This invention is directed to archery bows and, more particularly, to archery bows having risers and limbs fabricated from polymers and composite materials.
The design of bows for use in archery has evolved over thousands of years. Changes in technology have been the result of mechanical innovation and advancement in material science. One significant advancement in bow design was the development of the “compound” bow. Traditional bows are referred to as “recurve” bows. Recurve bows are usually made from wood and must be bent into the curved bow shape each time a user wishes to attach the bow string. Recurve bows employ a single bow string and the resilience of the bow places the bow string in tension. While effective, it usually requires a great deal of force to draw the bowstring back when using a recurve bow. Contrastingly, compound bows employ a camming system that allows a user to exert less force on the bow string to draw it back than is necessary with a similarly rated recurve bow.
Major components of compound bows are the riser (on which a handle is mounted or formed) and two generally opposed limbs, each extending from an end of the riser. The limbs may be mounted in pockets at the ends of the riser and have pulleys or cams rotatably attached to the distal ends of each limb. A drawstring and harness system is wound between the pulleys and cams. Upon drawing the drawstring back, the limbs flex to allow the drawstring and the harness system to be loaded under high tension. In turn, the riser is loaded as a result of bending and torsional forces transferred thereto. These forces are resolved in the riser as tension, compression, shear forces, and torque.
Typically, the riser is fabricated from metal such as aluminum or magnesium or from composite materials that generally lack any appreciable amount of elasticity. The limbs, on the other hand, are typically fabricated from a material having a sufficient amount of resiliency (for example, woven unidirectional epoxy fiberglass and/or co-mingled composite materials) to allow them to flex or bend, thereby placing the bowstring in tension. Accordingly, upon drawing the bowstring back on a bow having a riser fabricated from a substantially inelastic material and limbs that are by comparison more flexible, undesirable stresses are introduced into the bow, particularly at the joints between the riser and the limbs. Over time, these stresses may compromise the structural integrity of the bow.
Furthermore, in bows and crossbows having risers fabricated from substantially inelastic materials, the opportunity for stress-related cracking to develop as a result of repeated use increases. Climatic changes (e.g., high temperature that results in increased creep or degradation of the composite matrix or the adhesives used, variations in humidity, and the like) can also contribute to the deterioration of the microstructure of the material of the riser, which can in turn significantly reduce the useful life of the bow. Moreover, deterioration of the microstructure can lead to visible defects in the riser that detract from the overall appearance of the bow.
Based on the foregoing, it is the general object of the present invention to provide an archery bow having components fabricated from a material that overcomes the problems of, or improves upon, the prior art.
According to one aspect of the present invention, a riser for an archery bow is formed to a desired shape from a fibrous composite material, the matrix of which may be a high heat distortion thermoplastic polymer, a very high heat distortion thermoplastic polymer, or a combination thereof. Thermoplastic polymers are polymers that soften when exposed to heat and harden to their original condition when cooled. The terms “high heat distortion” and “very high heat distortion” are used to describe the resistance to change in mechanical properties of the thermoplastic polymer due to increased temperature. As used herein, the term “archery bow” is to be broadly construed to include recurve bows, compound bows, and crossbows
In another aspect of the present invention, an archery bow includes a riser having opposing end surfaces, a limb attached to and extending from each of the end surfaces, and a bowstring extending between the distal ends of the limbs. Preferably, the riser is fabricated from a thermoplastic polymer, a polymeric composite, or a combination thereof. Where a composite material is used, the matrix material for a riser can be thermoplastic. The thermoplastic composite can incorporate any number of different types of filler materials, such as, but not limited to fibers in strand or chopped form, or particulate material or combinations thereof. The filler can also be formed from different materials, such as, but not limited to, S-glass, E-glass, carbon fiber, KEVLAR® (aramid), SPECTRA® (ultra-high molecular weight polyethylene), natural fibers (basalt, hemp, and the like), or combinations of any of the foregoing.
In an embodiment of the present invention, the riser is formed from a hybrid material. A spine formed from a different polymer or composite than the rest of the riser, or from metal, is incorporated within the riser. Preferably, the spine follows the shape of the riser and extends longitudinally therealong. The spine can be embedded within the riser or positioned on the external surfaces of the riser. During use, the spine adds increased stiffness to the riser thereby enhancing the capability of the riser to withstand stress.
The present invention also resides in a method for producing a riser for an archery bow that includes the steps of introducing a polymeric composite into a mold from a first end of the mold to facilitate a particular orientation of components of the polymeric composite, molding the polymeric composite to produce a billet that approximates a net shape of the riser, and then machining the billet to the final shape of the riser.
A riser produced as described herein may be rigid, semi-flexible, or flexible. One advantage of the above-described invention is that the semi-flexible- or flexible risers can flex with at least a portion of each limb to supplement the force that will propel the arrow from the bow. Because the riser flexes, stresses at the joints between the riser and the limbs are reduced, which thereby reduces the overall stress on the bow. Accordingly, the useful life of the bow may be extended.
Referring to
During use, tension, compression, and torque is exerted on the riser 12, the upper limb 14, and the lower limb 16 as the drawstring 26 is pulled back. Flexure of the upper limb 14 and the lower limb 16 stores energy in the bow 10, which is released when an arrow is launched, causing the upper limb 14 and the lower limb 16 to return to their respective unflexed positions, and the arrow to be propelled forward past the riser 12.
The riser 12 is shaped to accommodate stress and stiffness and to impart the proper functionality to the bow. Referring to
In
Referring now to
The spine 44 is formed with the riser 12 or pre-formed and inserted into the riser. The spine 44 may be an elongated rod-like member having an angular, rounded, or complex cross section. The spine 44 may also be formed as a grid structure or from a bar, a hoop, a corkscrew or spiral member, a ladder, cable, woven strands, or a combination of any of the foregoing. Multiple structures may be assembled to form the spine 44. Materials from which the spine 44 may be fabricated include, but are not limited to, metals, alloys, rubbers, ceramics, cloth, composite materials, and combinations thereof. In the illustrated embodiments, the spine 44 is internal to the riser 12 and extends along the length thereof. The location of the spine 44 may be centrally positioned longitudinally in the riser 12, adjacent the compression side (back) of the riser, or adjacent the tension side (front) of the riser (as shown). Furthermore, the spine 44 could be connected to reinforcement plates 45 at or near the upper end surface 36 and lower end surface 38 of the riser 12 using mechanical fastening devices or by welding. While the spine 44 has been shown and described as being positioned internally within the riser 12, the present invention is not limited in this regard as the spine can also be located on external surfaces defined by the riser without departing from the broader aspects of the invention.
In
Referring to
In one embodiment of the present invention, the riser 12 is formed from a composite material that employs a thermoplastic matrix. The matrix material can be a high heat distortion thermoplastic polymer, a very high heat distortion thermoplastic polymer, or a combination of the foregoing polymers. The thermoplastic composite material can be a long fiber reinforced thermoplastic (LFRT), or an extra long fiber reinforced thermoplastic (XLFRT), or any combination thereof.
The thermoplastic composite can be made using a number of different types of reinforcing fibers. These include, but are not limited to, polyamides (e.g., aramid materials such as KEVLAR®). The fibers can also be carbon or glass fibers such as “S” or “E” glass. The composite material can also employ a reinforcing constituent in flake, pellet, or powder form, or a combination thereof. Other materials can be used as reinforcing fibers, such as, different glasses, cellulose-based materials, as well as natural materials such as hemp.
In another method of forming the riser 12, the thermoplastic composite material is introduced into a mold. The composite material can be injected into the mold using a plunger or injection system so that as the material is forced into the mold, the fibers are beneficially aligned.
When fibers are employed to reinforce the matrix material, the fibers can be long enough to extend from one end of the riser to the other. However, the present invention is not limited in this regard, as the fibers can also be shorter, or even chopped. Preferably, the fiber content of the final material fed to the mold is between about 10% by weight to about 80% by weight. When the spine 44 is employed, it is typically positioned in the mold prior to the composite material being introduced therein.
While a combination of the thermoplastic composite and the spine has been described, the present invention is not limited in this regard as the riser 12 can also be formed from a combination of thermoplastic polymer without fiber or other reinforcement molded or cast around the spine 44.
In yet another method of manufacturing the riser 12, polymer material or composite material is molded to produce a billet that approximates the net shape of the finished riser. In the actual molding process, the riser 12 is formed by positioning the mold in one of three positions. In the first position, the mold is placed so that the rear of the finished riser 12 (the side facing the user) faces down. Such a positioning allows for the integral molding of pockets into the upper and lower end surfaces on the riser 12. In the second position, the mold is placed so that the arrow rest faces down. This positioning allows holes to be molded laterally through and reliefs to be molded laterally into the riser 12. In the third position, the mold is placed so that the arrow rest faces up, which also allows holes and reliefs to be molded into and through the riser 12. If an injection molding process is utilized, inserts are used to form window pockets. If a compression molding process is utilized, an extrudate is either placed in the mold or secondarily extruded into the mold via a plunger/runner-type gate. The plunger/runner-type gate is located to equally distribute the extrudate into the mold cavity. In any of the molding positions, a plunger forces a charge of molten polymer into a cavity of the mold from one end, which facilitates the proper orientation of fibers or other components that may be added to the polymer. Also, in any of the molding positions, the spine 44 or stamped sheet 50 can be molded integrally with the billet.
After being molded, the pre-formed billet structure is machined to further form the riser 12. If pockets were not integrally molded into the riser 12 during the molding process, they may be machined into the structure at this point. Furthermore, if holes and reliefs were also not formed, then they may also be machined into the billet structure.
As an alternative to or in addition to the molding and machining process, the riser 12 may be formed using a thermoplastic composite form forging technique. This technique involves extruding a fiber filled thermoplastic composite sheet or charge in a basic cylindrical shape typically made from LFRT or XLFRT that approximates the peripheral shape of the riser 12. Several sheets or individual plies are interfacially assembled to approximate a billet. The spine 44, as described above, may be inserted between the plies. The assembled billet is then stamped or forged to form the riser 12 in its final shape. The fiber orientation can be kept consistent between plies, however, the present invention is not limited in this regard. Depending on the desired mechanical properties, the fiber orientation between plies can be varied. For example, the fibers in one ply can be oriented orthogonally or at any desired angle relative to the fibers in the next ply. The plies can also be compression molded or autoclaved to form the riser in final or near final form. This method of laying up several plies of composite material to form the riser can also be used without forging, such as, for example the layed-up plies of material can be cured under pressure in an autoclave.
Referring now to
In any embodiment, the thermoplastic material of the riser 12 may be combined with wood or laminated with wood to provide the desired finish.
Referring now to
As shown in
The thermoplastic composite layer 60 may be laminated to the limb structure using an adhesive, a heat fusion technique, or the like. The thermoplastic composite layer 60 may be laminated to the tension surface of the upper limb 14, to the compression surface of the upper limb 14, as shown in
Referring now to
Referring now to
Although this invention has been shown and described with respect to the detailed embodiments thereof, it will be understood by those of skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed in the above detailed description, but that the invention will include all embodiments falling within the scope of the appended claims.
This application is a division of U.S. patent application Ser. No. 11/063,420 filed Feb. 22, 2005, which claims the benefit of Provisional Patent application Ser. No. 60/546,005, filed Feb. 18, 2004, the disclosures of which are incorporated in their entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
60546005 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11063420 | Feb 2005 | US |
Child | 11520350 | Sep 2006 | US |