Beese et al., “Structure of DNA polymerase I klenow fragment bound to duplex DNA,” Science 260:352-355 (1993). |
Braithwaite and Ito, “Compilation, alignment, and phylogenetic relationships of DNA polymerases,” Nucleic Acids Res. 21:787-802 (1993). |
Dube et al., “Artificial mutants generated by the insertion of random oligonucleotides into the putative nucleoside binding site of the HSV-1 thymidine kinase gene,” Biochemistry 30:11760-11767 (1991). |
Fry and Loeb, Animal Cell DNA Polymerases pp. 157-184, CRC Press Boca Raton, FL (1986). |
Joyce and Steitz, “Function and structure relationships in DNA polymerases,” Annu. Rev. Biochem. 63:777-822 (1994). |
Kim and Loeb, “Human and immunodeficiency virus reverse transcriptase substitutes for DNA polymerase I in Escherchia coli,” Proc. Natl. Acad. Sci. USA 92:684-688 (1995). |
Kim et al., “Crystal structure of Thermus aquaticus DNA polymerase,” Nature 376:612-616 (1995). |
Kunkel, “DNA replication fidelity,” J. Biol. Chem. 267:18251-18254 (1992). |
Kunkel, “Rapid and efficient site-specific mutagenesis without phenotypic selection,” Proc. Natl. Acad. Sci. USA 82:488-492 (1985). |
Kunkel and Loeb, “On the fidelity of DNA replication: effect of divalent metal ion activators and deoxyribonucleoside triphosphate pools on in vitro mutagenesis,” J. Biol. Chem. 254:5718-5725 (1979). |
Loeb, “Unnatural nucleotide sequences in biopharmaceutics,” Advances in Pharmacology 35:321-347 (1996). |
Suzuki et al., “Random mutagenesis of Thermus aquaticus DNA polymerase I: concordance of immutable sites in vivo with the crystal structure,” Proc. Natl. Acad. Sci. USA 93:9670-9675 (1996). |
Sweasy and Loeb, “Mammalian DNA polymerase β can substitute for DNA polymerase I during DNA replication in Escherichia coli,” J. Biol. Chem. 267:1407-1410 (1992). |
Tabor and Richardson, “A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides,” Proc. Natl. Acad. Sci. USA 92:6339-6343 (1995). |
Tindall and Kunkel, “Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase,” Biochemistry 27:6008-6013 (1988). |
Barnes, “PCR amplification of up to 35-kb DNA with high-fidelity and high-yield from λ bacteriophage templates,” Proc. Natl. Acad. Sci. USA, 91:2216-2220 (1994). |
Barnes, “The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion,” Gene, 112:29-35 (1992). |
Bebenek et al., “The Fidelity of DNA Synthesis Catalyzed by Derivatives of Escheria coli DNA Polymerase I,” J. Biol. Chem., 265:13878-13887 (1990). |
Bell et al., “Base Miscoding and Strand Misalignment Errors by Mutator Klenow Polymerases with Amino Acid Substitutions at Tryosine 766 in the O Helix of the Fingers Subdomain,” J. Biol. Chem., 272:7345-7351 (1997). |
Carroll et al., “A mutant of DNA polymerase I (Klenow fragment) with reduced fidelity,” Biochem., 30:804-813 (1991). |
Dong and Wang, “Mutational Studies of Human DNA Polymerase α,” J. Biol. Chem., 270:21563-21570 (1995). |
Drosopoulos and Prasad, “Increased Polymerase Fidelity of E89G, a Nucleoside Analog-Resistant Variant of Human Immunodeficiency Virus Type 1 Reverse Transcriptase,” J. Virol., 70:4834-4838 (1996). |
Eger et al., “Mechanism of DNA Replication Fidelity for Three Mutants of DNA Polymerase I: Klenow Fragment (KF(exo+), KF(polA5), and KF(exo-),” Biochem., 30:1441-1448 (1991). |
Lawyer et al., Isolation, Characterization, and Expression in Escheria coli of the DNA Polymerase Gene from Thermus aquaticus, J. Biol. Chem., 264:6427-6437 (1989). |
Pandey et al., “Role of Methionine 184 of Human Immunodeficiency Virus Type-1 Reverse Transcriptase in the Polymerase Function and Fidelity of DNA Synthesis,” Biochem., 35:2168-2179 (1996). |
Reha-Krantz and Nonay, “MotifA of Bacteriophage T4 DNA Polymerase: Role in Primer Extension and DNA Replication Fidelity,” J. Biol. Chem., 269:5635-5643 (1994). |
Wainberg et al., “Enhanced Fidelity of 3TC-Selected Mutant HIV-1 Reverse Transciptase,” Science, 271:282-1285 (1996). |
Washington et al., “A gentic system to identify DNA polymerase β mutator mutants,” Proc. Natl. Acad. Sci. USA, 94:1321-1326 (1997). |
Loeb, “Microsatellite Instability: Marker of a Mutator Phenotype in Cancer,” Cancer Research 54:5059-5063 (1994). |
Newcomb et al., “High Fidelity Taqu Polymerases For Mutation Detection,” FASEB J.11:A1249, abstract 2295 (1997). |
Suzuki et al., “Low Fidelity Mutants in the O-Helix of Thermus aquaticus DNA Polymerase I,” J. Biol. Chem. 272:11228-11235 (1997). |