In the preparation of mass mailings, for example, it is often desired to attach a card, such as a credit card or the like, to a carrier document so that the former can be peeled easily from the carrier document for use by a consumer. One method of making such an attachment uses a pressure-sensitive, thermoplastic adhesive. During the printing or collating process, a portion of the thermoplastic adhesive is metered onto the carrier document and the card pressed against this material. The equipment for this process includes a heating container for the thermoplastic adhesive and a metering pump that may be electrically actuated.
Thermoplastic adhesive can be difficult to work with. Its high melting temperature and adhesive properties present some risk of burn to untrained operators. The price of the equipment for dispensing the thermoplastic adhesive and positioning and placing the attachments makes such equipment impractical for low volume mailings. Further it is inefficient to activate such equipment for short runs both in energy costs and wasted glue.
The present invention provides a method and apparatus allowing thermoplastic pressure-sensitive adhesives to be used simply and safely by those who have low-volume requirements. In the present invention, pressure-sensitive thermoplastic adhesive is pre-metered onto a release strip which may be rolled into coil. The size and spacing of the metered dots of thermoplastic adhesive allows one dot to be exposed at a time across an anvil plate which may be used to press the dot against a card or the like. The carrier strip may be advanced between the pressing operation to bring a new dot into position.
The spacing of the dots along the strip provides simple methods of dispensing the dots including the use of a specially constructed cardboard dispenser box or the like or various automated metering systems and mechanisms to be described.
Specifically the present invention provides a thermoplastic adhesive dispensing tape having a flexible carrier tape extending longitudinally and having a transverse width and having opposed first and second release surfaces. Thermoplastic adhesive dots are arrayed longitudinally along the first release surface so that the carrier tape may be curved about an axis to expose a single adhesive dot to an abutting planar surface.
Thus, it is one object of the invention to provide a simple means for dispensing thermal plastic adhesive dots without requiring the expense or hazard of molten thermoplastic adhesive.
The second release surface may adhere less strongly to the thermoplastic adhesive dot than does the first release surface.
Thus, it is another object of the invention to provide a thermoplastic adhesive dispensing tape that may be unwound from a coil with the thermoplastic adhesive dots being retained on the first release surface.
The invention includes a method of manufacturing the thermoplastic adhesive dispensing tape by unrolling the flexible carrier strip from a first reel to expose the first release surface and dispensing molten thermoplastic adhesive at periodic intervals on the unrolled carrier strip. The carrier strip is then rerolled to compress the dispensed molten thermoplastic adhesive into flat disks.
Thus, it is another object of the invention to provide for adhesive disks that approximate the size and area that would be provided by an automatic dispensing equipment directly on the surfaces to be adhered together. The action of adjacent coils of the carrier strip mimics that of a card or other planar surface pressing against a molten portion of thermoplastics adhesives.
The rerolling of the flexible carrier strip may be delayed until the thermoplastic adhesive has skinned over.
Thus, it is yet another object of the invention to ensure that the thermoplastic adhesive dots are retained by the first release surface which receives the thermoplastic adhesive in a molten state prior to it skinning over and therefore adheres to it more strongly.
The step of dispensing molten thermoplastic adhesive may simultaneously dispense at least two separate portions of thermoplastic adhesive at transversely separated locations. The method may include the further step of longitudinally slitting the flexible carrier strip between separate portions of the thermoplastic adhesive prior to rerolling the flexible carrier strip.
Thus, it is another object of the invention to provide for a high throughput manufacture of adhesive dots with a single dispensing unit without jeopardizing the cooling of the dots as is necessary to allow them to skin over.
The invention also includes a dispensing apparatus for the thermoplastic adhesive dispensing tape including a reel support for holding the thermoplastic adhesive dispensing tape in coiled configuration, and a guide for receiving the carrier tape after adhesive dots have been removed. An anvil surface is positioned between the reel and the guide to receive the thermoplastic adhesive dispensing tape as unreeled from the coil and deform the thermoplastic adhesive dispensing tape to expose a single adhesive dot to a planar surface.
Thus, it is another object of the invention to provide a rapid application technique for the thermoplastic adhesive dots on the tape of the present invention. The positioning of the dots so that a single dot may be exposed to a planar surface allows the dots to be readily applied to planar surfaces by a proper incrementing of the tape over a correctly sized anvil surface.
The foregoing and other objects and advantages of the invention will appear from the following description. In this description, reference is made to the accompanying drawings which form a part hereof and in which there is shown by way of illustration, a preferred embodiment of the invention. Such embodiment does not necessarily represent the full scope of the invention, however, and reference must be made therefore to the claims for interpreting the scope of the invention.
These and other advantages of the present invention are best understood with reference to the drawings, in which:
a is a fragmentary cross sectional view of a thermoplastic glue dispensing nozzle adapted for the production of dots of different shapes;
b is a plan view of
c is a plan view of the strip of
d is a plan view similar to that of
e is a plan view of the strip of
Referring to
The carrier strip 14 is dispensed from the tensioned reel 12 with surface 16 facing upward to move beneath a pair of thermoplastic glue metering nozzles 20 (only one of which is visible in
A slitting knife 26 divides the carrier strip 14 into multiple strips, each of which are then wound into coils 30 on take-up reels 28 under controlled tensioning. Capstan and idler wheels may also be provided so that the tension on reels 28 may be controlled independently of the tension provided by reel 12.
Referring now to
The differential release properties of surfaces 16 and 18, the fact that the glue dots 22 were initially applied in a hot state to surface 16 causing better adherence, and the fact that there is some cooling and hence “skinning over” of the glue dots 22 prior to the winding on reel 28, all ensure that the glue dots 22 remain adhered to surfaces 16 as the coil 30 is unwound.
Referring now to
Referring now
A slot 43 at one end of the upper wall 36 allows a portion of the carrier strip 14 to be threaded from within the container 34 out of the slot 43 and across the upper wall 36 with the glue dots 22′ exposed on the upper surface of the carrier strip 14. The upper wall 36 provides an anvil surface supporting the carrier strip 14 against pressure when a card 42 or the like is pressed down as indicated by arrow 44 against the upper surface of the carrier strip 14 to receive a glue dot 22′.
As a result of the earlier removal of the glue dots 22′ on the carrier strip 14, only a single dot 22′ will be exposed on the upper surface of the container 34 at a time simplifying this attachment process.
The portion of the carrier strip 14 previously having its dots 22′ removed may be received within a slot 46 in a side wall 36 adjacent to the top wall 36 and then threaded out of a similar slot 48 positioned below slot 46 to permit sliding of the carrier strip 14 for the dispensing of additional dots 22 while preventing general looseness of the carrier strip 14 such as would promote unwinding of the coil 30 unintentionally.
Referring to
Referring now to
Referring now to
Referring now to
Thus the tape of the present invention provides a simple method for dispensing dots of glue for joining materials together without the need for complex equipment or exposure to heated thermoplastic materials.
Referring now to
Referring to
Thermoplastic adhesive may be formulated for varying degrees of tack or other properties and the thermoplastic adhesives of different types may be compounded with colors to allow them to be readily distinguished on the carrier strip 14. The pigments may be also added for aesthetic reasons and may include colors as well as glitters and the like for craft purposes. Temperature sensitive inks may be added to the thermoplastic to provide compact temperature indicators.
In a similar manner, fragrances may be compounded with the thermoplastic adhesive. Such dots 22 thus serve as a convenient way of attaching and metering fragrances for example as samples. Pharmaceutical materials may be included into the thermoplastic in the manner of current drug patches, and other blendable ingredients such as magnetic materials to provide for a combination of adhesive and magnetic materials. Thus, generally, the dots 22 may provide metering, packaging and affixing properties in one product.
During manufacture, the dots 22 may be attached to other articles prior to being rolled into the reels 28 including decorative items such as “wiggle eyes” or utilitarian items such as shoplifting tags or other identification materials such as micro-taggants.
Referring now to
Referring to
The above description has been that of a preferred embodiment of the present invention. It will occur to those that practice the art that many modifications may be made without departing from the spirit and scope of the invention. For example, a separate release strip may be wound into the coils of the dots to avoid the need for a carrier strip having opposed release surfaces. In order to apprise the public of the various embodiments that may fall within the scope of the invention, the following claims are made.
This patent application is a continuation of U.S. patent application Ser. No. 10/360,457 (the '457 application), filed on Feb. 8, 2003, entitled “Roll of Adhesive Segments for Use in an Adhesive Segment Applicator Apparatus and Method of Making the Same,” the '457 application being a continuation-in-part of U.S. patent application Ser. No. 10/125,012 (the '012 application), filed on Apr. 18, 2002, now U.S. Pat. No. 6,686,016, entitled “Thermoplastic Adhesive Dispensing Method and Apparatus” and a continuation-in-part of U.S. patent application Ser. No. 09/998,950 (the '950 application), filed on Nov. 15, 2001, now U.S. Pat. No. 6,640,864, entitled “Thermoplastic Adhesive Dispensing Method and Apparatus,” the '012 application being a continuation of the '950 application, the '950 application being a continuation of U.S. patent application Ser. No. 09/363,200, filed on Jul. 29, 1999, now U.S. Pat. No. 6,319,442, entitled Process of Making a Thermoplastic Adhesive Dispensing Tape, which is in turn a continuation-in-part of U.S. patent application Ser. No. 08/909,189, filed on Aug. 11, 1997, now U.S. Pat. No. 5,935,670, entitled “Thermoplastic Adhesive Dispensing Method and Apparatus,” which is in turn based upon U.S. Provisional Patent Application No. 60/036,896, filed on Feb. 6, 1997, all of which are assigned to the assignee of the present invention, and all of which are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60036896 | Feb 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10360457 | Feb 2003 | US |
Child | 11029611 | Jan 2005 | US |
Parent | 09363200 | Jul 1999 | US |
Child | 09998950 | Nov 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10125012 | Apr 2002 | US |
Child | 10360457 | Feb 2003 | US |
Parent | 09998950 | Nov 2001 | US |
Child | 10125012 | Apr 2002 | US |
Parent | 08909189 | Aug 1997 | US |
Child | 09363200 | Jul 1999 | US |