Thermoplastic resin composition and low-gloss molded article made therefrom

Information

  • Patent Grant
  • 9856371
  • Patent Number
    9,856,371
  • Date Filed
    Tuesday, June 23, 2015
    9 years ago
  • Date Issued
    Tuesday, January 2, 2018
    6 years ago
Abstract
A thermoplastic resin composition includes (A) a graft rubber copolymer, (B) an aromatic vinyl-vinyl cyanide-based copolymer, and (C) a silicone-modified aromatic vinyl-vinyl cyanide-based copolymer. The silicone-modified aromatic vinyl-vinyl cyanide-based copolymer (C) has an average particle size of about 100 μm or less.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority under 35 USC Section 119 to and the benefit of Korean Patent Application Nos. 10-2014-0079844, filed on Jun. 27, 2014, and 10-2014-0140473, filed on Oct. 17, 2014, in the Korean Intellectual Property Office, the entire disclosure of each of which is incorporated herein by reference.


FIELD OF THE INVENTION

The present invention relates to a thermoplastic resin composition and a molded article made therefrom.


BACKGROUND

In general, acrylonitrile-butadiene-styrene (ABS) resins have been widely used for various purposes, such as automobile components, electric and electronic products, office machinery, home appliances, toys, stationery, and the like, due to beautiful appearance characteristics, and physical properties such as impact resistance of butadiene, processability, moldability and colorability of styrene, hardness and chemical resistance of acrylonitrile, etc. Most of such ABS resins are glossy, and exhibit high gloss or intermediate surface gloss.


In recent years, there has been an increasing demand for low-gloss and gloss-less resins to create a desired aesthetic appearance and prevent glare. Also, with the rise of environmental issues, gloss-less resins tend to be directly used without using a process of applying a gloss-less paint or covering a pad.


Conventional gloss-less resin compositions can be prepared by adding or modifying a certain rubbery component. However, such a method can have problems in that a low-gloss effect can be poor, and impact strength and heat resistance can be degraded.


Another method graft-polymerizes a monomer such as ethylenically unsaturated carboxylic acid into an ABS polymer to solve the above problems. The prepared ABS polymer can have various good physical properties, but also can have degraded heat resistance.


U.S. Pat. No. 5,475,053 discloses a method of reducing gloss of a resin using a spherical graft copolymer as a matting agent, and Korean Unexamined Patent Application Publication No. 2008-0036790 discloses a method of reducing gloss using various copolymers as additives.


Also, U.S. Pat. No. 5,237,004 discloses a method of reducing gloss using rubber particles having a core/shell structure having a large particle size of 0.05 to 20 μm or 2 to 15 μm.


However, when the additive is used as in the technique described above, the manufacturing cost may increase, and problems such as peeling, degradation of physical properties, and a partial increase in gloss may be caused. Also, when large-sized rubber particles are used, gloss may be reduced, but impact strength may be significantly degraded.


Therefore, there is a demand for techniques capable of improving processability, impact resistance, hardness and/or low-gloss properties of a thermoplastic resin composition, such as an aromatic vinyl based thermoplastic resin composition.


SUMMARY

Exemplary embodiments provide a thermoplastic resin composition that can have improved resin dispersibility, fluidity, and/or uniformity in appearance by enhancing the degree of cross-linking of a polymer to maximize a matt effect and simultaneously adjusting a particle size of the polymer.


Also, exemplary embodiments provide a molded article that can have excellent matt characteristics, impact resistance and/or appearance characteristics, which is prepared from the thermoplastic resin composition.


The thermoplastic resin composition according to one exemplary embodiment of the present invention includes (A) a rubber-modified graft copolymer, (B) an aromatic vinyl-vinyl cyanide-based copolymer, and (C) a silicone-modified aromatic vinyl-vinyl cyanide-based copolymer, wherein (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer has an average particle size of about 100 μm or less.


In exemplary embodiments, (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may be cross-linked.


In exemplary embodiments, (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may be a copolymer of a mixture of monomers including (C1) an aromatic vinyl-based monomer, (C2) an unsaturated nitrile-based monomer, and (C3) a cross-linkable monomer.


In exemplary embodiments, (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may be a copolymer formed of a mixture of monomers including (C3) the cross-linkable monomer in an amount of about 0.1 to about 20 parts by weight, based on about 100 parts by weight of a mixture of monomers including (C1) the aromatic vinyl-based monomer in an amount of about 60 to about 80% by weight and (C2) the unsaturated nitrile-based monomer in an amount of about 20 to about 40% by weight.


In exemplary embodiments, (C1) the aromatic vinyl-based monomer may include at least one selected from the group consisting of styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, p-t-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene, vinylnaphthalene, and mixtures thereof.


In exemplary embodiments, (C2) the unsaturated nitrile-based monomer may include at least one selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, α-chloroacrylonitrile, fumaronitrile, and mixtures thereof.


In exemplary embodiments, (C3) the cross-linkable monomer may be represented by the following Formula 1.




embedded image


In Formula 1, l, m and n are the same or different and are each independently an integer ranging from 0 to 100 (provided that l, m and n are not zero at the same time), and R1 R2, R3, R4, R5, R6, R7, and R8 are the same or different and are each independently hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 heteroaryl group, a hydroxyl group, an alkoxy group, an amino group, an epoxy group, a carboxyl group, a halogen group, an ester group, an isocyanate group, or a mercapto group, provided that at least two of R1, R2, R3, R4, R5, R6, R7, and R8 include a polymerizable unsaturated reactive group.


In exemplary embodiments, (C3) the cross-linkable monomer may be represented by the following Formula 2.




embedded image


In Formula 2, R9, R10, R11, R12, R13 and R14 are the same or different and are each independently hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 heteroaryl group, a hydroxyl group, an alkoxy group, an amino group, an epoxy group, a carboxyl group, a halogen group, an ester group, an isocyanate group, or a mercapto group, and p is an integer ranging from 1 to 6, provided that at least two of R9, R10, R11, R12, R13, and R14 include a polymerizable unsaturated reactive group.


In exemplary embodiments, (C3) the cross-linkable monomer may include at least one selected from the group consisting of 1,3,5-trimethyl-1,3,5-trivinyl-cyclotrisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl-cyclotetrasiloxane, 1,3,5,7,9-pentamethyl-1,3,5,7,9-pentavinyl-cyclopentasiloxane, 1,3,5-triethyl-1,3,5-trivinyl-cyclotrisiloxane, 1,3,5,7-tetraethyl-1,3,5,7-tetravinyl-cyclotetrasiloxane, 1,3,5,7,9-pentaethyl-1,3,5,7,9-pentavinyl-cyclopentasiloxane, and mixtures thereof.


In exemplary embodiments, (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may have an average particle size of about 1 to about 80 μm.


In exemplary embodiments, the thermoplastic resin composition may include (A) the rubber-modified graft copolymer in an amount of about 10 to about 40% by weight, (B) the aromatic vinyl-vinyl cyanide-based copolymer in an amount of about 20 to about 90% by weight, and (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer in an amount of about 1 to about 30% by weight.


The molded article according to one exemplary embodiment of the present invention may include the thermoplastic resin composition.


In exemplary embodiments, the molded article may have a melt-flow index of about 3 to about 30 g/10 min, as measured under conditions of a temperature of 220° C. and a load of 10 kg by an evaluation method according to ASTM D1238, and may have a gloss of about 70% or less, as measured at an angle of 60° by an evaluation method according to ASTM D523.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an image obtained by magnifying, 20 times, a surface of a specimen prepared in Example 1 using a shape measuring laser microscope VK-X200 commercially available from Keyence Corp.



FIG. 2 is an image obtained by magnifying a surface of a specimen prepared in Example 3 in the same manner as in FIG. 1.



FIG. 3 is an image obtained by magnifying a surface of a specimen prepared in Comparative Example 3 in the same manner as in FIG. 1.





DETAILED DESCRIPTION

Exemplary embodiments now will be described more fully hereinafter in the following detailed description, in which some, but not all embodiments of the invention are described. Indeed, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements.


Hereinafter, a thermoplastic resin composition according to exemplary embodiments of the present invention, and a molded article having a low-gloss property, which includes the thermoplastic resin composition, will be described in detail with reference to the following detailed description and accompanying drawings. Exemplary embodiments disclosed herein are provided as examples for the purpose of sufficiently providing the scope of the present invention to those skilled in the related art. Also, unless specifically stated otherwise, all the technical and scientific terms used in this specification have the same meanings as what are generally understood by a person skilled in the related art to which the present invention belongs. In the following description, detailed descriptions of well-known functions or constructions will be omitted since they would obscure the invention in unnecessary detail.


In this specification, the term “(meth)acrylate” is intended to include both “acrylate” and “methacrylate,” the term “(meth)acrylic acid alkyl ester” is intended to include both an “acrylic acid alkyl ester” and a “methacrylic acid alkyl ester,” and the term “(meth)acrylic acid ester” is intended to include both “acrylic acid ester” and “methacrylic acid ester.”


The present inventors have conducted research to address problems associated with conventional aromatic vinyl based resin compositions, such as the use of a large amount of a component having matting characteristics due to a low degree of cross-linking, and thus degradation of processability and surface uniformity due to a decrease in fluidity of the composition. The inventors have found that the composition according to exemplary embodiments can have improved matting efficiency and fluidity due to a high degree of dispersion while maintaining a degree of cross-linking when a silicone-modified aromatic vinyl-vinyl cyanide-based copolymer having matting characteristics has an average particle size within a certain particle size range. The present invention has been completed based on these facts.


In exemplary embodiments, the thermoplastic resin composition includes (A) a rubber-modified graft copolymer, (B) an aromatic vinyl-vinyl cyanide-based copolymer, and (C) a silicone-modified aromatic vinyl-vinyl cyanide-based copolymer.


Hereinafter, the respective components of the thermoplastic resin composition according to exemplary embodiments of the present invention will be described in further detail.


(A) Rubber-Modified Graft Copolymer


In exemplary embodiments, the rubber-modified graft copolymer may be prepared by grafting an aromatic vinyl-based monomer and a vinyl cyanide monomer into conjugated diene rubber latex.


The conjugated diene-based rubber latex that may be used herein may include typical butadiene rubber latex or styrene-butadiene copolymerized rubber latex, but the present invention is not limited thereto. The conjugated diene-based rubber latex can have an average particle diameter of about 0.1 to about 5.0 μm. The graft copolymer may include the conjugated diene-based rubber latex in an amount of about 5 to about 70% by weight, based on the total weight (100% by weight) of the graft copolymer.


Examples of the aromatic vinyl-based monomer may include without limitation styrene, C1 to C10 alkyl-substituted styrene, halogen-substituted styrene, vinyltoluene, vinylnaphthalene, and the like, and combinations thereof. Examples of the alkyl-substituted styrene may include without limitation α-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, and the like, and combinations thereof.


Examples of the vinyl cyanide monomer that may be used herein may include without limitation acrylonitrile, methacrylonitrile, ethacrylonitrile, and the like, and combinations thereof. In exemplary embodiments, the vinyl cyanide monomer may include acrylonitrile.


A conventional method such as emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization methods may be used to prepare the graft copolymer. Emulsion polymerization or bulk polymerization may be performed in the presence of the components using a polymerization initiator.


(B) Aromatic Vinyl-Vinyl Cyanide-Based Copolymer


In exemplary embodiments, the aromatic vinyl-vinyl cyanide-based copolymer may be a copolymer of an aromatic vinyl-based monomer and a vinyl cyanide monomer.


Examples of the aromatic vinyl-based monomer may include without limitation styrene, C1 to C10 alkyl-substituted styrene, halogen-substituted styrene, vinyltoluene, vinylnaphthalene, and the like, and combinations thereof. Examples of the alkyl-substituted styrene may include without limitation α-methyl styrene, p-methyl styrene, o-ethyl styrene, m-ethyl styrene, p-ethyl styrene, p-t-butylstyrene, 2,4-dimethylstyrene, and the like, and combinations thereof.


Examples of the vinyl cyanide monomer may include without limitation acrylonitrile, methacrylonitrile, ethacrylonitrile, and the like, and combinations thereof


Examples of the aromatic vinyl-vinyl cyanide-based copolymer may include without limitation a copolymer of styrene and acrylonitrile; a copolymer of α-methylstyrene and acrylonitrile; and/or a copolymer of styrene, α-methylstyrene and acrylonitrile, for example, a copolymer of styrene and acrylonitrile.


(C) Silicone-Modified Aromatic Vinyl-Vinyl Cyanide-Based Copolymer


In exemplary embodiments, the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may be prepared by polymerizing a mixture of monomers including (C1) an aromatic vinyl-based monomer, (C2) an unsaturated nitrile-based monomer, and (C3) a cross-linkable monomer.


Examples of the aromatic vinyl-based monomer (C1) may include without limitation styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, p-t-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene, vinylnaphthalene, and the like, and mixtures thereof.


Examples of the unsaturated nitrile-based monomer (C2) may include without limitation acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, α-chloroacrylonitrile, fumaronitrile, and the like, and mixtures thereof.


Examples of the cross-linkable monomer (C3) may include without limitation one or two or more compounds represented by the following Formula 1.




embedded image


In Formula 1, l, m and n are the same or different and are each independently an integer ranging from 0 to 100 (provided that l, m and n are not zero at the same time), and R1 R2, R3, R4, R5, R6, R7, and R8 are the same or different and are each independently hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 heteroaryl group, a hydroxyl group, an alkoxy group, an amino group, an epoxy group, a carboxyl group, a halogen group, an ester group, an isocyanate group, or a mercapto group, provided that at least two of R1, R2, R3, R4, R5, R6, R7, and R8 include a polymerizable unsaturated reactive group.


The cross-linkable monomer (C3) may include one or two or more compounds represented by the following Formula 2, wherein the compounds have a ring-shape structure.




embedded image


In Formula 2, R9, R10, R11, R12, R13 and R14 are the same or different and are each independently hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C2 to C30 alkenyl group, a substituted or unsubstituted C2 to C30 alkynyl group, a substituted or unsubstituted C3 to C30 cycloalkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C1 to C30 heteroaryl group, a hydroxyl group, an alkoxy group, an amino group, an epoxy group, a carboxyl group, a halogen group, an ester group, an isocyanate group, or a mercapto group, and p is an integer ranging from 1 to 6, provided that at least two of R9, R10, R11, R12, R13, and R14 include a polymerizable unsaturated reactive group.


As used herein, the term “substituted” means that one or more hydrogen atoms are substituted with one or more substituents, such as but not limited to one or more of a halogen group, a C1 to C30 alkyl group, a C1 to C30 haloalkyl group, a C6 to C30 aryl group, a C2 to C30 heteroaryl group, a C1 to C20 alkoxy group, or a combination thereof. As used herein, the term “hetero” refers to a nitrogen, sulfur, oxygen, and/or phosphorus atom in place of a carbon atom.


Examples of (C3) the cross-linkable monomer may be include without limitation 1,3,5-trimethyl-1,3,5-trivinyl-cyclotrisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl-cyclotetrasiloxane, 1,3,5,7,9-pentamethyl-1,3,5,7,9-pentavinyl-cyclopentasiloxane, 1,3,5-triethyl-1,3,5-trivinyl-cyclotrisiloxane, 1,3,5,7-tetraethyl-1,3,5,7-tetravinyl-cyclotetrasiloxane, 1,3,5,7,9-pentaethyl-1,3,5,7,9-pentavinyl-cyclopentasiloxane, and the like, and mixtures thereof.


The silicone-modified aromatic vinyl-vinyl cyanide-based copolymer (C) may be in the form of a spherical bead, and may have effects such as excellent compatibility with the composition, and remarkable matting characteristics and fluidity while maintaining a high molecular weight.


The silicone-modified aromatic vinyl-vinyl cyanide-based copolymer (C) may be polymerized using a conventional method such as bulk polymerization, solution polymerization, emulsion polymerization, or suspension polymerization so as to maintain the shape, but may be polymerized using a method of preparing fine particles so as to adjust an average particle size of the polymer within a certain particle size range.


For example, the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer (C) can be prepared using suspension polymerization. In an exemplary suspension polymerization method, monomers (C1), (C2), and (C3) may be mixed, and a polymerization initiator and a suspension stabilizer may be added to perform polymerization. In this case, the polymerization may be performed at a polymerization temperature of about 30 to about 120° C., for example about 50 to about 90° C.


Examples of the polymerization initiator that may be used may include without limitation a peroxide-based compound such as benzoyl peroxide, lauryl peroxide, o-chlorobenzoyl peroxide, o-methoxybenzoyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butyl peroxyisobutyrate, 1,1,3-3-tetramethylbutylperoxy-2-ethylhexanoate, dioctanoyl peroxide, and/or didecanoyl peroxide, and/or an azo compound such as 2,2′-azobis(isobutyronitrile), 2,2′-azobis(2-methylbutyronitrile), and/or 2,2′-azobis(2,4-dimethylvaleronitrile). The polymerization initiator may be used in an amount of about 0.1 to about 20 parts by weight, based on about 100 parts by weight of the mixture.


Examples of the suspension stabilizer may include without limitation gelatin, starch, methylcellulose, ethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinyl pyrrolidone, polyvinyl alkyl ether, polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyethylene oxide, polymethacrylic acid sodium, a water-soluble polymer such as a polydimethylsiloxane/polystyrene block copolymer, barium sulfate, calcium lactate, calcium carbonate, calcium phosphate, aluminum lactate, talc, clay, diatomite, and/or a metal oxide powder. An amount of the added suspension stabilizer may also be freely adjusted according to the average particle size of the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer, but the present invention is not particularly limited thereto.


The suspension stabilizer may be dissolved in a dispersing medium to prepare a suspension. The dispersing medium is not limited as long as it is a material that may be used to dissolve the suspension stabilizer. For example, ionic water and the like may be used.


Also, the average particle size of the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may be adjusted to about 100 μm or less using a high-speed homogenizer, when necessary. The mixture of monomers can be added to the suspension and then homogenized using a high-speed homogenizer. In this case, a degree of homogenization may be freely adjusted according to the average particle size of the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer. The emulsion thus homogenized may be subjected to a polymerization reaction at the polymerization temperature under an inert gas atmosphere.


The silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may have an average particle size of about 100 μm or less, for example about an average particle size of 1 to about 80 μm. In exemplary embodiments, the average particle size of the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may be in a range of 20 to about 80 μm. When the average particle size of the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer is greater than about 100 μm, a quenching effect and/or fluidity may be severely degraded. In this case, the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may be increasingly added to improve a quenching effect.


In some embodiments, the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer (C) may have an average particle size of greater than 0, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 μm. Also, the average particle size of the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may be greater than or equal to one of the approximate values and less than or equal to one of the approximate values.


In exemplary embodiments, (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer may be prepared from a mixture including (C3) the cross-linkable monomer in an amount of about 0.1 to about 20 parts by weight, based on about 100 parts by weight of a mixture of monomers including (C1) the aromatic vinyl-based compound in an amount of about 60 to about 80% by weight and (C2) the unsaturated nitrile-based compound in an amount of about 20 to about 40% by weight.


In some embodiments, the aromatic vinyl-based monomer (C1) may be included in an amount of about 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80% by weight, based on the total weight (100% by weight) of the mixture of monomers including (C1) the aromatic vinyl-based monomer and (C2) the unsaturated nitrile-based compound of (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer. Further, according to some embodiments, the amount of the aromatic vinyl-based monomer (C1) can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.


In some embodiments, the unsaturated nitrile-based monomer (C2) may be included in an amount of about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40% by weight, based on the total weight (100% by weight) of the mixture of monomers including (C1) the aromatic vinyl-based monomer and (C2) the unsaturated nitrile-based compound of (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer. Further, according to some embodiments, the amount of the unsaturated nitrile-based monomer (C2) can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.


In exemplary embodiments, the cross-linkable monomer (C3) may be included in an amount of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14.0, 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9, 15.0, 15.1, 15.2, 15.3, 15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 16.0, 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 17.0, 17.1, 17.2, 17.3, 17.4, 17.5, 17.6, 17.7, 17.8, 17.9, 18.0, 18.1, 18.2, 18.3, 18.4, 18.5, 18.6, 18.7, 18.8, 18.9, 19.0, 19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7, 19.8, 19.9, or 20.0 parts by weight, based on about 100 parts by weight of the mixture of monomers including (C1) the aromatic vinyl-based monomer and (C2) the unsaturated nitrile-based compound of (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer. Further, according to some embodiments, the amount of the cross-linkable monomer (C3) can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.


In exemplary embodiments, the thermoplastic resin composition may include (A) the rubber-modified graft copolymer in an amount of about 10 to about 40% by weight, (B) the aromatic vinyl-vinyl cyanide-based copolymer in an amount of about 20 to about 90% by weight, and (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer in an amount of about 1 to about 30% by weight, based on the total weight (100% by weight) of (A), (B) and (C), but the present invention is not particularly limited thereto.


In some embodiments, the thermoplastic resin composition may include (A) the rubber-modified graft copolymer in an amount of about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40% by weight. Further, according to some embodiments, the amount of the rubber-modified graft copolymer can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.


In some embodiments, the thermoplastic resin composition may include (B) the aromatic vinyl-vinyl cyanide-based copolymer in an amount of about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, or 90% by weight. Further, according to some embodiments, the amount of the aromatic vinyl-vinyl cyanide-based copolymer can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.


In some embodiments, the thermoplastic resin composition may include (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer in an amount of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30% by weight. Further, according to some embodiments, the amount of the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.


In exemplary embodiments, the thermoplastic resin composition may include one or more optional additive(s). Examples of the additives can include without limitation dyes, pigments, flame retardants, filler, stabilizers, slip agents, antibacterial agents, release agents, antistatic agents, antioxidants, and the like, to further give, for example, molding processability and physical property balance. The additives may be used alone or in combination.


The present invention provides a molded article prepared from the thermoplastic resin composition. Such a molded article may have excellent mechanical properties such as molding processability and impact resistance, and may exhibit excellent matting characteristics, and thus may be applied to various material fields such as electric and electronic products, housings, etc.


The molded article according to exemplary embodiments can have a melt-flow index of about 3 to about 30 g/10 min, as measured under conditions of a temperature of 220° C. and a load of 10 kg by an evaluation method according to ASTM D1238, and can have a gloss of about 70% or less, as measured at an angle of 60° by an evaluation method according to ASTM D523.


In exemplary embodiments, the molded article may have a melt-flow index of about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 g/10 min, as measured under conditions of a temperature of 220° C. and a load of 10 kg by the evaluation method according to ASTM D1238. Also, the melt-flow index of the molded article may be greater than or equal to one of the approximate values and less than or equal to one of the approximate values, as measured under conditions of a temperature of 220° C. and a load of 10 kg by the evaluation method according to ASTM D1238.


In exemplary embodiments, the molded article may have a gloss of greater than 0, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70%, as measured at an angle of 60° by the evaluation method according to ASTM D523. Also, the gloss of the molded article may be greater than or equal to one of the approximate values and less than or equal to one of the approximate values, as measured at an angle of 60° by the evaluation method according to ASTM D523.


In exemplary embodiments, the molded article can have a gloss of about 70% or less, as measured at an angle of 60° by an evaluation method according to ASTM D523, and can have an Izod impact strength of about 5 to about 30 kgf cm/cm, as measured for a ⅛ inch-thick specimen under notched conditions by an evaluation method according to ASTM D256.


In exemplary embodiments, the molded article may have a gloss of greater than 0, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70%, as measured at an angle of 60° by the evaluation method according to ASTM D523. Also, the gloss of the molded article may be greater than or equal to one of the approximate values and less than or equal to one of the approximate values, as measured at an angle of 60° by the evaluation method according to ASTM D523.


In exemplary embodiments, the molded article may have an Izod impact strength of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 kgf•cm/cm, as measured for the ⅛ inch-thick specimen under the notched conditions by the evaluation method according to ASTM D256. Also, the Izod impact strength of the molded article may be greater than or equal to one of the approximate values and less than or equal to one of the approximate values, as measured for the ⅛ inch-thick specimen under the notched conditions by the evaluation method according to ASTM D256.


Hereinafter, exemplary embodiments of the present invention will be described in further detail with reference to the following examples. However, it should be understood that these examples are provided for illustration only and are not to be construed in any way as limiting the present invention. Specifications of the respective components used in Examples and Comparative Examples, and methods of measuring physical properties of the components are as follows.


(A) Rubber-Modified Graft Copolymer


A copolymer obtained by graft-polymerizing acrylonitrile and styrene into butadiene rubber latex is used. The copolymer includes the rubber latex in an amount of 58% by weight and acrylonitrile and styrene in an amount of 42% by weight, wherein acrylonitrile and styrene are included at a ratio of 76% by weight:24% by weight, and the average particle size of the rubber is 2,580 Å.


(B) Aromatic Vinyl-Vinyl Cyanide-Based Copolymer


A copolymer obtained by copolymerizing a styrene monomer and acrylonitrile is used. The copolymer (SAN resin) includes styrene in an amount of 76% by weight and acrylonitrile in an amount of 24% by weight.


(C) Silicone-Modified Aromatic Vinyl-Vinyl Cyanide-Based Copolymer


A siloxane-based cross-linking agent (SKC SILICONE) having a solid content of 98% is added in an amount as listed in the following Table 1 to 100 parts by weight of a mixture including styrene in an amount of 76% by weight and acrylonitrile in an amount of 24% by weight, and 0.2 parts by weight of azobisisobutyronitrile (AIBN) as a polymerization initiator is added to prepare a mixed solution. Thereafter, 0.2% by weight of polyvinyl alcohol as a suspension stabilizer is dissolved in ionic water, and the mixed solution is added thereto. The resulting mixture is homogenized using a high-speed homogenizer to prepare a suspension. Then, the suspension is reacted at 75° C. for 4 hours under a nitrogen atmosphere. As a result, a polymerization reaction is completed. The stirring rate and stirring time of the high-speed homogenizer are listed in the following Table 1.













TABLE 1






Silicone-based
Stirring
Stirring
Average



compound
rate
time
particle



( parts by weight)
(rpm)
(min)
size (μm)


















C-1
1
No use of a homogenizer
200











C-2
2


200


C-3
5


200


C-4
5
2000
3
80


C-5
5
3500
5
20


C-6
10
3500
5
20


C-7
20
3500
5
20









Evaluation of Physical Properties


(1) Izod impact strength (units: kg•cm/cm)


The Izod impact strength of a ⅛ inch-thick specimen is measured under notched conditions by an evaluation method according to ASTM D256.


(2) Melt-flow index (MI) (units: g/10 min)


The melt-flow index (MI) is measured under conditions of a temperature of 220° C. and a load of 10 kg according to ASTM D1238.


(3) Vicat softening temperature (VST) (units: ° C.)


The Vicat softening temperature of a ¼ inch-thick specimen is measured under conditions of a load of 5 kgf and a rate of 50° C./hr by an evaluation method according to ISO 306B50.


(4) Surface gloss (units: %)


The surface gloss is measured at an angle of 60° by an evaluation method according to ASTM D523 using a BYK-Gardner gloss meter commercially available from BYK.


EXAMPLES 1 to 6 and COMPARATIVE EXAMPLES 1 to 3

Thermoplastic resin compositions are prepared using the compositional ratios of the components listed in the following Table 2, and then extruded to prepare thermoplastic resins in the form of a pellet. In this case, the extrusion is performed using a twin-screw extruder having an L/D ratio of 29 and a diameter of 45 mm, and the barrel temperature is set to 230° C. The prepared pellets are dried at 80° C. for 2 hours, and then molded in a 6 oz injection molding machine in which a cylinder temperature and a mold temperature are set to 240° C. and 60° C., respectively, to prepare physical property specimens and specimens (with a size of 9 cm×5 cm×0.2 cm) for evaluating physical properties. Physical properties of the prepared specimens are listed in Table 3.












TABLE 2








(C) Silicone-




(B) Aromatic
modified



(A) Rubber-
vinyl-vinyl
aromatic



modified graft
cyanide-based
vinyl-vinyl



copolymer
copolymer
cyanide-based



(% by
(% by
copolymer (%



weight)
weight)
by weight)







Example 1
20
60
C-4 (20)


Example 2
20
70
C-4 (10)


Example 3
20
75
C-4 (5)


Example 4
20
75
C-5 (5)


Example 5
20
75
C-6 (5)


Example 6
20
75
C-7 (5)


Comparative
20
60
C-1 (20)


Example 1





Comparative
20
60
C-2 (20)


Example 2





Comparative
20
60
C-3 (20)


Example 3























TABLE 3






Izod
Melt-flow
Vicat




impact
index
softening




strength
(MI;
temperature
Gloss



(kg·cm/cm)
g/10 min)
(VST; ° C.)
(%)



















Example 1
16.2
7.5
101.2
50


Example 2
16.0
13.2
101.3
57


Example 3
16.3
13.7
101.5
65


Example 4
15.9
12.9
101.4
60


Example 5
13.6
14.0
101.7
48


Example 6
11.1
14.4
101.5
30


Comparative
19.4
7.9
101.5
80


Example 1






Comparative
17.3
7.0
101.1
42


Example 2






Comparative
17.4
8.6
101.6
72


Example 3













As listed in Table 3, it can be seen that the specimens prepared in Examples 1 to 6 exemplifying the present invention have remarkably lower gloss values than the specimens prepared in Comparative Examples 1 to 3. Also, it can be seen that the melt-flow indexes (MI), as an item for fluidity, of the specimens of Examples 1 to 6 are up to two times higher than the specimens of Comparative Examples 1 to 3. It can be seen that the specimen of Comparative Example 2 has a gloss similar to that of the specimens of Examples 1 to 6, but has remarkably lower fluidity than the specimens of Examples 1 to 6. In particular, it can be seen that, as the average particle size of (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer decreases, the specimens exhibit excellent matting characteristics and fluidity even when a small amount of (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer is added.


Although some embodiments have been described herein, it should be understood that these embodiments are provided for illustration only and are not to be construed in any way as limiting the present invention, and that various modifications, changes, alterations, and equivalent embodiments can be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of the present invention is defined by the appended claims and equivalents thereof.

Claims
  • 1. A thermoplastic resin composition comprising: (A) a rubber-modified graft copolymer, (B) an aromatic vinyl-vinyl cyanide-based copolymer, and (C) a silicone-modified aromatic vinyl-vinyl cyanide-based copolymer, wherein (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer has an average particle size of about 20 μm to about 100 μm,wherein a molded article comprising the thermoplastic resin composition has a melt-flow index of about 3 to about 30 g/10 min, as measured under conditions of a temperature of 220° C. and a load of 10 kg by an evaluation method according to ASTM D1238 and a gloss of about 70% or less, as measured at an angle of 60° by an evaluation method according to ASTM D523.
  • 2. The thermoplastic resin composition of claim 1, wherein (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer is cross-linked.
  • 3. The thermoplastic resin composition of claim 1, wherein (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer is a copolymer of a mixture of monomers comprising (C1) an aromatic vinyl-based monomer, (C2) an unsaturated nitrile-based monomer, and (C3) a cross-linkable monomer.
  • 4. The thermoplastic resin composition of claim 3, wherein (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer is the copolymer of the mixture of monomers comprising: about 100 parts by weight of a mixture of monomers comprising (C1) the aromatic vinyl-based monomer in an amount of about 60 to about 80% by weight and (C2) the unsaturated nitrile-based monomer in an amount of about 20 to about 40% by weight; andabout 0.1 to about 20 parts by weight of (C3) the cross-linkable monomer, based on about 100 parts by weight of the mixture of monomers comprising (C1) the aromatic vinyl-based monomer and (C2) the unsaturated nitrile-based monomer.
  • 5. The thermoplastic resin composition of claim 3, wherein (C1) the aromatic vinyl-based monomer comprises styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, p-t-butyl styrene, ethyl styrene, vinylxylene, monochlorostyrene, di chl oro styrene, dibromostyrene, vinylnaphthalene, or a mixture thereof.
  • 6. The thermoplastic resin composition of claim 3, wherein (C2) the unsaturated nitrile-based monomer comprises acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, a-chloroacrylonitrile, fumaronitrile, or a mixture thereof.
  • 7. The thermoplastic resin composition of claim 3, wherein (C3) the cross-linkable monomer comprises a compound or a mixture of compounds represented by the following Formula 1:
  • 8. The thermoplastic resin composition of claim 3, wherein (C3) the cross-linkable monomer comprises a compound or a mixture of compounds represented by the following Formula 2:
  • 9. The thermoplastic resin composition of claim 3, wherein (C3) the cross-linkable monomer comprises 1,3,5-trimethyl-1,3,5-trivinyl-cyclotrisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl-cyclotetrasiloxane, 1,3,5,7,9-pentamethyl-1,3,5,7,9-pentavinyl-cyclopentasiloxane, 1,3,5-triethyl-1,3,5-trivinyl-cyclotrisiloxane, 1,3,5,7-tetraethyl-1,3,5,7-tetravinyl-cyclotetrasiloxane, 1,3,5,7,9-pentaethyl-1,3,5,7,9-pentavinyl-cyclopentasiloxane, or a mixture thereof.
  • 10. The thermoplastic resin composition of claim 1, wherein (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer has an average particle size of about 20 μm to about 80 μm.
  • 11. The thermoplastic resin composition of claim 1, wherein the thermoplastic resin composition comprises (A) the rubber-modified graft copolymer in an amount of about 10 to about 40% by weight, (B) the aromatic vinyl-vinyl cyanide-based copolymer in an amount of about 20 to about 90% by weight, and (C) the silicone-modified aromatic vinyl-vinyl cyanide-based copolymer in an amount of about 1 to about 30% by weight.
  • 12. A molded article comprising the thermoplastic resin composition of claim 1.
Priority Claims (2)
Number Date Country Kind
10-2014-0079844 Jun 2014 KR national
10-2014-0140473 Oct 2014 KR national
US Referenced Citations (169)
Number Name Date Kind
3322853 Trementozzi et al. May 1967 A
3742092 Duke et al. Jun 1973 A
3839513 Patel Oct 1974 A
3898300 Hillard Aug 1975 A
4027073 Clark May 1977 A
4045514 Iwahashi et al. Aug 1977 A
4062909 Morgan et al. Dec 1977 A
4102853 Kawamura et al. Jul 1978 A
4117041 Guschl Sep 1978 A
4287315 Meyer et al. Sep 1981 A
4303772 Novicky Dec 1981 A
4391935 Bialous et al. Jul 1983 A
4400333 Neefe Aug 1983 A
4460742 Kishida et al. Jul 1984 A
4466912 Phillips et al. Aug 1984 A
4632946 Muench et al. Dec 1986 A
4634734 Hambrecht et al. Jan 1987 A
4652614 Eichenauer et al. Mar 1987 A
4659790 Shimozato et al. Apr 1987 A
4668737 Eichenauer et al. May 1987 A
4692488 Kress et al. Sep 1987 A
4745029 Kambour May 1988 A
4757109 Kishida et al. Jul 1988 A
4883835 Buysch et al. Nov 1989 A
4906696 Fischer et al. Mar 1990 A
4914144 Muehlbach et al. Apr 1990 A
4918159 Nakamura et al. Apr 1990 A
4983658 Kress et al. Jan 1991 A
4988748 Fuhr et al. Jan 1991 A
4997883 Fischer et al. Mar 1991 A
5025066 Derudder et al. Jun 1991 A
5061558 Fischer et al. Oct 1991 A
5061745 Wittmann et al. Oct 1991 A
5091470 Wolsink et al. Feb 1992 A
5200492 Ohnaga et al. Apr 1993 A
5204394 Gosens et al. Apr 1993 A
5206404 Gunkel et al. Apr 1993 A
5218030 Katayose et al. Jun 1993 A
5219907 Niessner et al. Jun 1993 A
5229443 Wroczynski Jul 1993 A
5237004 Wu et al. Aug 1993 A
5239001 Fischer et al. Aug 1993 A
5274031 Eichenauer Dec 1993 A
5280070 Drzewinski et al. Jan 1994 A
5284916 Drzewinski Feb 1994 A
5292809 Drzewinski et al. Mar 1994 A
5306778 Ishida et al. Apr 1994 A
5354796 Creecy et al. Oct 1994 A
5412036 Traugott et al. May 1995 A
5446103 Traugott et al. Aug 1995 A
5449557 Liebler et al. Sep 1995 A
5451650 Siol et al. Sep 1995 A
5473019 Siol et al. Dec 1995 A
5475053 Niessner et al. Dec 1995 A
5574099 Nora et al. Nov 1996 A
5605962 Suzuki et al. Feb 1997 A
5627228 Kobayashi May 1997 A
5635565 Miyajima et al. Jun 1997 A
5643981 Yang et al. Jul 1997 A
5672645 Eckel et al. Sep 1997 A
5731390 van Helmond et al. Mar 1998 A
5750602 Kohler et al. May 1998 A
5833886 Dashevsky et al. Nov 1998 A
5905122 Ohtsuka et al. May 1999 A
5955184 Honda et al. Sep 1999 A
6022917 Kobayashi Feb 2000 A
6063889 Friebe et al. May 2000 A
6083428 Ueda et al. Jul 2000 A
6111024 McKee et al. Aug 2000 A
6127465 Nodera Oct 2000 A
6174945 Kim et al. Jan 2001 B1
6252002 Yamada et al. Jun 2001 B1
6337371 Kurata et al. Jan 2002 B2
6369141 Ishii et al. Apr 2002 B1
6380304 Vanspeybroeck et al. Apr 2002 B1
6423767 Weber et al. Jul 2002 B1
6437029 Lim et al. Aug 2002 B1
6528559 Nakacho et al. Mar 2003 B1
6528561 Zobel et al. Mar 2003 B1
6566428 Ecket et al. May 2003 B1
6576161 Lim et al. Jun 2003 B2
6595825 De Wilde Jul 2003 B1
6596794 Ecket et al. Jul 2003 B1
6596893 Nakacho et al. Jul 2003 B2
6613822 Eckel et al. Sep 2003 B1
6613824 Campbell et al. Sep 2003 B2
6630524 Lim et al. Oct 2003 B1
6646068 Chisholm et al. Nov 2003 B2
6686404 Eckel et al. Feb 2004 B1
6716900 Jang et al. Apr 2004 B2
6762228 Seidel et al. Jul 2004 B2
6849689 Yamada et al. Feb 2005 B2
6890979 Eichenauer et al. May 2005 B2
6914089 Eckel et al. Jul 2005 B2
6956072 Kanaka et al. Oct 2005 B1
7001944 Vathauer et al. Feb 2006 B2
7067188 Yang et al. Jun 2006 B1
7094818 Lim et al. Aug 2006 B2
7294659 Yatake Nov 2007 B2
7511088 Lim et al. Mar 2009 B2
7550523 Lim et al. Jun 2009 B2
7659332 Kang et al. Feb 2010 B2
7732515 Jang et al. Jun 2010 B2
7767738 Gaggar et al. Aug 2010 B2
7956127 Lee et al. Jun 2011 B2
8119726 Lim et al. Feb 2012 B2
8304494 Park et al. Nov 2012 B2
8557912 Chung et al. Oct 2013 B2
8735490 Chung et al. May 2014 B2
9090767 Park et al. Jul 2015 B2
9365671 Kim et al. Jun 2016 B2
20010009946 Catsman et al. Jul 2001 A1
20020042483 Vanderbilt Apr 2002 A1
20020115759 Eckel et al. Aug 2002 A1
20020115794 Singh et al. Aug 2002 A1
20020151624 Kobayashi Oct 2002 A1
20030139504 Miebach et al. Jul 2003 A1
20040013882 Gorny et al. Jan 2004 A1
20040097648 Nakai May 2004 A1
20040122139 Yang et al. Jun 2004 A1
20040192814 Yang et al. Sep 2004 A1
20040198877 Yang et al. Oct 2004 A1
20040249027 Lim et al. Dec 2004 A1
20040249070 Lim et al. Dec 2004 A1
20050159533 Nabeshima et al. Jul 2005 A1
20050245648 Lim et al. Nov 2005 A1
20050253277 Yamanaka et al. Nov 2005 A1
20060004154 DeRudder et al. Jan 2006 A1
20060014863 Lim et al. Jan 2006 A1
20060030647 Ebeling et al. Feb 2006 A1
20060074148 Ahn et al. Apr 2006 A1
20060100307 Uerz et al. May 2006 A1
20070055017 Schultes et al. Mar 2007 A1
20070100073 Lee et al. May 2007 A1
20070155873 Kang et al. Jul 2007 A1
20070249767 Kang et al. Oct 2007 A1
20070249768 Hong et al. Oct 2007 A1
20070287799 Ha et al. Dec 2007 A1
20070295946 Lim et al. Dec 2007 A1
20080182926 Lim et al. Jul 2008 A1
20090054568 Uejima et al. Feb 2009 A1
20090080079 Kogure et al. Mar 2009 A1
20090093583 Kawato et al. Apr 2009 A1
20090118402 Jang et al. May 2009 A1
20100029855 Matsuoka et al. Feb 2010 A1
20100152357 Kwon et al. Jun 2010 A1
20100168272 Park et al. Jul 2010 A1
20100168315 Park et al. Jul 2010 A1
20100168354 Hong et al. Jul 2010 A1
20100240831 Kim et al. Sep 2010 A1
20100256288 Kim et al. Oct 2010 A1
20110003918 Eckel et al. Jan 2011 A1
20110009524 Kwon et al. Jan 2011 A1
20110021677 Kwon et al. Jan 2011 A1
20110040019 Kwon et al. Feb 2011 A1
20110157866 Li et al. Jun 2011 A1
20110159293 Park et al. Jun 2011 A1
20110160377 Chung et al. Jun 2011 A1
20110160380 Kwon et al. Jun 2011 A1
20110230610 Schultes et al. Sep 2011 A1
20120016068 Chung et al. Jan 2012 A1
20130328149 Okaniwa Dec 2013 A1
20140187717 Kwon et al. Jul 2014 A1
20140275366 Chrino et al. Sep 2014 A1
20150152205 Kim et al. Jun 2015 A1
20150216787 Hori et al. Aug 2015 A1
20150376315 Jang et al. Dec 2015 A1
20150376392 Kim et al. Dec 2015 A1
20150376403 Kwon et al. Dec 2015 A1
Foreign Referenced Citations (123)
Number Date Country
1 121 535 Apr 1982 CA
1377913 Nov 2002 CN
101061179 Oct 2007 CN
101768331 Jul 2010 CN
102115564 Jul 2011 CN
102153848 Aug 2011 CN
102329462 Jan 2012 CN
102974324 Mar 2013 CN
104072659 Oct 2014 CN
19614845 Oct 1997 DE
196 32 675 Feb 1998 DE
19801198 Jul 1999 DE
10061081 Jun 2002 DE
0107015 May 1984 EP
0149813 Jul 1985 EP
0370344 May 1990 EP
0 449 689 Oct 1991 EP
0483717 May 1992 EP
0 612 806 Aug 1994 EP
0640655 Mar 1995 EP
0 661 342 Jul 1995 EP
0 700 968 Mar 1996 EP
0721962 Jul 1996 EP
0 728 811 Aug 1996 EP
0 767 204 Apr 1997 EP
0771852 May 1997 EP
0 795 570 Sep 1997 EP
0909790 Apr 1999 EP
0 970 997 Jan 2000 EP
1010725 Jun 2000 EP
1 069 156 Jan 2001 EP
1069154 Jan 2001 EP
1117742 AO Jul 2001 EP
1209163 May 2002 EP
2204412 Jul 2010 EP
1042783 Sep 1966 GB
59-149912 Aug 1984 JP
59-202240 Nov 1984 JP
04-023856 Jan 1992 JP
04-359954 Dec 1992 JP
61 00785 Jan 1994 JP
06-100785 Apr 1994 JP
06-313089 Nov 1994 JP
7-76649 Mar 1995 JP
08-012868 Jan 1996 JP
8-208884 Aug 1996 JP
08-239544 Sep 1996 JP
09-053009 Feb 1997 JP
10-017762 Jan 1998 JP
2000-154277 Jun 2000 JP
2001-049072 Feb 2001 JP
2001-226576 Aug 2001 JP
2001-316580 Nov 2001 JP
2002-080676 Mar 2002 JP
2002-348457 Dec 2002 JP
2005-247999 Sep 2005 JP
2006-131833 May 2006 JP
2006-249288 Sep 2006 JP
2006-249292 Sep 2006 JP
2006-257126 Sep 2006 JP
2006-257284 Sep 2006 JP
2006-342246 Dec 2006 JP
2007-023227 Feb 2007 JP
2008-292853 Dec 2008 JP
2014-040512 Mar 2014 JP
1994-0014647 Jul 1994 KR
1996-14253 May 1996 KR
1999-33150 May 1999 KR
1999-47019 Jul 1999 KR
2000 41992 Jan 2000 KR
1020000009218 Feb 2000 KR
10-2000-0048033 Jul 2000 KR
1020000041993 Jul 2000 KR
10-2000-0055347 Sep 2000 KR
2001 109044 Dec 2001 KR
2002 6350 Jan 2002 KR
100360710 Oct 2002 KR
2002 83711 Nov 2002 KR
2001 107423 Dec 2002 KR
1020020094345 Dec 2002 KR
10-2003-0020584 Mar 2003 KR
10-2003-0055443 Jul 2003 KR
2003-0095537 Dec 2003 KR
10-2004-0007788 Jan 2004 KR
1020040058809 Jul 2004 KR
2004-079118 Sep 2004 KR
10-2006-0109470 Oct 2006 KR
648114 Nov 2006 KR
10-0666797 Jan 2007 KR
10-0767428 Oct 2007 KR
885819 Dec 2007 KR
10-2008-0036790 Apr 2008 KR
2009-0029539 Mar 2009 KR
10-902352 Jun 2009 KR
10-2011-0079489 Jul 2011 KR
10-2012-006839 Jan 2012 KR
10-2012-0042026 May 2012 KR
10-2012-0078417 Jul 2012 KR
10-2013-0076616 Jul 2013 KR
10-2013-0078747 Jul 2013 KR
2008081791 Jul 2008 NO
99 19383 Apr 1999 WO
9957198 Nov 1999 WO
006648 Feb 2000 WO
0018844 Apr 2000 WO
00 00544 Jan 2001 WO
0166634 Sep 2001 WO
00 09518 Feb 2002 WO
02 46287 Jun 2002 WO
03020827 Mar 2003 WO
03022928 Mar 2003 WO
03042303 May 2003 WO
03042305 May 2003 WO
2004007611 Jan 2004 WO
2006 041237 Apr 2006 WO
2007004434 Jan 2007 WO
2007119920 Oct 2007 WO
2007140101 Dec 2007 WO
2009078593 Jun 2009 WO
2009078602 Jun 2009 WO
2009113762 Sep 2009 WO
2009116722 Sep 2009 WO
2009128601 Oct 2009 WO
Non-Patent Literature Citations (83)
Entry
Office Action in commonly owned U.S. Appl. No. 14/747,207, dated Aug. 2, 2016, pp. 1-17.
Search Report in commonly owned European Patent Application No. EP 01 27 4302 dated Mar. 4, 2005, pp. 1-4.
Office Action in commonly owned U.S. Appl. No. 11/768,592 dated Apr. 8, 2009, pp. 1-9.
Notice of Allowance in commonly owned U.S. Appl. No. 11/647,101 dated Dec. 29, 2008, pp. 1-7.
International Search Report in commonly owned International Application No. PCT/KR2006/005752, dated Mar. 27, 2007, pp. 1-2.
International Search Report dated Jul. 14, 2005 in commonly owned international publication No. PCT/KR2004/003457, pp. 1.
International Preliminary Report on Patentability dated Jan. 25, 2007 in commonly owned international publication No. PCT/KR2004/003457, pp. 1-23.
Office Action in commonly owned U.S. Appl. No. 12/961,877 dated Jul. 30, 2012, pp. 1-14.
European Search Report in commonly owned European Application No. 14194463.7 dated Apr. 23, 2015, pp. 1-2.
Search Report in commonly owned Chinese Application No. 201310737841.6 dated Apr. 22, 2015, pp. 1-2.
Baek et al., electronic translation of KR 10-666797, 1-2007, pp. 1-6.
Non-Final Office Action in commonly owned U.S. Appl. No. 14/097,538 dated Mar. 26, 2015, pp. 1-11.
Non-Final Office Action in commonly owned U.S. Appl. No. 14/097,538 dated Aug. 11, 2015, pp. 1-6.
Final Office Action in commonly owned U.S. Appl. No. 14/097,538 dated Nov. 23, 2015, pp. 1-7.
Notice of Allowance in commonly owned U.S. Appl. No. 14/097,538 dated Mar. 30, 2016, pp. 1-9.
Extended Search Report in commonly owned European Application No. 15194797.5 dated Mar. 18, 2016, pp. 1-7.
Non-Final Office Action in commonly owned U.S. Appl. No. 14/749,861 dated Nov. 20, 2015, pp. 1-17.
Final Office Action in commonly owned U.S. Appl. No. 14/747,207 dated Dec. 5, 2016, pp. 1-8.
Non-Final Office Action in commonly owned U.S. Appl. No. 14/750,364 dated Jun. 16, 2016, pp. 1-7.
Notice of Allowance in commonly owned U.S. Appl. No. 14/750,364 dated Oct. 6, 2016, pp. 1-8.
Non-Final Office Action in commonly owned U.S. Appl. No. 14/748,576 dated Feb. 16, 2016, pp. 1-9.
Notice of Allowance in commonly owned U.S. Appl. No. 14/748,576 dated Jun. 29, 2016, pp. 1-9.
Final Office Action in commonly owned U.S. Appl. No. 14/749,861 dated May 31, 2016, pp. 1-9.
Notice of Allowance in commonly owned U.S. Appl. No. 14/749,861 dated Aug. 25, 2016, pp. 1-7.
Non-Final Office Action in commonly owned U.S. Appl. No. 14/557,478 dated Jun. 4, 2015, pp. 1-9.
Final Office Action in commonly owned U.S. Appl. No. 14/557,478 dated Oct. 30, 2015, pp. 1-6.
Notice of Allowance in commonly owned U.S. Appl. No. 14/557,478 dated Feb. 18, 2016, pp. 1-5.
Non-Final Office Action in commonly owned U.S. Appl. No. 14/930,954 dated Oct. 18, 2016, pp. 1-13.
European Search Report in commonly owned European Application No. 08862371 dated Dec. 7, 2010, pp. 1-6.
International Search Report in commonly owned International Application No. PCT/KR2008/006870, dated May 28, 2009, pp. 1-2.
Office Action in commonly owned U.S. Appl. No. 12/631,018 dated Nov. 8, 2011, pp. 1-10.
Chinese Office Action in commonly owned Chinese Application No. 200910211954 dated Jun. 23, 2011, pp. 1-5.
English translation of Chinese Office Action in commonly owned Chinese Application No. 200910211954 dated Jun. 23, 2011, pp. 1-5.
Katrizky et al., “Correlation and Prediction of the Refractive Indices of Polymers by QSPR”, Journal of Chemical Information and Computer Sciences, pp. 1171-1176, (1998).
Office Action in commonly owned U.S. Appl. No. 12/642,904 dated Dec. 14, 2011, pp. 1-9.
European Search Report in commonly owned European Application No. 09180634 dated Feb. 2, 2010, pp. 1-3.
Xu, “Predicition of Refractive Indices of Linear Polymers by a four-descriptor QSPR model”, Polymer, 45 (2004) pp. 8651-8659.
European Search Report in commonly owned European Application No. 10196806 dated Apr. 27, 2011, pp. 1-5.
Office Action in commonly owned U.S. Appl. No. 12/631,018 dated Apr. 26, 2012, pp. 1-12.
Office Action in commonly owned U.S. Appl. No. 12/642,904 dated Mar. 27, 2012, pp. 1-7.
Notice of Allowance in commonly owned U.S. Appl. No. 12/642,904 dated Jul. 2, 2012, pp. 1-8.
Office Action in commonly owned U.S. Appl. No. 12/817,302 dated Mar. 29, 2012, pp. 1-5.
Office Action in commonly owned U.S. Appl. No. 12/884,549 dated Aug. 21, 2012, pp. 1-12.
Mark, Physical Properties of Polymers Handbook, 2nd Edition, Polymer Research Center and Department of Chemistry, University of Cincinnati, OH, (2007) Springer, pp. 5-7.
Polysciences, Inc., data sheet for benzyl acrylate, no date, pp. 1-2.
Guidechem, data sheet for RUBA-93, no date, pp. 1-2.
European Search Report in commonly owned European Application No. 08873329.0 dated Dec. 14, 2012, pp. 1-7.
Office Action in commonly owned U.S. Appl. No. 12/972,795 dated Jan. 18, 2013, pp. 1-9.
International Search Report in commonly owned International Application No. PCT/KR2008/07825 dated Aug. 28, 2009, pp. 1-2.
Machine translation of JP 2006-257284, pp. 1-27 (2006).
Office Action in commonly owned U.S. Appl. No. 12/880,209 dated Feb. 16, 2011, pp. 1-10.
International Search Report in commonly owned International Application No. PCT/KR2008/07820 dated Jul. 28, 2009, pp. 1-2.
Final Office Action in commonly owned U.S. Appl. No. 12/880,209 dated Jul. 29, 2011, pp. 1-9.
Advisory Action in commonly owned U.S. Appl. No. 12/880,209 dated Nov. 4, 2011, pp. 1-4.
International Search Report in commonly owned International Application No. PCT/KR2008/007157, dated May 28, 2009.
Final Office Action in commonly owned U.S. Appl. No. 12/792,176 dated Apr. 19, 2012, pp. 1-10.
Advisory Action in commonly owned U.S. Appl. No. 12/792,176 dated Aug. 23, 2012, pp. 1-4.
European Search Report in commonly owned European Application No. 08873425.6 dated May 29, 2012, pp. 1-5.
Notice of Allowance in commonly owned U.S. Appl. No. 12/880,209 dated Oct. 10, 2013, pp. 1-10.
Paris et al., “Glass Transition Temperature of Allyl Methacrylate-n-Butyl Acrylate Gradient Copolymers in Dependence on Chemical Composition and Molecular Weight”, Journal of Polymer Science, Part A (2007) pp. 1-11.
Wunderlich, “Thermal Analysis of Polymeric Materials”, Springer, New York, US (2005) pp. 1-5.
European Search Report for commonly owned European Application No. EP 04808586, completed on Sep. 25, 2007.
English-translation of Chinese Office Action in commonly owned Chinese Application No. 200880128614.0 dated Mar. 7, 2012, pp. 1-2.
Advisory Action in commonly owned U.S. Appl. No. 12/631,018 dated Nov. 7, 2012, pp. 1-3.
Final Office Action in commonly owned U.S. Appl. No. 12/817,302 dated Feb. 7, 2013, pp. 1-6.
Final Office Action in commonly owned U.S. Appl. No. 12/884,549 dated Dec. 18, 2012, pp. 1-7.
Notice of Allowance in commonly owned U.S. Appl. No. 12/884,549 dated Apr. 11, 2013, pp. 1-8.
European Search Report in commonly owned European Application No. 07024808, dated Mar. 18, 2008, pp. 1-2.
Machine Translation of JP 10-017762 (2011).
Derwent Abstract of JP 2002348457 (A) (2003).
Full English Translation of JP-10-017762 (2011).
Advisory Action in commonly owned U.S. Appl. No. 12/817,302 dated May 16, 2013, pp. 1-5.
Office Action in commonly owned U.S. Appl. No. 12/898,012 dated Dec. 21, 2012, pp. 1-6.
Notice of Allowance in commonly owned U.S. Appl. No. 12/972,795 dated May 24, 2013, pp. 1-8.
European Search Report in commonly owned European Application No. 10194938.6 dated Jul. 21, 2011, pp. 1-5.
Notice of Allowance in commonly owned U.S. Appl. No. 12/961,877 dated Jun. 19, 2013, pp. 1-10.
Final Office Action in commonly owned U.S. Appl. No. 12/961,877 dated Nov. 28, 2012, pp. 1-10.
Advisory Action in commonly owned U.S. Appl. No. 12/961,877 dated Mar. 12, 2013, pp. 1-2.
Silicones: An Introduction to Their Chemistry and Application, The Plastics Institute 1962, p. 27.
Extended European Search Report in commonly owned European Application No. 09180865.9, dated Apr. 16, 2010.
Office Action in commonly owned Chinese Application No. 201510364557.8 dated Mar. 31, 2017, pp. 1-6.
Office Action in commonly owned Chinese Application No. 201510792588.3 dated Mar. 10, 2017, pp. 1-7.
Office Action in commonly owned U.S. Appl. No. 14/747,207 dated Jul. 25, 2017, pp. 1-9.
Related Publications (1)
Number Date Country
20150376386 A1 Dec 2015 US