1996 | A |
5695557 | Yamagata et al. | Dec 1997 | A |
5767020 | Sakaguchi et al. | Jun 1998 | A |
5868947 | Sakaguchi et al. | Feb 1999 | A |
5873003 | Inoue et al. | Feb 1999 | A |
5889735 | Kawata et al. | Mar 1999 | A |
5895223 | Peng et al. | Apr 1999 | A |
D409097 | Monachon | May 1999 | S |
5970361 | Kumomi et al. | Oct 1999 | A |
5981400 | Lo | Nov 1999 | A |
5990605 | Yoshikawa et al. | Nov 1999 | A |
6017811 | Winton et al. | Jan 2000 | A |
6093941 | Russell et al. | Jul 2000 | A |
6194323 | Downey et al. | Feb 2001 | B1 |
6222114 | Mitamura | Apr 2001 | B1 |
6304520 | Watanabe | Oct 2001 | B1 |
6304521 | Kanesaka | Oct 2001 | B1 |
6313015 | Lee et al. | Nov 2001 | B1 |
6407965 | Matoge et al. | Jun 2002 | B1 |
6762134 | Bohn et al. | Jul 2004 | B2 |
6790785 | Li et al. | Sep 2004 | B1 |
6803260 | Shin et al. | Oct 2004 | B2 |
6882051 | Majumdar et al. | Apr 2005 | B2 |
D504624 | Bodino | May 2005 | S |
7075161 | Barth | Jul 2006 | B2 |
7115971 | Stumbo et al. | Oct 2006 | B2 |
7135728 | Duan et al. | Nov 2006 | B2 |
7161168 | Heath et al. | Jan 2007 | B2 |
D536994 | Sugisawa | Feb 2007 | S |
D538181 | Sugiura | Mar 2007 | S |
7189435 | Tuominen et al. | Mar 2007 | B2 |
7190049 | Tuominen et al. | Mar 2007 | B2 |
D540199 | Nussbaumer | Apr 2007 | S |
7254953 | Callas et al. | Aug 2007 | B2 |
7291282 | Tong | Nov 2007 | B2 |
7309830 | Zhang et al. | Dec 2007 | B2 |
D578902 | Hoshino | Oct 2008 | S |
7465871 | Chen et al. | Dec 2008 | B2 |
D590727 | Wei | Apr 2009 | S |
D591178 | Magada | Apr 2009 | S |
7569941 | Majumdar et al. | Aug 2009 | B2 |
7572669 | Tuominen et al. | Aug 2009 | B2 |
D601909 | Behling | Oct 2009 | S |
7629531 | Stark | Dec 2009 | B2 |
7645625 | Ono et al. | Jan 2010 | B2 |
7675084 | Wierer, Jr. et al. | Mar 2010 | B2 |
7960258 | Chao et al. | Jun 2011 | B2 |
D646183 | De Witt | Oct 2011 | S |
8087254 | Arnold | Jan 2012 | B2 |
8101449 | Liang et al. | Jan 2012 | B2 |
D655630 | Behling | Mar 2012 | S |
D660727 | Parmigiani | May 2012 | S |
8278191 | Hildreth et al. | Oct 2012 | B2 |
8324699 | Ichijo et al. | Dec 2012 | B2 |
8486843 | Li et al. | Jul 2013 | B2 |
8641912 | Heath et al. | Feb 2014 | B2 |
8773847 | Byun | Jul 2014 | B2 |
D711750 | Monachon | Aug 2014 | S |
8980656 | Li et al. | Mar 2015 | B2 |
D729638 | Favre | May 2015 | S |
9065016 | Peter et al. | Jun 2015 | B2 |
D736103 | Behling | Aug 2015 | S |
D738227 | Monachon | Sep 2015 | S |
D744863 | Behling | Dec 2015 | S |
D744866 | Behling | Dec 2015 | S |
9209375 | Boukai et al. | Dec 2015 | B2 |
9263662 | Boukai et al. | Feb 2016 | B2 |
D752045 | Kim | Mar 2016 | S |
9515246 | Boukai et al. | Dec 2016 | B2 |
D804966 | Inoue | Dec 2017 | S |
20040152240 | Dangelo | Aug 2004 | A1 |
20050133254 | Tsakalakos | Jun 2005 | A1 |
20050176264 | Lai et al. | Aug 2005 | A1 |
20050215063 | Bergman | Sep 2005 | A1 |
20050253138 | Choi et al. | Nov 2005 | A1 |
20060032526 | Fukutani et al. | Feb 2006 | A1 |
20060118158 | Zhang et al. | Jun 2006 | A1 |
20060185710 | Yang et al. | Aug 2006 | A1 |
20070258213 | Chen et al. | Nov 2007 | A1 |
20070277866 | Sander et al. | Dec 2007 | A1 |
20080019876 | Chau et al. | Jan 2008 | A1 |
20080173344 | Zhang et al. | Jul 2008 | A1 |
20080271772 | Leonov et al. | Nov 2008 | A1 |
20080314429 | Leonov | Dec 2008 | A1 |
20090020148 | Boukai et al. | Jan 2009 | A1 |
20090020188 | Ulicny et al. | Jan 2009 | A1 |
20090069045 | Cheng | Mar 2009 | A1 |
20090117741 | Heath et al. | May 2009 | A1 |
20100035163 | Kobrin | Feb 2010 | A1 |
20100065810 | Goesele et al. | Mar 2010 | A1 |
20100126548 | Jang et al. | May 2010 | A1 |
20100147350 | Chou et al. | Jun 2010 | A1 |
20100193001 | Hirono et al. | Aug 2010 | A1 |
20100248449 | Hildreth et al. | Sep 2010 | A1 |
20110003279 | Patel | Jan 2011 | A1 |
20110114145 | Yang et al. | May 2011 | A1 |
20110114146 | Scullin | May 2011 | A1 |
20110168978 | Kochergin | Jul 2011 | A1 |
20110179806 | Ipposhi et al. | Jul 2011 | A1 |
20110215441 | Lin et al. | Sep 2011 | A1 |
20110263119 | Li et al. | Oct 2011 | A1 |
20110266521 | Ferrari et al. | Nov 2011 | A1 |
20120097204 | Yu et al. | Apr 2012 | A1 |
20120152295 | Matus et al. | Jun 2012 | A1 |
20120160290 | Chen et al. | Jun 2012 | A1 |
20120167936 | Park et al. | Jul 2012 | A1 |
20120174956 | Smythe et al. | Jul 2012 | A1 |
20120217165 | Feng et al. | Aug 2012 | A1 |
20120282435 | Yang et al. | Nov 2012 | A1 |
20120290051 | Boyden et al. | Nov 2012 | A1 |
20120295074 | Yi et al. | Nov 2012 | A1 |
20120319082 | Yi et al. | Dec 2012 | A1 |
20120326097 | Ren et al. | Dec 2012 | A1 |
20130019918 | Boukai et al. | Jan 2013 | A1 |
20130052762 | Li et al. | Feb 2013 | A1 |
20130087180 | Stark et al. | Apr 2013 | A1 |
20130143407 | Lin et al. | Jun 2013 | A1 |
20130175484 | Ren et al. | Jul 2013 | A1 |
20130186445 | Lorimer et al. | Jul 2013 | A1 |
20140117380 | Loboda et al. | May 2014 | A1 |
20140306250 | Gardner et al. | Oct 2014 | A1 |
20140326287 | Wiant et al. | Nov 2014 | A1 |
20140373888 | Boukai et al. | Dec 2014 | A1 |
20150083180 | Lang | Mar 2015 | A1 |
20150101788 | Smith et al. | Apr 2015 | A1 |
20150162517 | Kasichainula | Jun 2015 | A1 |
20150179911 | Lemmer et al. | Jun 2015 | A1 |
20150216718 | Diller et al. | Aug 2015 | A1 |
20150228883 | Boukai et al. | Aug 2015 | A1 |
20150280099 | Boukai et al. | Oct 2015 | A1 |
20150325772 | Boukai et al. | Nov 2015 | A1 |
20160035956 | Carroll et al. | Feb 2016 | A1 |
20160197259 | Boukai et al. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
1382626 | Dec 2002 | CN |
S63266829 | Nov 1988 | JP |
H11317547 | Nov 1999 | JP |
2004193526 | Jul 2004 | JP |
2006261451 | Sep 2006 | JP |
2007300127 | Nov 2007 | JP |
2010192580 | Sep 2010 | JP |
2010537430 | Dec 2010 | JP |
WO-0223607 | Mar 2002 | WO |
WO-2010003629 | Jan 2010 | WO |
WO-2011049804 | Apr 2011 | WO |
WO-2012068426 | May 2012 | WO |
WO-2013012842 | Jan 2013 | WO |
WO-2013109729 | Jul 2013 | WO |
WO-2014028903 | Feb 2014 | WO |
WO-2014070795 | May 2014 | WO |
WO-2014179622 | Nov 2014 | WO |
WO 2015134394 | Sep 2015 | WO |
WO-2015148554 | Oct 2015 | WO |
Entry |
---|
Garmin Forerunner 935 Running GPS Unit (Black), posted Apr. 14, 2017, [retrieved Jan. 2, 2018]. Retrieved from Internet, <URL: https://www.amazon.com/Garmin-Forerunner-Running-Unit-Black/dp/B06XGD6CS4 >. |
Garmin Fenix 5 review The king of multisport watches is back with a bang, posted Apr. 5, 2017, [retrieved Jan. 2, 2018]. Retrieved from Internet, <URL: https://www.wareable.com/garmin/garmin-fenix-5-review >. |
Montblanc TimeWalker Chronograph “On-the-Wrist” Review, posted Dec. 8, 2008, [retrieved Jan. 2, 2018]. Retrieved from Internet, <URL: http://www.watchprosite.com/page-wf.forumpost/fi-1006/ti-478416/pi-2864726/ >. |
This Smart Watch Will Charge Itself Using Heat From Your Skin, posted Nov. 14, 2016, [retrieved Jan. 2, 2018]. Retrieved from Internet , <URL: https://spectrum.ieee.org/view-from-the-valley/consumer-electronics/gadgets/this-smart-watch-will-charge-itself-using-the-heat-of-your-skin >. |
Advisory action dated Jul. 21, 2017 for U.S. Appl. No. 14/372,443. |
Agnes, et al. Doping of the nanocrystalline semiconductor zinc oxide with the donor indium, Amer Institute of Phystcs, vol. 83, No. 6, 1204, (Aug. 11, 2003). |
Beckman, et al., Bridging Dimensions: Demultiplexing Ultrahigh-Density nanowire Circuits, Science 2005, 310: 465-468. |
Beckman, et al. Fabrication of Conducting. Silicon nanowire Arrays, J. Appi. Phys. 96 (10), 5921-5923'(2004). |
Behnen. Quantitative examination of the thermoelectric power of n-typesilicon in the phono drag regime.Journal of Applied Physics, vol. 67, pp. 287-292, Jan. 1, 1990. |
Bera, et al. Marked Effects of Alloying on the Thermal Conductivity of nanoporous Materials, Mar. 19, 2010, American Physical Society Physical Review Letters, 104, pp. 115502-01 to 115502-4. |
Boukai, et al. Silicon nanowires as efficient thermoelectric materials. nature, vol. 451, pp. 168-171, Jan. 10, 2008. |
Boukai, et al. Size-Dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires. Advanced Materials, 18, pp. 864-869, 2006. |
Boukai. Thermoelectric properties of bismuth and silicon nanowires. Dissertation (Ph.D.), California Institute of Technology. 2008. |
Bunimovich, et al. Quantitative Real-Time Measurements of DnA Hybridization with Alkylated nonoxidized Silicon nanowires in Electrolyte Solution, JACS 2006, 128: 16323-16331. |
Chadwick, et al. Plane waves in an elastic solid conducting heat. Journal of the Mechanics and Physics of Solids 6, 223-230 (1958). |
Chen, et al. Dispenser Printed Microscale Thermoelectric Generators for Powering Wireless Sensor Networks. Paper No. IMECE2009-11636, pp. 343-352; 10 pages. |
Chen, et al. Recent developments in thermoelectric materials. International Materials Reviews, vol. 48, pp. 45-66, 2003. |
Choi, et al. Fabrication of bismuth nanowires with a silver nanocrystal shadowmask, J. Vac. Sci. Tech. A-Vac. Surf. And Films, 18, 1236, 1328 (2000). |
Choi, et al. Fabrication of nanometer size photoresist wire patterns With a silver nanocrystal shadowmask. J. Vac. Sci. & Tech. A-Vac. Surf. And Films, 17, 1425 (1999). |
Chung, et al. Fabrication and Alignment of Wires in Two-Dimensions. The Journal of PhysiCal Chemistry B. 102. 6685 (1998). |
Collier, et al. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 1998, 49: 371-404. |
Co-pending U.S. Appl. No. 15/585,376, filed May 3, 2017. |
Deresiewicz. Plane waves in a thermoelastic solid. Journal of the Acoustical Society of America 29, 204-209 (1957). |
Diehl, et al. Self-Assembly of Deterministic Carbon nanottibe Wiring networks. Angew. 'Chem. Int Ed. 41, 353 (2002). |
European search report and opinion dated Feb. 26, 2016 for EP Application No. 13829134.9. |
European search report and opinion dated Mar. 25, 2014 for EP Application No. 11835180.8. |
Extended European Search Report and Search Opinion dated Oct. 9, 2017 for European Patent Application No. EP 15768608.0. |
Fan, et al. Self-Oriented Regular Arrays of Carbon nanotubes and their Field Emission Devices. Science, v. 283, p. 512 (Jan. 22, 1999). |
Geballe, et al. Seebeck Effect in Silicon. Physical Review, vol. 98, pp. 940-947, May 15, 1955. |
Green, et al., A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter, nature 2007, 445: 414-417. |
Gurevich. Thermoelectric properties of conductors J. Phys. (U.S.S.R.) 9, 477 (1945). |
Harman, et al. Quantum dot superlattice thermoelectric materials and devices. Science, vol. 297, pp. 2229-2232, Sep. 27, 2002. |
Haynes, et al. nanosphere Lithography: A Versatile nanofabrication Tool for Studies of Size-Dependent nanoparticle Optics. J. Phys. Chem. B, 105, 5599-5611 (2001). |
Heat sinks heat spreaders peltier coolers, novel concepts, Inc., 2014, Available at novelconceptsinc.com http://www.novelconceptsinc.com/heat-spreaders.htm, accessed on Aug. 21, 2017, 2 pages. |
Heath, et al. A Defect-Tolerant Computer Architecture: Opportunities for nanotechnology, Science 1998, 280: 1716-1721. |
Heath, et al. Pressure/Temperature Phase Diagrams and Superlattices of Organically Functionalized Metal nanocrystal Monolayers: The Influence of Particle Size, Size Distribution, and Surface Passivant, J. Phys. Chem. B 1997, 101: 189-197. |
Herring. Theory of the thermoelectric power of semiconductors. Physical Review, vol. 96, No. 5, pp. 1163-1187, 1954. |
Hicks, et al.. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B 47, 1 6631-1 6634 (1993). |
Hochbaum, et al. Enchanced thermoelectric performance of rough silicon nanowires, Jan. 2008, nature Publishing Group, vol. 451, pp. 1-6. |
Hsu, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high Figure of Merit. Science, vol. 303, pp. 818-821, Feb. 6, 2004. |
Huang, et al. Metal-assisted chemical etching of silicon: a review. Adv Mater. Jan. 11, 2011;23(2):285-308. doi: 10.1002/adma.201001784. |
Huang, et al. Spontaneous formation of nanoparticle strip patterns through dewetting. nature Materials vol. 4, p. 896 (2005). |
Hulteen, et al. nanosphere lithography: A materials general fabrication process for periodic particle array surfaces, J. Vac. Sci. Technol. 1995, 13: 1553-1558. |
Humphrey, et al. Reversible thermoelectric nanomaterials. Physical Review Letters 94, 096601 (2005). |
Husain, et al. Nanowire-based very-high-frequency electromechanical resonator. Applied physics letters, vol. 83, No. 6, Aug. 11, 2003, pp. 1240-1242. |
Ihab, et al. Manipulation of thermal phonons: a phononic crystal route to high-ZT thermoelectrics. Photonic and Phononic Properties of Engineered nanostructures, SPIE. 1000 20th St. Bellingham, WA 98225-6705. Feb. 10, 2011; 7946:1-9. |
International search report and written opinion dated Feb. 9, 2009 for PCT/US2008/070309. |
International search report and written opinion dated Apr. 7, 2017 for PCT Application No. US- 201664501. |
International search report and written opinion dated Apr. 15, 2009 for PCT/US2008/064439. |
International search report and written opinion dated Apr. 26, 2013 for PCT/U52013/021900. |
International search report and written opinion dated May 29, 2012 for PCT/US2011/057171. |
International search report and written opinion dated Jul. 3, 2015 for PCT Application No. US2015/022312. |
International search report and written opinion dated Jul. 17, 2012 for PCT Application No. PCT/US2012/047021. |
International search report and written opinion dated Aug. 7, 2017 for PCT Application US-201730868. |
International search report and written opinion dated Dec. 27, 2013 for PCT/U52013/055462. |
International search report dated Feb. 10, 2014 for PCT/US2013/067346. |
Joannopoulos, et al. Photonic crystals: putting a new twist on light, nature 1997, 386: 143-149. |
Jung, et al. Circuit Fabrication at 17 nm Half-Pitch by nanoimprinttithography. nanoLetters, 6, 351 (2006). |
Koga, et al. Experimental proof-of-principle investigation of enhanced Z3DT in (100) oriented Si/Ge superlattices. Applied Physics Letters 77, 1490-1492 (2000). |
Lee, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. nano. Lett. 2008; 8(12):4670-4674. |
Lee, et al nanoporous Si as an Efficient Thermoelectric Material. nano Letter, 8, 2008, 3750-3754. |
Lee, et al. nanostructured bulk thermoelectric materials and their properties. ICT 2005. 24th International Conference on Thermoelectrics (ICT). 2005 284-287. |
Li, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. Journal of heart transfer, vol. 125, pp. 881-888, Oct. 2003. |
Li et al. Thermal Conductivity of Individual Silicon Nanowires. Appl Phys Lett 83(14):2934-2936 (Oct. 6, 2003). |
Lifshitz, et al. Thermoelastic damping in micro- and nanomechanical systems. Physical Review B 61, 5600-5609 (2000). |
Liu, et al. Thermal conduction in ultrahigh pure and doped single-crystal silicon layers at high temperatures. Journal of Applied Physics 98, 123523 (2005). |
Llaguno, et al. Observation of thermopower oscillations in the coulomb blockade regime in a semiconducting carbon nanotube. nano Lett. 4, 45-49 (2004). |
Mahan, et al. The best thermoelectric. PnAS 93, 7436-7439 (1996). |
Mahan, et al. Thermoelectric materials: new approaches to an old problem. Physics Today 50, pp. 42-47, Mar. 1997. |
Majumdar. Thermoelectricity in Semiconductor nanostructures. Science Feb. 6, 2004; 303(5659):777-778. DOI: 10.1126/science.1093164. |
Maranganti, et al. Length scales at which classical elasticity breaks down for various materials. Physical Review Letters 98, 195504 (2007). |
Martin. nanomaterials—A membrane based synthetic approach. Science, v. 266, p. 1961-1966 (Dec. 23, 1994). |
Melosh, et al. Ultra-high density nanowire lattices and circuits. Science, vol. 300, pp. 112-115,Apr. 4, 2003. |
Morales, et al. A laser ablation method for the synthesis of semiconductor crystalline nanowires. Science, vol. 279, pp. 208-211, Jan. 9, 1998. |
NDT Resource Center, Thermal Conductivity. Downloaded Nov. 26, 2013. https://www.nde-ed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm. |
Notice of allowance dated Jan. 22, 2016 for U.S. Appl. No. 14/667,177. |
Notice of allowance dated Jun. 15, 2016 for U.S. Appl. No. 13/278,074. |
Notice of allowance dated Jul. 13, 2011 for U.S. Appl. No. 12/125,043. |
Notice of allowance dated Jul. 29, 2015 for U.S. Appl. No. 12/175,027. |
Notice of allowance dated Jul. 29, 2016 for U.S. Appl. No. 14/624,506. |
Notice of allowance dated Aug. 18, 2017 for U.S. Appl. No. 14/700,082. |
Notice of allowance dated Oct. 2, 2013 for U.S. Appl. No. 12/125,043. |
Notice of allowance dated Oct. 8, 2015 for U.S. Appl. No. 14/667,177. |
Notice of allowance dated Nov. 6, 2015 for U.S. Appl. No. 14/667,177. |
Notice of allowance dated Dec. 10, 2015 for U.S. Appl. No. 14/667,177. |
Office action dated Jan. 9, 2015 for U.S. Appl. No. 12/175,027. |
Office action dated Jan. 23, 2015 for U.S. Appl. No. 13/278,074. |
Office action dated Feb. 2, 2017 for U.S. Appl. No. 14/700,082. |
Office action dated Feb. 12, 2015 for U.S. Appl. No. 13/550,424. |
Office action dated Feb. 18, 2011 for U.S. Appl. No. 12/125,043. |
Office action dated Apr. 19, 2017 for U.S. Appl. No. 14/372,443. |
Office action dated Apr. 25, 2013 for U.S. Appl. No. 13/278,074. |
Office action dated May 23, 2013 for U.S. Appl. No. 12/175,027. |
Office action dated Jun. 16, 2015 for U.S. Appl. No. 13/278,074. |
Office action dated Jun. 22, 2011 for U.S. Appl. No. 12/175,027. |
Office action dated Jun. 23, 2016 for U.S. Appl. No. 14/372,443. |
Office action dated Jun. 26, 2017 for U.S. Appl. No. 14/989,225. |
Office action dated Jun. 28, 2016 for U.S. Appl. No. 14/624,506. |
Office action dated Jun. 29, 2016 for U.S. Appl. No. 13/550,424. |
Office action dated Jun. 30, 2014 for U.S. Appl. No. 12/175,027. |
Office action dated Jul. 18, 2014 for U.S. Appl. No. 13/278,074. |
Office action dated Aug. 7, 2013 for U.S. Appl. No. 13/278,074. |
Office action dated Aug. 28, 2015 for U.S. Appl. No. 13/550,424. |
Office action dated Oct. 7, 2016 for U.S. Appl. No. 14/989,225. |
Office action dated Nov. 10, 2010 for U.S. Appl. No. 12/175,027. |
Office action dated Nov. 17, 2015 for U.S. Appl. No. 14/372,443. |
Office action dated Nov. 18, 2015 for U.S. Appl. No. 13/278,074. |
Office action dated Nov. 27, 2013 for U.S. Appl. No. 12/175,027. |
Pearson. Survey of thermoelectric studies of the group-1 metals at low temperatures carried out at the national-research-laboratories, Ottawa. Soviet Physics-Solid State 3, 1024-1033 (1961). |
Peng, et al. Ordered silicon nanowire'arrays via nanosphere lithography and metal induced etching. Applied Physics Letters, v.90, article # 163123 (2007). |
Prasher. Thermal conductivity of composites of aligned nanoscale and microscale wires and pores. Journal of Applied Physics, 100, 034307, 2006, p. 1-9. |
Qiu, et al. Large complete band gap in two-dimensional photonic crystals with elliptic air holes, Physical Review B 1999, 60: 10 610-10 612. |
Routkevitch, et al. Electrochemical Fabrication of CdS nanowires arrays in porous anodic aluminum oxide templates. The Journal of Physical Chemistry, v. 100, p. 14037-14047 (1996). |
She, et al. Fabrication of vertically aligned Si nanowires and their application in a gated field emission device. Applied Physics Letters. v; 88. article # 013112 (2006). |
Sialon Ceramics. Downloaded May 6, 2013. http://www.sialon.com.au/high-temperature-seebeck-probes.htm. |
Silverstein, et al. Porous polymers. John Wiley & Sons, 2011. |
Small, et al. Modulation of thermoelectric power of individual carbon nanotubes. Physical Review letters, vol. 91, pp. 256801-1 to 256801-4, 2003. |
Snyder, et al. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. nature Material, vol. 2, pp. 528-531, Aug. 2003. |
Tang, et al. Holey silicon as an efficient thermoelectric material. nano. Lett. 2010; 10:4279-4283. |
Tao, et al. Langrfluir Blodgett Silver nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. nanoLetters 3, 1229 (2003). |
Trzcinski, et al. Quenched Phonon Drag in Silicon Microcontacts. Physical Review Letters, vol. 56, No. 10, pp. 1086-1089, 1986. |
Venkatasubramanian, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. nature, vol. 413, pp. 597-602, Oct. 11, 2001. |
Vining. Desperately seeking silicon. nature, vol. 451, pp. 132-133, Jan. 10, 2008. |
Vossmeyer, et al. Light-directed assembly of nanoparticles, Angew. Chem. Int. Ed. Engl. 1997, 36: 1080-1083. |
Wang, et al. A new type of lower power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectronic Engineering. 2005; 77:223-229. |
Wang, et al. Complementary Symmetry Silicon nanowire Logic: Power-Efficient Inverters with Gain**, Small 2006, 2: 1153-1158. |
Wang, et al. Oxidation Resistant Germanium nanowires:. Bulk. Synthesis. Long Chain Alkahethioi Functionalization, and Langmuir-Blodgett Assembly. Journal of the American Chemical Society, 127, 11871 (2005). 0. |
Wang, et al., Silicon p-FETs from Ultrahigh Density nanowire Arrays, nano Letters 2006, 6: 1096-1100. |
Wang, et al. Surface Chemistry and Electrical Properties of Germanium nanowires, JACS 2004, 126: 11602-11611. |
Wang, et al. Use of phopshine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. nano Letters. 2005; 5(11):2139-2143. |
Weber, et al. Silicon-nanowire transistors with Intruded nickel-Silicide Contacts. nano Letters v. 6, p. 2660-2666 (2006). |
Weber, et al. Transport properties of silicon. Applied Physics A: Solids and Surfaces, pp. 136-140, 1991. |
Whang, et al. Large-Scale Hierarchical Organization of nanowire Arrays for Integrated nanosystems. nanoLetters 3, 1255-1259 (2003). |
Williams, et al. Etch rates for micromachining processing. Journal of Microelectromechanical Systems 5, 256-269 (1996). |
Wolfsteller; et al., Comparison of the top-down and bottom-up approach to fabricate nanowire-based silicon/germanium heterostructures. Thin Solid Films 518.9 (2010): 2555-2561. |
Wu, et al. Single-crystal metallic nanowires and meta semiconductor nanowires heterostructures. nature, 430. p. 61'(2004). |
Xu, et al. Controlled fabrication of long quasione-dimensional superconducting nanowire arrays. nano letters, vol. 8, No. 1, Dec. 6, 2007, pp. 136-141. |
Yablonovitch. Photonic band-gap structures, J. Opt. Soc. Am. B. 1993, 10: 283-297. |
Yang, et al. Encoding Electronic Properties.by Synthesis of Axial Modulation Doped Silicon nanowires. Science, 310, p. 1304 (2005). |
Yang, et al. Single p-Type/Intrinsic/n-TypeSilicon nanowires as nanoscale Avalanche Photodetectors, nano Letters 2006, 6: 2929-2934. |
Yang, et al. Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Physiucal Review B, 72, 125418, 2005, p. 1-7. |
Yu, et al. Reduction of thermal conductivity in phononic nanomesh structures. nature nanotechnology. 2010; 5:718-721. |
Yu-Ming, et al. Semimetal-semicinductor transition in bil_xSbx alloy nanowires and their thermoelectric properties. Applied Physics Letter, Volov. 81, No. 13, pp. 2403-2405, Sep. 23, 2002. |
Zener, et al. Internal friction in solids III. Experimental demonstration of thermoelastic internal friction. Physical Review 53, 100-101 (1938). |
Zener. Internal friction in solids I. Theory of internal friction in reeds. Physical Review 52, 230-235 (1937). |
Zhong, et al. Nanowire Crossbar Arrays as Address Decoders for Integrated nanosystems, Science 2003, 302: 1377-1379. |
Zhou. Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. nano Letters 7, 1649-1654 (2007). |
Zhou, et al. Verticaly aligned Zn2SiO4 nanotube/ZnO nanowire Heterojunction Arrays. Small, v.3. p. 622-626 (2007). |
Hicks, et al., Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B 47, 1 6631-6634 (1993). |
Wallarah Minerals, Downloaded Mar. 26, 2015. http://www.wallarahminerals.com.au/high-temperature-seebeck-probes.htm. |