This Application claims priority to German Patent Application Number 102015211622.0 filed Jun. 23, 2015, to Elmar Ehrmann and Robert Maier, currently pending, the entire disclosure of which is incorporated herein by reference.
The present invention relates to a thermoform packaging machine as well as to a method comprising the features of the machine
DE 198 41 415 A1 discloses a film punch suitable for cutting plastic films/foils by means of a knife and a counter knife. A lift drive including a linear motor is provided. The lift drive includes a means of an articulated lever arrangement in combination with a straightening lever arrangement comprising together a large number of mechanical levers. Forces which are effective for cutting the film can increase rapidly and towards the end of the punching stroke, the increase of these forces becomes less steep. This is advantageous insofar as the film punch is intended to be suitable for reliably cutting different film/foil thicknesses without complicated knife adjustment operations being necessary.
The prior art discloses a film punch, type FS 08, produced by the applicant's company (see
As the squeeze knife is operated over time, the cutting edge of the squeeze knife dulls and the counter-pressure bar and/or the squeeze knife must be readjusted in order to guarantee a reliable, high-quality cut through of the film so as to ensure reliable processing. When such a film punch is used on thermoform packaging machines, the squeeze knifes, and perhaps also the counter-pressure bar, are often replaced in the case of a change of format, and, subsequently, the counter-pressure bar and the squeeze knife, respectively, have to be newly adjusted. This is done in a first test phase, with the thermoform packaging machine running, and requires a certain effort until cutting or cutting through of the film is accurately adjusted.
The load on the squeeze knife caused by the contact with the counter-pressure bar during each cutting or squeezing process may be very high, as can be seen from the time-force diagram according to
It is one object of the present invention to improve a thermoform packaging machine including a film punch with respect to a longer service life of the tools and an easier adjustment of the tools relative to one another in the case of tool changing.
The thermoform packaging machine according to one embodiment of the present invention comprises a controller and a film punch, which includes a lever mechanism, a tool upper part and a tool lower part. The tool upper part and/or the tool lower part are movable by means of the lever mechanism such that the tool upper part and the tool lower part approach each other. In the thermoform packaging machine, according to one embodiment, the film punch comprises a servo drive. A measuring unit may be provided, which is configured to detect the contact between the tool upper part and the tool lower part. With regard to this contact position of the movable tool, for example, through a calibration procedure, the end position of the movable tool which is most suitable for the punching process and thus the position of the two tools relative to one another can be ascertained in the controller and can then be accessed and established during the subsequent punching processes. Due to the accurate end position of the movable tool, unnecessarily higher forces or loads on the squeeze knife will no longer occur.
The controller may be connected to the measuring unit, and the position of the tool upper part and of the tool lower part at the working position can be calculated by means of the controller. This supports a fully automated calibration mode. An additional option provided is the possibility of configuring the lower position and the open tool position, respectively, such that they can be changed by the operator and can also be stored in programs so as to reduce unnecessary lifting movements, for example, in the case of small package depths.
According to one embodiment, the measuring unit is a governor of the servo drive, so that, on the basis of current consumption over time, namely during the calibration movement of the movable tool, the working position can be detected and evaluated, since, at the point where the tools come into contact with one another, the current consumption will increase strongly and it may also exhibit other characteristic features.
Alternatively, the measuring unit can be a pressure sensor or an impact-sound or vibration sensor for detecting the pressure between the tool upper part and the tool lower part. The impact-sound sensor or the vibration sensor are preferably suitable for detecting, through the suddenly occurring impact, the collision of the two tools and for detecting the resultant vibration.
The servo drive may comprise a servomotor with a governor and a spindle, for example a ball screw, for positioning the movable tool with high speed in combination with high accuracy.
A method according to one embodiment of the present invention used for determining the working position, in particular the working position of the tool lower part of the film punch, is characterized in that the tool lower part and the tool upper part are caused to approach each other, and that the contact between the tools is ascertained by means of the controller on the basis of an evaluation of data of the measuring unit.
The measuring unit can be a governor for a servomotor of the servo drive, and, on the basis of the current consumption of the servomotor, the force progression of the force acting on the movable tool may be detected. Hence, a suitable position, namely an end position, can be ascertained in the controller in an automated manner on the basis of the current profile over time with simultaneous detection of the position of the tools relative to one another.
Alternatively, the measuring unit may be a pressure sensor and a measurement of force is carried out at a tool.
According one embodiment, the controller calculates an end position for the movable tool, so that the forces produced during the punching process will not be (substantially) higher than the forces required for the punching process, so as to extend the service life of the tools.
Other and further objects of the invention, together with the features of novelty appurtenant thereto, will appear in the course of the following description.
In the following, an advantageous embodiment of the thermoform packaging machine according to the present invention and of the method according to the present invention will be explained in more detail making reference to a drawing. The individual figures show:
Like components are provided with like reference numerals throughout the figures.
The invention will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout. For purposes of clarity in illustrating the characteristics of the present invention, proportional relationships of the elements have not necessarily been maintained in the drawing figures.
The following detailed description of the invention references specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The present invention is defined by the appended claims and the description is, therefore, not to be taken in a limiting sense and shall not limit the scope of equivalents to which such claims are entitled.
As can be seen from the diagram, the force F1 required for cutting the film is less than half the maximum occurring force F2 with which the counter-pressure bar 6 still acts on the knife 7a after the cutting process. For a direct comparison with the prior art, the force progression according to one embodiment of the present invention is shown as a dot-and-dash line L. With reference to the figures following herein below, it will be explained in more detail how this force progression is accomplished.
In the embodiment shown, the forming station 11 is configured as a thermoforming station, in which troughs 21 are formed in the film web 16 by thermoforming. The forming station 11 may be configured such that, in the direction perpendicular to the production direction R, several troughs 21 are formed side by side. Downstream of the forming station 11, when seen in the production direction R, an infeed line 22 may be provided, along which the troughs 21 formed in the film web 16 are filled with products 23.
The transverse cutting unit 1 is configured as a film punch cutting through the film web 16 and the cover film 18 in a direction transversely to the production direction R between neighboring troughs 21. In so doing, the film punch 1 may work such that the film web 16 is not cut across the whole width of the film, but remains uncut in at least an edge area thereof. This allows controlled further transport by the feeding device.
In the embodiment shown, the longitudinal cutting unit 13 is configured as a blade arrangement that may comprise a plurality of rotating circular blades by means of which the film web 16 and the cover film 18 are cut through between neighboring troughs 21 and at the lateral edge of the film web 16, so that, downstream of the longitudinal cutting unit 13, singulated packages 20 are obtained.
The thermoform packaging machine 10 may additionally be provided with a controller 26. It has the function of controlling and monitoring the processes taking place in the thermoform packaging machine 10. A display device 27 with operating controls 28 serves to make the sequences of process steps in the thermoform packaging machine 10 visible to an operator and to influence them by the operator.
The film punch 1 and its function will be explained in more detail making reference to the figures following herein below.
When the carriage 32 moved upwards, a respective toggle lever 34 provided on either side of the guide 33 may be operated and forced apart (see
Alternatively or additionally, the pressure may also be detected by a pressure sensor 42 as a measuring unit, the pressure sensor 42 being arranged in the power flow from the lever mechanism 2, the tool upper part 7 and the tool lower part 3, for example, as shown in
According to another alternative embodiment of the measuring unit, a vibration sensor 45 or an impact-sound sensor may be provided on the tool upper part 7, so as to detect the contact or the impact of the tool lower part 3 and the counter-pressure bar 6 with/on the tool upper part 7 and the knife 7a.
For determining the working position, the tool lower part 3 is moved upwards, as shown in
In all these cases, the controller 26 may ascertain, on the basis of the detected data of the measuring unit 41, 42 or 45, the end or also the contact position as working position of the tool lower part 3 and of the carriage 32, which corresponds to a specific position of the servomotor 29 and of the spindle 31, respectively. The controller 26 positions the tool lower part 3 for the punching process at the working position, but not further than that. In this way, a force progression L is obtained (see
The spindle 31 may optionally (see
Instead of a spindle 31, the servo drive 50 may comprise a connecting rod drive.
According to one variant, the knife 7a may be provided on the tool lower part 3 and the counter-pressure bar 6 on the tool upper part 7.
The method according to the present invention may be carried out regularly, for example, once a week, once a day or whenever the machine is started. The film punch 1 will then always be adjusted optionally for the subsequent operation, irrespectively of a possible wear of the knife 7a. In this way, a manual readjustment or replacement of the cutting tools of the film punch is required much less frequently than in the prior art, whereby the operation of the film punch 1 and of the packaging machine in its entirety is substantially optimized.
From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with other advantages which are obvious and which are inherent to the structure. It will be understood that certain features and sub combinations are of utility and may be employed without reference to other features and sub combinations. This is contemplated by and is within the scope of the claims. Since many possible embodiments of the invention may be made without departing from the scope thereof, it is also to be understood that all matters herein set forth or shown in the accompanying drawings are to be interpreted as illustrative and not limiting.
The constructions and methods described above and illustrated in the drawings are presented by way of example only and are not intended to limit the concepts and principles of the present invention. Thus, there has been shown and described several embodiments of a novel invention. As is evident from the foregoing description, certain aspects of the present invention are not limited by the particular details of the examples illustrated herein, and it is therefore contemplated that other modifications and applications, or equivalents thereof, will occur to those skilled in the art. The terms “having” and “including” and similar terms as used in the foregoing specification are used in the sense of “optional” or “may include” and not as “required”. Many changes, modifications, variations and other uses and applications of the present construction will, however, become apparent to those skilled in the art after considering the specification and the accompanying drawings. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention which is limited only by the claims which follow.
Number | Date | Country | Kind |
---|---|---|---|
102015211622.0 | Jun 2015 | DE | national |