Thermoplastic olefinic compositions

Abstract
Thermoplastic olefinic compositions comprising (a) at least one ethylene/α-olefin polymer having a PRR between 8 and 70 and (b) at least one one polyolefin polymer selected from the group of polyethylene homopolymers and α-olefin interpolymers having a PRR less than 4, ethylene/acrylic acid copolymers, ethylene/vinyl acetate copolymers, and styrenic/olefinic block interpolymers and an (a)/(b) weight ratio of greater than 50/less than 50 to 90/10. The compositions are used in extrusion, calendaring, blow molding, foaming and thermoforming processes to make a variety of articles, such as automotive instrument panel skins.
Description
FIELD OF THE INVENTION

This invention relates generally to thermoplastic olefinic compositions that comprise at least one shear sensitive ethylene/alpha (α)-olefin (EAO) interpolymer having a density of less than 0.91 g/cc and at least one polyolefin polymer selected from the group of polyethylene homopolymers and α-olefin interpolymers having low levels of long chain branching, ethylene/acrylic acid copolymers, ethylene/vinyl acetate copolymers, and styrenic/olefinic block interpolymers in a weight ratio of EAO to polyolefin that is greater than 50/50, and to the use of such compositions in processes to make articles of manufacture. This invention particularly relates to olefinic compositions wherein the shear sensitive EAO has high levels of T-type long chain branching, a Processing Rheology Ratio (PRR) between 8 and 70, a 0.1 rad/sec (190° C.) shear viscosity of greater than 200,000 and a melt strength of greater than 5, and to the use of such compositions in extrusion, calendaring, blow molding, foaming, and thermoforming processes.


BACKGROUND

In U.S. Pat. No. 6,372,847, Wouters discloses thermoplastic olefin elastomers blends (TPO's). As explained by Wouters, “TPO's are multiphase polymer systems where the polypropylene forms a continuous matrix and the elastomers and filler are the dispersed phase.” In other words, TPO's comprise a majority amount of polypropylene and a minority amount of elastomers so as to form the desired structure. Wouters' TPO's are blends of a propylene-based polymer and an ethylene/α-olefin elastomer having a MLRA/ML ratio of at least 8 and an ethylene content of from about 74 to about 95 mole percent. MLRA/ML is a measure of polymer relaxation that Wouters uses to indicate the amount of long chain branching. Any polymer having a MLRA/MV value of less than three is considered to have an essentially linear structure (column 7 lines 21-22). The patentee asserts that the elastomers with an MLRA/ML ratio of at least 8 are required to provide adequately high levels of long chain branching. The TPO's comprising such elastomers are disclosed as having improved low temperature toughness. Additionally, the long chain branching in the Examples of Wouters was accomplished exclusively by the use of H-type branching agents such as vinylnorbornene, 5-ethylidene-2-norbornene, and norbornadiene and a vanadium catalyst, whereas the long chain branching in the Comparative Examples of Wouters was accomplished by T-type branching.


In WO 00/26268, Cady et al. disclose ethylene/α-olefin interpolymers characterized by a PRR of at least 4, an indication that long chain branching is present. An additional aspect of the disclosure is a polymer blend composition comprising said interpolymer and an amount of a crystalline polyolefin resin. The interpolymer is desirably present in an amount of less than 50 parts by weight and the crystalline polyolefin resin is desirably present in an amount of more than 50 parts by weight.


Manufacturers of elastomeric parts continue searching for elastomers with processing characteristics that allow them to attain any or all of higher rates of productivity, improved quality and broader markets, especially for compositions comprising a majority amount of an elastomer. Conventional processes used to make parts with an elastomeric composition component include, without limitation, profile extrusion, film extrusion, sheet extrusion, calendering, blow molding, blown film, and thermoforming processes. There are multiple methods for measuring whether or not a particular polymer or polymer blend will be useful for a particular process and/or part. Some examples of these measuring techniques include melt strength (MS), shear thinning index, zero shear viscosity, molecular weight, molecular weight distribution, creep resistance (hot creep and creep set), degree of long chain branching (LCB), gel content, elongation, and tensile strength. Depending on the particular application, some of these properties are more critical than others. Improvements in some of these properties have a direct affect upon productivity, quality and market breadth relative to such elastomeric parts.


When using a profile extrusion process, a manufacturer usually desires an elastomer that “shear thins” (in other words is shear sensitive) or decreases in viscosity with applied shear forces. Because pressure drop across an extruder die and amperage required to turn an extruder screw are directly related to elastomer viscosity, a reduction in elastomer viscosity due to shear thinning necessarily leads to a lower pressure drop and a lower amperage requirement. The manufacturer can then increase extruder screw speed until reaching a limit imposed by amperage or pressure drop. The increased screw speed translates to an increase in extruder output. An increase in shear thinning also delays onset of surface melt fracture (OSMF), a phenomenon that otherwise limits extruder output. Surface melt fracture is usually considered a quality defect and manufacturers typically limit extruder output and suffer a productivity loss to reach a rate of production that substantially eliminates surface melt fracture.


When producing profile extrusions with thin walls and a complex geometry, a manufacturer looks for an elastomer with high MS and rapid solidification upon cooling in addition to good shear thinning behavior. A combination of a high MS and rapid solidification upon cooling allows a part to be extruded hot and cooled below the elastomer's solidification temperature before gravity and extrusion forces lead to shape distortion. Ultimately, for broad market acceptance, a finished part should also retain its shape despite short term exposure to an elevated temperature during processing, shipping or eventual use.


Manufacturers who prepare elastomeric extruded and blown films and calendered sheets seek the same characteristics as those who use profile extrusion. An improved or increased shear thinning rheology leads to higher production rates before OSMF with its attendant variability in film or sheet thickness. A high MS promotes bubble stability in a blown film operation and provides a wide window of operations for further processing of such films via thermoforming. A high MS also promotes roll release during calendering. Rapid solidification or solidification at a higher temperature keeps an embossed calendering profile from collapsing or being wiped out. As with injection molding, an increase in creep resistance leads to an expansion of potential markets for resulting film and sheets.


Compositions having a high melt strength and creep resistance are desired in calendaring and blow molding operations. In many instances, the calendar rolls are fed with a composition in the form of a molten rod. This molten composition must be able to spread across the calendar rolls. Additionally, after sheet formation, the hot sheet must resist creep or sagging until it cools.


Compositions having a high melt strength and creep resistance are also preferred for thermoforming applications. In addition, tensile properties of the compositions at elevated temperatures are important for these applications. For example, one method of manufacturing instrument panel skin material is to either calender or extrude embossed sheeting. The sheeting is then vacuum thermoformed to the contour of the instrument panel. One method to determine compound thermoformability is by evaluating its elevated stress-strain behavior. Often, flexible polypropylene thermoplastic (TPO) sheets are thermoformed at temperatures below the melting point of the polypropylene phase. Although the thermoforming process is one of biaxial extension, tensile tests at the thermoforming temperatures can be used to compare thermoforming and grain retention behavior. The peaks and valleys of the embossed grain are areas of greater and lesser thickness and a look at the grain shows that the valleys are narrower and less glossy than the peak areas. When a skin is thermoformed, the thinner areas will be subject to greater stress and the greater applied stress in these areas concentrates the elongation in the thinner valley areas. These areas elongate preferentially and the attractive “narrow valley, broad peak” appearance is lost, called “grain washout”—unless the material can be designed to elongate more evenly. Strain hardening is the property by which areas of material which have already been strained become stiffer, transferring subsequent elongation into areas which are as yet unstrained. Strain hardening thus allows a thermoformed skin to exhibit more evenly distributed elongation and minimized grain washout.


Various methods have been used in an attempt to improve the performance characteristics of polymers and polymer blends for these type of applications. One method is rheology modification of TPE compositions as disclosed by Heck et al. in WO 98/32795. The compositions comprise an elastomeric EAO polymer or EAO polymer blend and a high melting polymer. The compositions desirably contain the EAO polymer or EAO polymer blend in an amount of from about 50 to about 90 wt % and the high melting polymer(s) in an amount of from about 50 to about 10 wt %, both percentages being based on composition weight. The preferred elastomeric EAO polymer, before rheology modification, is a substantially linear ethylene polymer having a polymer backbone substituted with 0.01-3 long chain branches per 1000 carbons in the backbone. The rheology modification can be induced by various means including peroxides and radiation. The compositions of Heck et al. are said to exhibit a combination of four properties: shear thinning index (STI), melt strength (MS), solidification temperature (ST) and upper service temperature (UST), which make the compositions suited for high temperature processes. However, while these compositions are useful in high temperature applications such as is used for automotive parts and boot shafts, the rheology modification is an extra step, radiation is expensive and peroxide by-products can leave undesirable residual odors. There remains a need to find cheaper and easier methods to prepare compositions with equivalent or superior performance characteristics for various high temperature applications such as extrusion, calendaring, blow molding and thermoforming.


SUMMARY OF THE INVENTION

It has now surprisingly been found that compositions simply comprising a majority amount of certain highly long chain branched EAO polymers having specific characteristics, with a minority amount of various types of polyolefin polymers provide blend compositions having excellent physical properties for use in calendaring, extrusion, blow molding, foaming, and thermoforming operations, without the need for peroxides or other rheology modifiers. As such, one aspect of this invention is a thermoplastic olefinic composition comprising at least one EAO interpolymer having high levels of T-type long chain branching, a density less than 0.91 g/cc, a Processing Rheology Ratio (PRR) between 8 and 70, a 0.1 rad/sec at 190° C. viscosity greater than 200,000 and a melt strength of 5 or greater, and at least one polyolefin polymer selected from the group of polyethylene homopolymers and α-olefin interpolymers having a PRR less than 4, ethylene/acrylic acid copolymers, ethylene/vinyl acetate copolymers, and styrenic/olefinic block interpolymers.


A second aspect of this invention is an article of manufacture comprising at least one component thereof fabricated from the thermoplastic olefinic composition of the first aspect. The compositions readily allow formation of articles of manufacture using apparatus with suitable upper pressure limitations combined with relatively long flow paths and narrow flow channels such as calendaring, extrusion, blow molding and/or thermoforming processes.







DETAILED DESCRIPTION OF THE INVENTION

The compositions of the invention comprise at least one EAO interpolymer. “Interpolymer” as used herein refers to a polymer having polymerized therein at least two monomers. It includes, for example, copolymers, terpolymers and tetrapolymers. It particularly includes a polymer prepared by polymerizing ethylene with at least one comonomer, typically an alpha olefin (α-olefin) of 3 to 20 carbon atoms (C3-C20). Illustrative α-olefins include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, butadiene, and styrene. The α-olefin is desirably a C3-C10 α-olefin. Illustrative polymers include ethylene/propylene (EP) copolymers, ethylene/butene (EB) copolymers, ethylene/octene (EO) copolymers, ethylene/alpha-olefin/diene modified (EAODM) interpolymers such as ethylene/propylene/diene modified (EPDM) interpolymers and ethylene/propylene/octene terpolymers. Preferred copolymers include EP, EB, ethylene/hexene-1 (EH) and EO polymers.


The EAO interpolymers of this invention are highly long chain branched compared to current commercially available EAO polymers. The ability to incorporate LCB into polymer backbones has been known and practiced for many years. In U.S. Pat. No. 3,821,143, a 1,4-hexadiene was used as a branching monomer to prepare ethylene/propylene/diene (EPDM) polymers having LCB. Such branching agents are sometimes referred to as H branching agents. U.S. Pat. Nos. 6,300,451 and 6,372,847 also use various H type branching agents to prepare polymers having LCB. In U.S. Pat. No. 6,278,272 it was discovered that constrained geometry catalysts (CGC) have the ability to incorporate vinyl terminated macromonomers into the polymer backbone to form LCB polymers. Such branching is referred to as T type branching.


The '272 patent teaches such CGC are unique in their ability to incorporate large unsaturated molecules into a polymer backbone. The amount of LCB that can be incorporated by these CGC is from 0.01 LCB/1000 carbon atoms to 3 LCB/1000 carbon atoms. There are various other methods that can be used to define the degree of LCB in a molecule. One such method is taught in U.S. Pat. No. 6,372,847. This method uses Mooney stress relaxation data to calculate a MLRA/ML ratio. MLRA is the Mooney Relaxation Area and ML is the Mooney viscosity of the polymer. Another method is PRR, which uses interpolymer viscosities to calculate the levels of LCB in a polymer.


Interpolymer viscosity is conveniently measured in poise (dyne-second/square centimeter (d-sec/cm2)) at shear rates within a range of 0.1-100 radian per second (rad/sec) and at 190° C. under a nitrogen atmosphere using a dynamic mechanical spectrometer (such as a RMS-800 or ARES from Rheometrics) under dynamic sweep made from 0.1 to 100 rad/sec. The viscosities at 0.1 rad/sec and 100 rad/sec may be represented, respectively, as V0.1 and V100 with a ratio of the two referred to as RR and expressed as V0.1/V100. PRR is calculated by the formula:

PRR=RR+[[3.82−interpolymer Mooney Viscosity (ML1+4 at 125° C.)]×0.3]

The EAO interpolymers of this invention have a PRR between 8 and 70, preferably between 12 and 60, more preferably between 15 and 55 and most preferably between 18 and 50. Current commercial EAO resins having normal levels of LCB typically have PRR values less than 3. A PRR of 70 is equivalent to an MLRA/MV value of 7.6.


The type of LCB in the interpolymers of this invention is T-type branching as opposed to H-type branching. T-type branching is typically obtained by copolymerization of ethylene or other alpha olefins with chain end unsaturated macromonomers in the presence of a metallocene catalyst under the appropriate reactor conditions such as those described in WO 00/26268. If extremely high levels of LCB are desired, H-type branching is the preferred method since T-type branching has a practical upper limit to the degree of LCB. As discussed in WO 00/26268, as the level of T-type branching increases, the efficiency or throughput of the manufacturing process decreases significantly until the point is reached where production becomes economically unviable. T-type LCB polymers can be easily produced by metallocene catalysts without measurable gels but with very high levels of T-type LCB. Because the macromonomer being incorporated into the growing polymer chain has only one reactive unsaturation site, the resulting polymer only contains side chains of varying lengths and at different intervals along the polymer backbone.


H-type branching is typically obtained by copolymerization of ethylene or other alpha olefins with a diene having two double bonds reactive with a nonmetallocene type of catalyst in the polymerization process. As the name implies, the diene attaches one polymer molecule to another polymer molecule through the diene bridge, the resulting polymer molecule resembling an H which might be described as more of a crosslink than a long chain branch. H-type branching is typically used when extremely high levels of branching are desired. If too much diene is used, the polymer molecule can form so much branching or crosslinking that the polymer molecule is no longer soluble in the reaction solvent (in a solution process) and falls out of solution resulting in the formation of gel particles in the polymer. Additionally, use of H-type branching agents may deactivate metallocene catalysts and reduce catalyst efficiency. Thus, when H-type branching agents are used, the catalysts used are typically not metallocene catalysts. The catalysts used to prepare the H-type branched polymers in U.S. Pat. No. 6,372,847 are vanadium type catalysts.


Lai et al. Claim T-type LCB polymers in U.S. Pat. No. 2,272,236 in which the degree of LCB is from 0.01 LCB/1000 carbon atoms to 3 LCB/1000 carbon atoms and the catalyst is a metallocene catalyst. According to P. Doerpinghaus and D. Baird in the Journal of Rheology, 47(3), pp 717-736 May/Jun. 2003, “Separating the Effects of Sparse Long-Chain Branching on Rheology from Those Due to Molecular Weight in Polyethylenes”, free radical processes such as those used to prepare low density polyethylene (LDPE) produce polymers having extremely high levels of LCB. For example, the resin NA952 in Table I of Doerpinghaus and Baird is a LDPE prepared by a free radical process and, according to Table II, contains 3.9 LCB/1000 carbon atoms. Ethylene alpha olefins (ethylene-octene copolymers) commercially available from The Dow Chemical Company (Midland, Mich., USA) that are considered to have average levels of LCB, resins Affinity PL1880 and Affinity PL1840 of Tables I and II, respectively contain 0.018 and 0.057 LCB/1000 carbon atoms.


The EAO component of the compositions of this invention has T-type LCB levels greatly exceeding that of current, commercially available EAOs but LCB levels below that obtainable by using H-type and free radical branching agents. Table I lists the LCB levels of various types of polymers. EAOs that are a component of the invention are designated numerically (e.g., EAO-1), comparative EAOs are designated alphabetically (e.g., EAO-A). The LCB in EAO-G through EAO-J is H-type, the LCB in all other listed EAOs is T-type.

TABLE IMooneyEAOViscosityMLRA/MVPRRComonomerEAO-A26.20.3−2.9buteneEAO-B48.61.2−5.5buteneEAO-C21.50.80.6octeneEAO-D34.41.2−0.8octeneEAO-E34.11.2−0.5octeneEAO-F18.30.6−0.5buteneEAO-140.13.829buteneEAO-2272.822buteneEAO-336.82.415buteneEAO-417.82.312buteneEAO-515.72.010buteneEAO-637.17.670propyleneEAO-717.43.43469.5 wt % ethylene/30 wt %propylene/0.5% ENBEAO-G24.510.976.8 wt % ethylene/22.3 wt %propylene/0.9% ENBEAO-H277.17272 wt % ethylene/22 wt %propylene/6% hexadieneEAO-I50.47.171 wt % ethylene/23 wt %propylene/6% hexadieneEAO-J62.68.15571 wt % ethylene/23 wt %propylene/6 hexadiene


The EAO interpolymers of this invention also have a 0.1 rad/sec.shear viscosity (also referred to herein as low shear viscosity) greater than 200,000, preferably greater than 300,000, more preferably greater than 400,000 and most preferably greater than 450,000. It is obtained by measuring the polymer viscosity at a shear rate of 0.1 radian per second (rad/sec) at 190° C. under a nitrogen atmosphere using a dynamic mechanical spectrometer such as an RMS-800 or ARES from Rheometrics.


Low shear viscosity is affected by a polymer's molecular weight (MW) and the degree of LCB. MW is indirectly measured by melt strength. As a general rule, the greater the MW of a polymer, the better the melt strength. However, when molecular weight becomes too great, the polymers become impossible to process. Incorporation of LCB into a polymer backbone improves the processability of high MW polymers. Thus, low shear viscosity (0.1 rad/sec) is somewhat of a measure of the balance of MW and LCB in a polymer.


The EAO interpolymers of the invention have a melt strength of 5 or greater, preferably 6 or greater and more preferably 7 or greater. Melt strength (MS), as used herein, is a maximum tensile force, in centiNewtons (cN), measured on a molten filament of a polymer melt extruded from a capillary rheometer die at a constant shear rate of 33 reciprocal seconds (sec−1) while the filament is being stretched by a pair of nip rollers that are accelerating the filament at a rate of 0.24 centimeters per second per second (cm/sec 2) from an initial speed of 1 cm/sec. The molten filament is preferably generated by heating 10 grams (g) of a polymer that is packed into a barrel of an Instron capillary rheometer, equilibrating the polymer at 190° C. for five minutes (min) and then extruding the polymer at a piston speed of 2.54 cm/min through a capillary die with a diameter of 0.21 cm and a length of 4.19 cm. The tensile force is preferably measured with a Goettfert Rheotens that is located so that the nip rollers are 10 cm directly below a point at which the filament exits the capillary die.


Preferably, the EAO interpolymers of the invention have a molecular weight distribution (MWD) of 1.5 to 4.5, more preferably 1.8 to 3.8 and most preferably 2.0 to 3.4.


EAO interpolymers suitable for the invention can be made by the process described in WO 00/26268, which is incorporated herein.


The polyolefin polymer component of the compositions of this invention is selected from the group of polyethylene homopolymers and α-olefin interpolymers having a PRR less than 4, ethylene/acrylic acid copolymers, ethylene/vinyl acetate copolymers, and styrenic/olefinic block interpolymers. The polyethylene homopolymers and α-olefin interpolymers having a PRR less than 4 can be a homopolymer of ethylene, including LDPE, an interpolymer (preferably a copolymer) of ethylene with at least one α-olefin, including LLDPE and HDPE, an ethylene/α-olefin/diene modified (EAODM) interpolymer such as an ethylene/propylene/diene modified (EPDM) interpolymer, or a blend of a homopolymer and an interpolymer. The α-olefin in the ethylene copolymer is preferably propylene, 1-butene, 1-hexene or 4-methyl-1-pentene, with propylene being more preferred. The copolymer may be a random copolymer or a block copolymer or a blend of a random copolymer and a block copolymer. The polymers may also be branched. As such, this component is preferably selected from the group consisting of ethylene homopolymers and ethylene/propylene copolymers or mixtures thereof. This component desirably has a melt index (Ml) (190° C. and 2.16 kg weight) of 0.1 to 150, preferably 0.3 to 60 g/10 min, more preferably 0.8 to 40 g/10 min and most preferably 0.8 to 25 g/10 min. This component also desirably has a melting point less than 130° C.


Preparation of the polyolefin polymer can involve the use of Ziegler catalysts such as a titanium trichloride in combination with aluminum diethylmonochloride, as described by Cecchin, U.S. Pat. No. 4,177,160. Polymerization processes used to produce such high melting polymers include the slurry process, which is run at about 50-90° C. and 0.5-1.5 MPa (5-15 atm), and both the gas-phase and liquid-monomer processes in which extra care must be given to the removal of amorphous polymer. An α-olefin copolymer may be added to the reaction to form a block copolymer. The polyolefin polymer may also be prepared by using any of a variety of metallocene, single site and constrained geometry catalysts together with their associated processes.


Low density polyethylene homopolymer, ethylene/acrylic acid copolymers, ethylene/vinyl acetate copolymers and related copolymers are prepared by high pressure free radical polymerization processes which are run at from about 8,000 to about 35,000 psi in which the ethylene and vinyl acetate are introduced into either a stirred autoclave or tubular reactor along with polymerization initiators such as oxygen or peroxides.


Styrenic block copolymers such as styrene-butadiene-styrene, styrene-isoprene-styrene, and the like may be prepared in the solution process using so-called living polymerization processes such as cationically initiated polymerization. In this process, cationically active species such as alkyllithium initiate polymerization with no termination or chain transfer steps. Thus, when all of one monomer is consumed, another monomer maybe sequentially introduced for additional polymerization. This sequential addition of styrene followed by a monomer such as butadiene, followed by additional styrene, yields the block copolymer structure. See Chapter 3, page 48 of “Thermoplastic Elastomers” 2nd ed., G. Holden, N. R., Legge, R. Quirk, H. E. Schroeder, eds., copyright 1996, Hanser/Gardner Publications, Inc.


The compositions of this invention comprise at least one EAO interpolymer and at least one polyolefin polymer. The EAO interpolymer(s) is present in an amount of from greater than about 50 to about 90 wt % and the polyolefin polymer(s) in an amount of from less than about 50 to about 10 wt %, both percentages being based on the combined weight of the EAO interpolymer(s) and the polyolefin polymer(s). The amounts are preferably from about 60 to about 90 wt % EAO and from about 40 to about 10 wt % polyolefin polymer, more preferably from about 65 to about 85 wt % EAO and from about 35 to about 15 wt % polyolefin polymer. The amounts are chosen to total 100 wt %. If the EAO concentration is below about 50 wt %, the physical property effects of the polyolefin polymer start to become dominant (the polyolefin polymer becomes the continuous phase) and such compositions are disadvantageous for calendaring, extrusion, foaming, blow molding or thermoforming operations because the flexural modulus of the material is inadequate.


The compositions of the invention can be prepared by combining the EAO polymer(s) with the polyolefin(s). While such compositions can be prepared by any one of a number of different processes, generally these processes fall into one of two categories, i.e., post-reactor blending and in-reactor blending. Illustrative of the former are melt extruders into which two or more solid polymers are fed and physically mixed into a substantially homogeneous composition, and multiple solution, slurry or gas-phase reactors arranged in a parallel array the output from each blended with one another to form a substantially homogeneous composition which is ultimately recovered in solid form. Illustrative of the latter are multiple reactors connected in series, and single reactors charged with two or more catalysts.


In addition to the EAO and polyolefin polymer, the compositions of the invention advantageously may further comprise at least one additive of the type conventionally added to polymers or polymer compositions. These additives include, for example, process oils, antioxidants, surface tension modifiers, anti-block agents, dispersants, blowing agents, linear or substantially linear EAOs, LDPE, LLDPE, lubricants, crosslinking agents such as peroxides, antimicrobial agents such as organometallics, isothiazolones, organosulfurs and mercaptans; antioxidants such as phenolics, secondary amines, phophites and thioesters; antistatic agents such as quaternary ammonium compounds, amines, and ethoxylated, propoxylated or glycerol compounds; fillers and reinforcing agents such as carbon black, glass, metal carbonates such as calcium carbonate, metal sulfates such as calcium sulfate, talc, clay or graphite fibers; hydrolytic stabilizers; lubricants such as fatty acids, fatty alcohols, esters, fatty amides, metallic stearates, paraffinic and microcrystalline waxes, silicones and orthophosphoric acid esters; mold release agents such as fine-particle or powdered solids, soaps, waxes, silicones, polyglycols and complex esters such as trimethylolpropane tristearate or pentaerythritol tetrastearate; pigments, dyes and colorants; plasticizers such as esters of dibasic acids (or their anhydrides) with monohydric alcohols such as o-phthalates, adipates and benzoates; heat stabilizers such as organotin mercaptides, an octyl ester of thioglycolic acid and a barium or cadmium carboxylate; ultraviolet light stabilizers used as a hindered amine, an o-hydroxy-phenylbenzotriazole, a 2-hydroxy, 4-alkoxyenzophenone, a salicylate, a cynoacrylate, a nickel chelate and a benzylidene malonate and oxalanilide; and zeolites, molecular sieves and other known deodorizers. A preferred hindered phenolic antioxidant is Irganox® 1076 antioxidant, available from Ciba-Geigy Corp. Skilled artisans can readily select any suitable combination of additives and additive amounts as well as the method of incorporating the additive(s) into the composition without undue experimentation. Typically, each of the above additives, if used, does not exceed 45 wt %, based on total composition weight, and are advantageously from about 0.001 to about 20 wt %, preferably from about 0.01 to about 15 wt % and more preferably from about 0.1 to about 10 wt %. Compounds containing such additive(s) that are prepared from the EAO/polyolefin polymer compositions of this invention possess processing advantages over compounds prepared from the same polymers but with EAOs which do not have the combination of PRR, melt strength and low shear viscosity that are a hallmark of this invention.


Process oils, which are often used to reduce any one or more of viscosity, hardness, modulus and cost of a composition, are a preferred additive. The most common process oils have particular ASTM designations depending upon whether they are classified as paraffinic, naphthenic or aromatic oils. An artisan skilled in the processing of elastomers in general will recognize which type of oil will be most beneficial. The process oils, when used, are desirably present in an amount within a range of from about 5 to about 50 wt %, based on total composition weight.


The compositions of this invention are preferably gel free but could be further modified by peroxides to introduce gels in various amounts depending on the end use application if so desired. In order to detect the presence of, and where desirable, quantify insoluble gels in a polymer composition of this invention, simply soak the composition in a suitable solvent such as refluxing xylene for 12 hours as described in ASTM D 2765-90, method B. Any insoluble portion of the composition is then isolated, dried and weighed, making suitable corrections based upon knowledge of the composition. For example, the weight of non-polymeric components that are soluble in the solvent is subtracted from the initial weight and the weight of non-polymeric components that are insoluble in the solvent is subtracted from both the initial and final weight. The insoluble polymer recovered is reported as percent gel (% gel) content. For purposes of this invention, “substantially gel-free” means preferably less than about 0.5% and most preferably below detectable limits when using xylene as the solvent.


The compositions of this invention can be fabricated into parts, sheets or other article of manufacture using any conventional extrusion, calendaring, blow molding or thermoforming process. The compositions also may be blended with another polymer prior to fabrication of an article. Such blending may occur by any of a variety of conventional techniques, one of which is dry blending of pellets of the TPE composition with pellets of another polymer.


In order to be useful for calendaring, extrusion, blow molding, foaming, and thermoforming operations the EAO/polyolefin polymer compositions of this invention must use EAO interpolymers having a specific combination of properties. A specific PRR or degree of LCB alone is not sufficient to achieve the properties required for this invention. Likewise, an EAO interpolymer having a specific melt strength or low shear viscosity is not sufficient to achieve the properties required for this invention. It is the combination of PRR, melt strength, and low shear viscosity, that give superior physical properties to the compositions of this invention.


The rheological behavior of compositions comprising EAO and polyolefin polymers in which the EAO has the inventive combination of properties and comprises greater than at least 50 wt % of the EAO/polyolefin polymer blend shows surprising and useful features. These EAO interpolymers have a low shear viscosity that is larger than a linear polymer of the same molecular weight. They show a rapid drop in viscosity with shear rate (large degree of shear thinning), excellent melt strength that is related to both molecular weight and degree of LCB. The degree of LCB is defined by the PRR. These polymers preferably have no measurable gels. The advantageous impact of these properties is that the compositions of the invention have a very low viscosity for their molecular weights under melt processing conditions and so process much more easily than the prior art polymers while exhibiting increased extensional viscosity indicative of increased melt strength.


A partial, far from exhaustive, listing of articles that can be fabricated from the compositions of the invention includes automobile body parts such as instrument panels, instrument panel skins, instrument panel foam, bumper fascia, body side moldings, interior pillars, exterior trim, interior trim, weather stripping, air dams, air ducts, and wheel covers, and non-automotive applications such as polymer films, polymer sheets, foams, tubing, fibers, coatings, trash cans, storage or packaging containers, lawn furniture strips or webbing, lawn mower, garden hose, and other garden appliance parts, refrigerator gaskets, recreational vehicle parts, golf cart parts, utility cart parts, toys and water craft parts. The compositions can also be used in roofing applications such as roofing membranes. The compositions can further be used in fabricating components of footwear such as a shaft for a boot, particularly an industrial work boot. A skilled artisan can readily augment this list without undue experimentation.

Claims
  • 1. A thermoplastic composition comprising: at least one ethylene/alpha-olefin interpolymer having a PRR between about 8 and 70, a melt strength of at least 5, a density less than 0.91 g/cc, and a 0.1 radian per second at 190° C. viscosity of at least 200,000; and at least one one polyolefin polymer selected from the group of polyethylene homopolymers and α-olefin interpolymers having a PRR less than 4, ethylene/acrylic acid copolymers, ethylene/vinyl acetate copolymers, and styrenic/olefinic block interpolymers, the weight ratio of ethylene/alpha-olefin interpolymer to polyolefin polymer in the composition being from greater than 50:less than 50 to 90:10.
  • 2. The composition of claim 1, wherein the ethylene/α-olefin interpolymer has a PRR greater than 12.
  • 3. The composition of claim 1, wherein the ethylene/α-olefin interpolymer has a PRR greater than 15.
  • 4. The composition of claim 1, wherein the ethylene/α-olefin interpolymer has a PRR greater than 18.
  • 5. The composition of claim 1, wherein the polypropylene interpolymer has a melting point greater than 145° C.
  • 6. The composition of claim 1, wherein the ethylene/α-olefin interpolymer has polymerized therein at least one α-olefin comonomer, the α-olefin containing from 3 to 20 carbon atoms.
  • 7. The composition of claim 6, wherein the α-olefin contains from 3 to 10 carbon atoms.
  • 8. The composition of claim 1, wherein the ethylene/α-olefin interpolymer is an ethylene/α-olefin/polyene polymer, the polyene being selected from the group consisting of norbornadiene, dicyclopentadiene, 1,4-hexadiene, piperylene or 5-ethylidene-2-norbornene and mixtures thereof.
  • 9. The composition of claim 8, wherein the ethylene/α-olefin has a PRR greater than 20.
  • 10. The composition of claim 9, wherein theethylene/α-olefin has a PRR greater than 25.
  • 11. The composition of claim 1, wherein the ethylene/α-olefin polymer was polymerized by at least one metallocene catalyst.
  • 12. The composition of claim 1, further comprising up to 20% of at least one elastomer containing a branching agent.
  • 13. The composition of claim 1, further comprising up to 20% of at least one elastomeric polypropylene homopolymer or copolymer.
  • 14. The composition of claim 1, wherein at least one polyolefin polymer is a nucleated polymer.
  • 15. The composition of claim 1, further comprising a process oil in an amount within a range of from greater than 0 to about 50 weight percent, based on total composition weight.
  • 16. The composition of claim 1 or claim 15, further comprising a blowing agent in an amount within a range of from greater than 0 to about 10 weight percent, based on total composition weight.
  • 17. The composition of claim 1 or claim 15, further comprising a filler in an amount within a range of from about 0 to about 70 weight percent, based on total composition weight.
  • 18. The composition of claim 17, further comprising a blowing agent in an amount within a range of from greater than 0 to about 10 weight percent, based on total composition weight.
  • 19. The composition of claim 1, further comprising at least one additive selected from the group consisting of from 0 to about 50 weight percent process oils, from 0 to about 70 weight percent fillers, and from 0 to about 10 weight percent blowing agents, all amounts being based on total composition weight.
  • 20. The composition of claim 19 wherein the filler is selected from the group consisting of glass, silica, carbon black, metal carbonates, metal sulfates, talc, clay and graphite fibers.
  • 21. The composition of claim 1 or claim 19 further comprising at least one additive selected from the group consisting of release agents, anti-static agents and crosslinking agents.
  • 22. An article of manufacture wherein at least one component of the article comprises the composition of claim 1.
  • 23. The article of claim 22 in which the article is made by a blow molding process.
  • 24. A foamed article of claim 22.
  • 25. The article of claim 22 wherein the article is a blown film.
  • 26. The article of claim 22 in which the article is made by a calendering process.
  • 27. A thermoformed article of claim 22.
  • 28. The article of claim 27 in which the article is an automotive interior part.
  • 29. The article of claim 28 in which the article is an instrument panel skin.
  • 30. The article of claim 28 in which the article is a door panel skin.
  • 31. The article of claim 28 in which the article is seat trim.
  • 32. The article of claim 22 in which the article is made by an extrusion process.
  • 33. The article of claim 26 or claim 32 in which the article is a vacuum formed profile.
  • 34. The article of claim 33 in which the article is a refrigerator gasket.
  • 35. The article of claim 26 or claim 32 wherein the article is a coated fabric.
  • 36. The article of claim 35 wherein the article is a boat cover or truckbed cover.
  • 37. The article of claim 26 or claim 32 wherein the article is a laminate of a foamed sheet and a non-foamed sheet.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application 60/528,455, filed Dec. 9, 2003.

Provisional Applications (1)
Number Date Country
60528455 Dec 2003 US