This application claims priority to PCT Patent Application No. PCT/US13/23635 filed Jan. 29, 2013, which is hereby incorporated by reference.
1. Technical Field
This disclosure relates generally to a turbine engine and, more particularly, to a turbine engine nosecone.
2. Background Information
A typical turbojet or turbofan engine includes a nosecone for directing air into a gas path of the engine. The nosecone may be connected to a hub of a compressor or fan rotor. Such a nosecone is often referred to as a spinner. Alternatively, the nosecone may be connected to a hub of a static support structure.
A typical nosecone is constructed from a material that is strong enough to survive high and low altitude environments. The material should also be relatively inexpensive and light weight.
There is a need in the art for an improved nosecone for a turbine engine.
According to an aspect of the invention, a nosecone for a turbine engine is provided that includes a nosecone body and a nosecone mount. The nosecone body extends along an axis between a tip end and a base end. The nosecone body is configured from or otherwise includes thermoplastic material. The nosecone body includes a shell and an arrangement of ribs, which structurally support at least a portion of the shell. A thickness of the arrangement of ribs is greater than or substantially equal to approximately one half of a thickness of the shell. The nosecone mount is adapted to connect the nosecone body to a component of the turbine engine.
According to another aspect of the invention, another nosecone for a turbine engine is provided that includes a nosecone body and a nosecone mount. The nosecone body extends along an axis between a tip end and a base end. The nosecone body includes a shell and an arrangement of ribs, which structurally support at least a portion of the shell. The arrangement of ribs is configured from or otherwise includes thermoplastic material and/or polycrystalline material. The nosecone mount is adapted to connect the nosecone body to a component of the turbine engine.
According to still another aspect of the invention, a turbine engine system is provided that includes a nosecone that guides air towards a plurality of rotor blades of an engine rotor. The rotor blades are arranged circumferentially around an axis. The nosecone is configured from or otherwise includes thermoplastic. The nosecone includes a shell and an arrangement of ribs, which structurally support at least a portion of the shell. A thickness of the arrangement of ribs is greater than or substantially equal to approximately one half of a thickness of the shell.
The thickness of the arrangement of ribs may be greater than or substantially equal to the thickness of the shell.
The arrangement of ribs may be configured as an isogrid structure.
The arrangement of ribs may be configured in a repeating pattern that defines a plurality intra-rib gaps. One or more of the plurality intra-rib gaps may each be configured with a polygonal cross-sectional geometry or an arcuate cross-sectional geometry. A length of a first of the ribs may be greater than a length of a second of the ribs, where the first and the second of the ribs at least partially define one of the plurality intra-rib gaps. Alternatively or additionally, the ribs that define one of the plurality intra-rib gaps may have substantially equal lengths.
The nosecone body may include a first region and a second region that is arranged axially between the first region and the base end. The arrangement of ribs may be located in the first region. The nosecone body may also include a third region that is arranged axially between the first region and the tip end.
The nosecone body may include a first region and a second region that is arranged axially between the first region and the base end. The arrangement of ribs may be located in the second region.
The arrangement of ribs may define a plurality of intra-rib gaps. One or more of the intra-rib gaps may be at least partially filled with the thermoplastic material, and/or any other filler material.
The arrangement of ribs may be configured from or otherwise include one or more of the following materials: the thermoplastic material, polycrystalline material, thermoset material and/or metal. Alternatively or additionally, the shell may be configured from or otherwise includes one or more of the following materials: the thermoplastic material, polycrystalline material, thermoset material and/or metal.
The nosecone body may include a first layer and a second layer that is stacked and bonded with the first layer. The first layer may include the shell. The second layer may include the arrangement of ribs. The nosecone body may also include a third layer. The second layer may be arranged between and bonded to the first layer and the third layer.
The nosecone body may include a nosecone segment and a cap segment that is fastened and/or otherwise connected to the nosecone segment. The nosecone segment or the cap segment may include the arrangement of ribs.
The nosecone may be connected to the engine rotor. The engine rotor may be configured as or otherwise include a fan rotor and/or any other engine rotor.
The turbine engine system may include a stator. The nosecone may be connected to the stator.
The turbine engine system may include a gear train. The engine rotor may be connected to and driven by a second engine rotor through the gear train. The engine rotor may be configured as or otherwise include a fan rotor and/or any other engine rotor. The second engine rotor may be configured as or otherwise include a turbine rotor and/or any other engine rotor.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation of the invention will become more apparent in light of the following description and the accompanying drawings.
Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiments. The drawings that accompany the detailed description can be briefly described as follows:
Each of the engine sections 28, 29A, 29B, 31A and 31B includes a respective rotor 40-44. Each of the rotors 40-44 includes a plurality of rotor blades arranged circumferentially around and connected to (e.g., formed integral with or mechanically fastened, welded, brazed or otherwise adhered to) one or more respective rotor disks. The fan rotor 40 is connected to a gear train 46; e.g., an epicyclic gear train. The gear train 46 and the LPC rotor 41 are connected to and driven by the LPT rotor 44 through a low speed shaft 48. The HPC rotor 42 is connected to and driven by the HPT rotor 43 through a high speed shaft 50. The low and high speed shafts 48 and 50 are rotatably supported by a plurality of bearings 52. Each of the bearings 52 is connected to the second engine case 38 by at least one stator such as, for example, an annular support strut.
Air enters the engine 20 through the airflow inlet 24, and is directed through the fan section 28 and into an annular core gas path 54 and an annular bypass gas path 56. The air within the core gas path 54 may be referred to as “core air”. The air within the bypass gas path 56 may be referred to as “bypass air” or “cooling air”. The core air is directed through the engine sections 29-31 and exits the engine 20 through the airflow exhaust 26. Within the combustor section 30, fuel is injected into and mixed with the core air and ignited to provide forward engine thrust. The bypass air is directed through the bypass gas path 56 and out of the engine 20 to provide additional forward engine thrust or reverse thrust via a thrust reverser. The bypass air may also be utilized to cool various turbine engine components within one or more of the engine sections 29-31.
The nosecone 58 includes a nosecone body 62 and a nosecone mount 64. The nosecone body 62 extends circumferentially around the axis 22. The nosecone body 62 extends axially along the axis 22 between an upstream tip end 66 and a downstream base end 68. The nosecone body 62 has a thickness that extends between a nosecone interior surface 70 and a nosecone exterior surface 72. The nosecone body 62 may have a parti-ellipsoidal or otherwise arcuate geometry as illustrated in
The nosecone mount 64 is configured as a mounting flange (e.g., an annular flange). Alternatively, the nosecone mount may be configured as or include one or more bosses, one or more mounting brackets and/or any other type of mounting structure and/or devices. The nosecone mount 64 extends radially and/or axially from the nosecone body 62, and connects the nosecone body 62 to the component 60. The nosecone mount 64, for example, includes an intermediate portion 74 and a mount portion 76. The intermediate portion 74 extends between and connects the nosecone body 62 and the mount portion 76. The mount portion 76 is fastened to the component 60 with one or more fasteners 78. The fasteners 78 may be mated with the mount portion 76 and the component 60 by inserting a tool (not shown) respectively through one or more apertures 65. Alternatively or additionally, the mount portion 76 may be bonded to the component 60. The nosecone mount, of course, may have various configurations other than that described above and illustrated in the drawings.
The nosecone 58 may be configured as a unitary body, where the nosecone mount 64 is integral with the nosecone body 62. Alternatively, the nosecone mount 64 may be formed discrete from and subsequently fastened and/or bonded to the nosecone body 62. Still alternatively, referring to
The nosecone 58 is injection molded, air assisted injection molded, compression molded and/or otherwise formed from at least thermoplastic material. More particularly, the nosecone body 62 and/or the nosecone mount 64 are each formed from one or more layers, where at least one of these layers includes the thermoplastic material. Examples of the thermoplastic material may include, but are not limited to, polyvinylchloride (PVC), polystyrene (PS), polyethylene (PE), polypropylene (PP), styrene-acrylonitrile (SAN), polycarbonate (PC), acrylonitrile styrene acrylate (ASA), acrylonitrile butadiene styrene (ABS), ethylene tetrafluoroethylene fluoropolymer (ETFE), high impact polystyrene (HIPS), polyamide (PA), polybutylene terephthalate (PBT), polyetherimide (PEI), perchloroethylene (PCE), polyether sulfone (PES), polyethylene terephthalate (PET), polysulfone (PSU), polyurethane (PUR), polyvinylidene fluoride (PVDF), polyetheretherketone (PEEK), polyetherimide (PEI), thermoplastic polyimide, polyether ketone ketone (PEKK), polysulfone, high-temperature nylon, polyphenylsulfide, polyester, or any of the foregoing with fiber reinforcement (e.g., carbon fiber or glass-fiber). Such thermoplastic materials may, among other things, increase the resilience of the nosecone 58 to an impact with a hard body object such as, for example, a relatively large bird. In addition, the nosecone 58 may be manufactured at a relatively low cost where, for example, the nosecone 58 is formed via injection molding, air assisted injection molding or compression molding.
One or more of the layers of the nosecone body 62 and/or the nosecone mount 64 may also include one or more non-thermoplastic materials. Examples of the non-thermoplastic materials may include, but are not limited to, metal, aramid material (e.g., Kevlar® fibers, etc.), polycrystalline material (e.g., fibers of the one or more of the thermoplastic materials set forth above), thermoset material (e.g., epoxy resin, etc.), fiberglass, carbon fiber, carbon nanotube, ceramic materials (e.g., silicon carbide (SiC)), graphite, etc. One or more of the layers may also or alternatively include one or more reinforcement materials such as, for example, one or more of the non-thermoplastic materials and/or one or more additional thermoplastic materials described above in this paragraph and the previous paragraph. Such reinforcement materials may be included to, among other things, increase the structural rigidity of the nosecone 58.
Referring to
The support structure 83 is configured integral with the shell 81. The shell 81 and the support structure 83, for example, may be injection molded and/or otherwise formed as a layer 84 that extends between the nosecone interior surface 70 and the nosecone exterior surface 72. Alternatively, referring to
Referring to
The support structure 83 includes an arrangement of ribs 88a-c formed from a first material. The arrangement of ribs 88a-c provides a structural backbone for the shell 81 and the nosecone 58. The arrangement of ribs 88a-c may extend the thickness 87 of the support structure 83 between the shell 81 and the surface 70 (or alternatively the surface 72). Referring to
Referring to
Referring now to the embodiment of
Referring now to the embodiment of
The nosecones 58, 103 and 107 may have various configurations other than those described above and/or illustrated in the drawings. For example, at least one of the layers may include a heating element adapted for deicing the nosecone during engine operation. At least a portion of the nosecone exterior surface 72 may be coated with a coating such as, for example, a flouroelastomer or polyeurethane coating. Referring to
The terms “upstream”, “downstream”, “inner” and “outer” are used to orientate the nosecones described above relative to the turbine engine and its axis. A person of skill in the art will recognize, however, one or more of these components may be utilized in other orientations than those described above. The present invention therefore is not limited to any particular nosecone spatial orientations.
A person of skill in the art will recognize the nosecones may be included in various turbine engines other than the one described above. The nosecones, for example, may be included in a turbine engine where a gear train connects one or more shafts to one or more rotors in a fan section and/or a compressor section. Alternatively, the nosecones may be included in a turbine engine configured without a gear train. The nosecones may be included in a geared or non-geared turbine engine configured with a single spool, with two spools as illustrated in
While various embodiments of the present invention have been disclosed, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. For example, the present invention as described herein includes several aspects and embodiments that include particular features. Although these features may be described individually, it is within the scope of the present invention that some or all of these features may be combined within any one of the aspects and remain within the scope of the invention. Accordingly, the present invention is not to be restricted except in light of the attached claims and their equivalents.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/023635 | 1/29/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/120123 | 8/7/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2838435 | Hewett | Jun 1958 | A |
3640798 | Deeds | Feb 1972 | A |
3873236 | Gall | Mar 1975 | A |
3990814 | Leone | Nov 1976 | A |
4012549 | Slysh | Mar 1977 | A |
4015653 | Slysh | Apr 1977 | A |
4470862 | More et al. | Sep 1984 | A |
4744214 | Monsarrat et al. | May 1988 | A |
4818318 | McMahon | Apr 1989 | A |
4957415 | Paul | Sep 1990 | A |
5149251 | Scanlon | Sep 1992 | A |
5252160 | Scanlon | Oct 1993 | A |
5252165 | Fecto et al. | Oct 1993 | A |
5573378 | Barcza | Nov 1996 | A |
5833435 | Smith | Nov 1998 | A |
6196794 | Matsumoto | Mar 2001 | B1 |
6223616 | Sheridan | May 2001 | B1 |
6358014 | Chou | Mar 2002 | B1 |
7591754 | Duong et al. | Sep 2009 | B2 |
7739865 | Prasad et al. | Jun 2010 | B2 |
7824305 | Duong et al. | Nov 2010 | B2 |
7926260 | Sheridan et al. | Apr 2011 | B2 |
7938368 | Hogate | May 2011 | B2 |
7955046 | McCune et al. | Jun 2011 | B2 |
8205432 | Sheridan | Jun 2012 | B2 |
8286654 | Prasad et al. | Oct 2012 | B2 |
8540492 | Schreiber | Sep 2013 | B2 |
20020077233 | Oldani | Jun 2002 | A1 |
20050231052 | Rockarts et al. | Oct 2005 | A1 |
20100192351 | Runnemalm | Aug 2010 | A1 |
20100226786 | Mahan | Sep 2010 | A1 |
20100270427 | Barrientos et al. | Oct 2010 | A1 |
20110047959 | DiBenedetto | Mar 2011 | A1 |
20120134843 | Bottome | May 2012 | A1 |
20140186166 | Kostka | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2369155 | Sep 2011 | EP |
Entry |
---|
“Biomaterials in Clinical Practice: Advances in Clinical Research and Medical Devices” Springer, Oct. 20, 2017, p. 62. |
Goh, Cynthia. “Atomic Force Microscopy of Polymer Films” in Advances in Chemical Physics, vol. 194. John Wiley & Sons, 2009. p. 34. |
Baker et al. “Composite Materials for Aircraft Structures” (Year: 2004). |
Michelle M. Gauthier, “Engineering Thermoplastics”, Engineered Materials Handbook Desk Edition. (Year: 1995). |
Number | Date | Country | |
---|---|---|---|
20150361806 A1 | Dec 2015 | US |