1. Field of the Invention
This invention relates to endless belts for conveyors and, more particularly, to connectors for making thermoplastic endless belts to be driven by sprockets.
2. Description of the Related Art
Low tension, direct drive conveyor belts are typically used in situations where hygiene and cleanliness are critically important. For example, in food processing plants such as those that process meat products for human consumption, low tension, direct drive belt conveyors are used to transport items. Sanitation is critically important and, therefore, the endless belts used in such conveyors are conventionally made of materials that can be hygienically cleaned, such as thermoplastics or stainless steel.
Known belts include those formed of interlocking links having teeth that are adapted to engage drive sprockets. One of the problems with such belts is that food particles can become lodged in the joints of the interconnecting links. Consequently, cleaning the belts can be difficult and may require removing the belt from the conveyor system for special cleaning operations.
It is also known to use flexible toothed thermoplastic belts without interlocking links where the teeth engage drive sprockets as shown in
The belt 100 has an outside surface 110 that is fairly smooth and free of discontinuities. The belt is normally formed by butt welding two ends of the belts together at a seam 112. The outside surface 110 on the upper span 105 is normally the carrying surface for transport of items. A thermoplastic belt is usually under some tension when loaded. A thermoplastic belt under tension will stretch, which may require adjustment of the tension from time to time. Also, the belt may have to be removed from the sprockets for maintenance of the system, for cleaning, or for repair. Removing the endless belt 100 of
According to the invention, a thermoplastic belt has a belt connector to make the belt endless. The belt connector comprises two leaves, one of them having at least two knuckles and the other leaf having at least one knuckle. All knuckles have a hole therethrough, and each leaf has an opposed butt end to be secured to the belt. A pin is adapted to extend through the holes of the knuckles when the holes are in registry to hingedly secure the leaves to each other.
In another aspect of the invention, a method of making a belt connector includes the steps of molding a piece of thermoplastic material with a flat on one side and three teeth on the other side, a center tooth having a hole extending therethrough; and cutting the piece into two leaves along the center tooth wherein at least two knuckles are formed in one leaf and one knuckle is formed in the other leaf, each knuckle having a tooth with a hole through it.
In the drawings:
Looking now at
The belt connector 10 comprises two leaves 20, 22. Each leaf has a butt end 24, 26, sized to be butt welded to the respective first and second ends 14, 16 in conventional manner. Each leaf also has a plurality of knuckles 28, 30 opposite the butt ends 24, 26 that when joined by a pin 32, will form a hinge. Preferably, each leaf has a tooth 34, 36, so located that when the butt ends 24, 26 are welded to the first and second ends 14, 16 on the belt, the pitch of the teeth will remain unchanged.
The knuckles 28, 30 each have tooth portions 39 that are preferably located so that when joined, they form a single tooth 38 intermediate the teeth 34, 36 on the leaves. The knuckles are joined by the pin 32 that extends through a hole 42 in each knuckle. Preferably, the pin 32 is mounted so that it can be removed at will. Thus, the belt connector 10 can be separated into separate leaves, thereby separating the belt 12 so that it can be removed from its installation with ease. Conversely, the belt 12 can be rejoined by interlacing the knuckles 28, 30 so that the holes 42 are in registry, and then inserting the pin 32 through the holes.
Preferably, the belt connector 10 is formed of thermoplastic of substantially the same composition as the belt 12 to which it is to be attached. Looking at
Looking now at
To attach the belt connector to a belt as shown in
It will be apparent that as the belt 12 moves around a sprocket 102 or 103 as in
Turning now to
The belt connector 50 is injection molded with four teeth, the two outside teeth 34, 36, and two inside teeth 52, 54, all spaced from each other the same pitch as the teeth 18 on the belt 12 to which the belt connector is attached. Each inside tooth 52, 54 is molded with the hole 42 through it, sized to receive the pin 32. A sinusoidal cut 56 extends from one side of the tooth 52 to the other side of the tooth 54 across the recess 37 between them, forming two leaves 58, 60. Each leaf 58, 60 has respective knuckles 62, 64, and each knuckle will have a portion of two of the inner teeth 52, 54 on it. One tooth portion will be o a tip 65 of each knuckle and another tooth portion will be on a base 67 of each knuckle.
Each leaf 58, 60 is butt welded or otherwise secured by conventional means to the respective end 14, 16 to form respective seams 44, 46. A pin 32 is then inserted through the holes 42 in the respective portions of the inner teeth 52, 54 to secure the respective knuckles 62, 64 to each other. As before, each pin 32 is a wire, coated or covered with a friction enhancing coating to retain the pin within the holes. Alternatively, the pin 32 can be fixed by other means such as simply bending the ends at an angle, or securing removable fasteners to the ends. It will be apparent that with two connection points for each knuckle 62, 64, the knuckles will not rotate about either pin so as to form the kind of discontinuity that appears in the first embodiment. Rather, each knuckle 62, 64 will be urged by the tension of the belt 12 and the engagement of the teeth 52, 54 with the sprocket to bend around the sprocket, thereby minimizing the discontinuity otherwise caused by the sinusoidal cut 56. As with the earlier embodiment, the cut 56 need not be limited to a sinusoidal shape, but can take any shape so long as there are at least two knuckles on one leaf and one knuckle and the other.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit. For example, in all embodiments, it is within the scope of the invention to mold individual leaves with teeth on the knuckles, as opposed to molding a single piece and then cutting individual leaves from the single piece.
This application claims priority on International Application No. PCT/US2005/039744, filed Nov. 2, 2005, which claims the benefit of U.S. Provisional Patent Application No. 60/522,756, filed Nov. 3, 2004, both of which are incorporated herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/039744 | 11/2/2005 | WO | 00 | 4/30/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/052629 | 5/18/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4138011 | Lapeyre | Feb 1979 | A |
4170281 | Lapeyre | Oct 1979 | A |
5467867 | Musil et al. | Nov 1995 | A |
6695134 | Rubino et al. | Feb 2004 | B2 |
6843744 | Gregg et al. | Jan 2005 | B2 |
20020148707 | Tarnawskyj et al. | Oct 2002 | A1 |
20040089519 | Pollak et al. | May 2004 | A1 |
20040195079 | Webster et al. | Oct 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070267277 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60522756 | Nov 2004 | US |