Thermostat circuitry to control power usage

Information

  • Patent Grant
  • 9857091
  • Patent Number
    9,857,091
  • Date Filed
    Friday, November 22, 2013
    11 years ago
  • Date Issued
    Tuesday, January 2, 2018
    6 years ago
Abstract
An operation alteration of a network attached thermostat to control power usage. Control wires for a heating and air conditioning system may be connected to a thermostat control circuit configured to control the system. A power extraction circuit may be coupled to the control wires configured to extract power from the control wires. The power may be put into a storage device. The power may be provided to the thermostat control circuit and a WiFi radio module. The radio module may provide a network connection for the thermostat. Circuitry and techniques may be provided to reduce power usage by the thermostat components.
Description
BACKGROUND

The present disclosure pertains to thermostats and particularly to circuitry related to thermostats and heating and air conditioning systems.


SUMMARY

The disclosure reveals an operation alteration of a network attached thermostat to control power usage. Control wires for a heating and air conditioning system may be connected to a thermostat control circuit configured to control the system. A power extraction circuit may be coupled to the control wires configured to extract power from the control wires. The power may be put into a storage device. The power may be provided to the thermostat control circuit and a WiFi radio module. The radio module may provide a network connection for the thermostat. Circuitry and techniques may be provided to reduce power usage by the thermostat components.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a diagram of an illustrative example of a thermostat utilizing power extraction and saving features;



FIG. 2 is a diagram of a power extraction circuit;



FIG. 3 is a diagram an illustrative example of the power extraction circuit;



FIG. 4 is a diagram of a table that may illustrate some example conditional situations of the present example of a thermostat system; and



FIG. 5 is a diagram of an illustrative example of a radio module for a thermostat system.





DESCRIPTION

The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.


This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.



FIG. 1 is a diagram of an illustrative example of a thermostat 11 that may incorporate HVAC control wires 12 for controlling an HVAC system 13, a thermostat control circuit 14 configured to control HVAC system 13, a sensor 10 coupled to thermostat control circuit 14 to provide sensed data, a WiFi radio module 15 coupled to thermostat control circuit 14 to provide a network connection for thermostat 11, and a power circuit 16 coupled to the HVAC control wires 12 for providing power to thermostat control circuit 14, WiFi radio module 15 and display interface 17.


Power circuit 16 may incorporate a power extraction circuit 20 configured to extract power from HVAC control wires 12, a power storage device 21 configured to store electrical current extracted from HVAC control wires 12, common wire detection circuitry configured to detect the presence of a common wire among HVAC control wires 12, a key load determination circuitry configured to determine the electrical load impedance presented by the HVAC equipment in a fast manner, and a key rules table in control circuit 14 correlating the amount of power that can be extracted from HVAC control wires 12 with the load impedances 22, 23, 24 of the HVAC equipment drawing power through one of the impedances.


Display and illumination 17 may be retained on thermostat 11 with circuitry 25 that determines the amount of power stored in power storage device 21.


A communications protocol may be used for communications with the thermostat control circuit 14 and WiFi radio module 15. Messages may be sent using the communications protocol that informs thermostat control circuit 14 and WiFi radio module 15 of power parameters. The power parameters may incorporate presence of a common power terminal or C-wire 26, a charge on the power storage device 21, and an amount of power that can be extracted from HVAC equipment 13.


Common power terminal 26 may be present. A rate of recharge may be input to the logic of control circuit 14 to change behavior of the thermostat display 17 backlight.


Thermostat control circuit 14 may incorporate circuitry configured to control HVAC equipment 13, circuitry to display user information, circuitry to illuminate the device, software that may alter the power used by changing displayed user information and an amount and time of illumination, and a rules table that correlates device operation to several power parameters.



FIG. 2 is a diagram of a power extraction circuit 20 and associated components. Power from a 120 VAC to 24 VAC transformer 51 may be provided on lines 26 and 52 to circuit 20. Power may be extracted from loads 67, 68 and 69 of an example HVAC 13. Other hardware may be implemented in lieu of HVAC 13. An output 73 from circuit 20 may go to a power storage unit 21. Power from unit 21 may be available on output 75.



FIG. 3 is a diagram of an illustrative example of power extraction circuit 20 plus several additional components. As noted herein, step-down transformer 51 may provide 24 VAC from line power of 120 VAC. One terminal of the 24 VAC output may be regarded as a C-wire 26 or common line. It may also be regarded as a reference or ground terminal 26. The other terminal of the 24 VAC output may be regarded a hot line or wire 52. Wire 52 may be connected to a first input terminal of a full wave rectifier 53 and a fuel wave rectifier 54. A second input to rectifier 54 may be C-wire 26. One output terminal of rectifier 54 may be connected to a reference voltage ground terminal 55. Another terminal 56 may be connected to an input of a filter 57. Filter 57 may also be connected to ground terminal 55.


An output 58 may go to an anode of a diode 59. A cathode of diode may be connected to an output terminal 61. The output from diode 59 may be noted as power available from a C-wire that is present. Diode 59 may prevent an output from a diode 62 having a higher voltage than the output from diode 59 and overriding output 58. Diodes 59 and 62 may be substituted with switches of one kind or another (e.g., FET switch). In the latter situation, one switch at most may be on though both switches may be off. The switches may be controlled by a controller 60.


In the meanwhile, there may be power transformed from current going through a load of equipment such as HVAC equipment. Terminal 52 may be providing 24 VAC relative to terminal 26 to a first input terminal of rectifier 53. Controller 60 may turn on a relay switch 63 via a line 77. Current may flow through rectifier 53 and out on a conductor 66 and through switch 63 that is closed. The current may flow from switch 63 through a load 67 to C-wire or ground terminal 26 of voltage supply 56.


An output on line 71 may go from rectifier 53 to an input of a charge transfer block 72 relative to ground terminal 55. Current may flow from an output of charge transfer block 72 on a line to an input of a power storage device 21. Device 21 may a super or ultra capacitor or other mechanism for electrical power storage. A transfer of current or charge to storage device 21 may be monitored and/or controlled by controller 60 via a line 74. Detection of an amount of charge or voltage on storage device 21 may be accomplished via line 74 by controller 60.


Power, current at a certain voltage level, may go from an output 75 through diode 62 (anode first) to output 61. As indicated herein, diode 62 may be replaced by a different component such as a FET switch.


In a similar manner as taking power from current going through load 67, power may be taken from current going through loads to 68 and 69. Load switches 64 and 65 for loads 68 and 69, respectively, may be operated by controller 60 via lines 78 and 79. Loads 67, 68 and 69 may be different in terms of impedance. For example, loads 67, 68 and 69 may have impedances of 100, 1,000 and 3,000 ohms, respectively. Load impedances may be other than the noted examples. Switches 63, 64 and 65 as controlled by controller 60 may select an appropriate load from which power is taken and transformed into a charge to be stored in storage device 21.


Rectifier 53 may be bypassed with respect to the current from equipment loads 67, 68 and 69. Relays or switches 81, 82 and 83 may be closed to limit the circuitry of the respective loads across lines 52 and 26. Relays or switches 81, 82 and 83 may be controlled individually by lines 84, 85 and 86 from controller 60 to the relays or switches.



FIG. 4 is a diagram of table 28 that may illustrate some example conditional situations of the present example of a thermostat system. If a common wire 26 is present as indicated by column 31 and row 41, thermostat control circuit 14 may use more power (e.g., more current at a given voltage) as indicated by column 37 and row 41. If common wire 26 is not present, and the amount of power that can be extracted from HVAC control wires 12 is high, then thermostat control circuit 14 may use more power, as indicated by column 37 and rows 42 and 43. If common wire 26 is not present, and the amount of power that can be extracted from HVAC control wires 12 is low, thermostat control circuit 14 may use less power, as indicated by columns 33 and 37 and rows 48-50. If common wire 26 is not present, and the charge on storage device 21 is high, thermostat control circuit 14 may use more power. If common wire 26 is not present, and the charge on storage device 21 is low, thermostat control circuit 14 may use less power, as indicated by columns 34 and 35 and rows 44, 47 and 50.


WiFi radio module 15 may incorporate circuitry configured to communicate with a WiFi router, networking algorithms to communicate through the WiFi router with a central server 27 via a connection 28, software that groups virtually all tasks to be performed in time, software that performs tasks periodically, TCP/IP components that contain networking constants controlling socket timeouts, software that can create network channels to transfer HVAC information between thermostat control circuit 14 and central server 27, software that can abort network communications, software that can alter the power used by changing the task period, networking constants, allowing or disallowing network channels and aborting network communications, and a rules table that correlates device operation to the power parameters (FIG. 1).


If common wire 26 is present, WiFi radio module 15 may use more power. If common wire 26 is not present, and the amount of power that can be extracted from HVAC control wires 12 is high, WiFi radio module 15 may use more power, as indicated by columns 33 and 37 and rows 42 and 43. If common wire 26 is not present, and the amount of power that can be extracted from HVAC control wires 12 is low, WiFi radio module 15 may use less power, as indicated by columns 33 and 37 and row 50. If common wire 26 is not present, and the charge on storage device is high 21, WiFi radio module 15 may use more power, as indicated by columns 34 and 37 and row 42. If common wire 26 is not present, and the charge on storage device 21 is low, WiFi radio module 15 may use less power, as indicated by columns 34 and 37 and row 44, 47 and 50. There may be various approaches for achieving low power on radio module 15.



FIG. 5 is a diagram of an illustrative example of a radio module 15 having a processor 91 and a radio chip 92. Radio module 15 may be a WiFi mechanism. Processor 91 may have an ARM core CPU 93 with peripherals provided by a chip vendor. ARM core CPU 93 may have a low power mode. Added to this item may be a low power mode provided by the chip vendor to reduce the power of the processor peripherals when in the stop mode.


Radio chip 92 may have a feature called power save, that reduces power when the radio is idle. A main task of radio module 15 may be to communicate with a server such as server 27. Communication with a server may take several forms. When thermostat data has changed, they may be sent to the server (async data). Periodically, radio module 15 may perform a ping checkin. The ping checkin may be a TCP packet sent to the server. The server may return a packet, which can contain a request for a “data session”.


If a ping checkin contains a data session request, radio module 15 may open a TCP session with the server. Using this socket, the server may transmit data to radio module (and down to thermostat control circuit 14).


A basic technique may be noted. Low power may be achieved in radio module 15 by putting processor 93 into low power mode, and/or radio chip 92 into power save mode, when the application is idle.


The application may use a ThreadX™ (known by Express Logic, Inc.) RTOS. The name “ThreadX” is derived from the fact that threads are used as the executable modules and the letter “X” represents context switching, i.e., it switches threads. Virtually all of the work may be done in threads. The RTOS may run on a “tick”, a 10 ms timer. When the tick occurs, the RTOS may go through the threads and determine which ones are “ready”. The tasks may be executed, with the highest priority ones first.


To determine whether to put radio module 15 into low power mode, a function may go through the tasks on every tick. If none of the tasks are ready, the function may determine when the first task will be ready. If this time exceeds a threshold, the radio module may be put into low power mode for that period of time.


For example, one may assume that the threshold is set to 5 seconds. At tick 1, the tasks are ready. These tasks may be run, radio module 15 may stay awake. At tick 2, the soonest task may be ready in 1 tick. Radio module 15 may stay awake. At tick 3, the soonest task may be ready in 15 seconds. Radio module may be put into a low power mode for 15 seconds.


Background of the technique may be noted. A Broadcom Corporation code may be provided with radio module 15. The code may be called Wiced™. The approach may be known by an Express Logic, Inc., representative (a vendor of ThreadX). Express Logic provided code that could be used to walk through the task table and find the next ready task, as well as code required for keeping the ThreadX kernel time correct.


Task grouping may be noted. In order to allow for longer low power periods, the communication tasks may be combined. During a ping checkin event, async data may be sent to the server. A ping checkin may be performed. If requested, a data session may be opened and data can be transferred from the web to radio module 15.


Altering operation based C-wire 26, load and available power may be noted. Power extraction circuit 20 may provide power to radio module 15. Circuit 20 may provide several pieces of information to radio module 15 which can be used to alter the operation of the radio module 15.


If C-wire 26 is present, the device is not necessarily power limited. If C-wire 26 is not present, the device may be power limited. Power extraction circuit 20 may draw full power from a 24 volt line when the furnace/AC is on (load on), and steal a small amount of power when the furnace/AC is off (load off).


The amount of power that circuit 20 can draw when in the load off mode may be a function of the load impedance (e.g., resistance). Low load impedance may allow a (relatively) high power draw from the load with the furnace/AC is off. High load impedance may allow a lower power draw.


As an illustrative example, one may assume that the circuit 20 may apply a voltage across the load of 3 volts. A traditional relay based furnace may present a load impedance of 100 ohms. Power extraction circuit 20 may steal 3/100=30 mA. If a zone panel presents a load impedance of 3000 ohms, circuit 20 may steal 3/3000=1 mA.


Power extraction circuit 20 may store energy in a storage device such as a super capacitor 21. When depleted, capacitor 21 may be charged from power taken from the load. Circuit 20 may report the charge on super capacitor 20 to radio module 15.


Using these pieces of information, radio module 15 may change its behavior. Certain key parameters that affect power usage may be varied, such as a ping checkin period, TCP socket timeouts, and whether to accept data session requests.


Basic rules may incorporate the following items as may be guided by table 28 of FIG. 4. If C-wire is present, a device such as radio module 15 may run at optimal settings. If a load has high impedance, radio module 15 may know that a super capacitor charge rate will be slow. Radio module 15 may be rather conservative with its power settings. If the load has low impedance, the charge rate may be higher and thus more aggressive power settings of radio module 15 may be used. If the charge on super capacitor 21 is high, aggressive power settings of radio module may be used. If the charge is low, conservative settings of radio module may be used.



FIG. 4 is a diagram of table 28 showing examples of power usage. If power is low, transmission by radio module 15 may be aborted. While performing the communication tasks, radio module 15 may check with circuit 20 at key points to see if the power available has dropped to a critically low level. If so, the communication tasks may be aborted.


Thermostat data may be buffered while radio module 15 is in a low power mode. When radio module 15 is in the low power mode, and thermostat data changes, the following sequence may be followed. Thermostat 11 may assert an IO line to wake up radio module 15. Thermostat 11 may send the data to radio module 15. Radio module 15 may time-stamp the data, buffer (store) the data, and then go back into the low power mode. When radio module 15 wakes up for scheduled transmission tasks, radio module 15 may send buffered data.


A network attached thermostat 11 with illumination and a user display may consume significant power. When the same thermostat 11 draws that power from a power extraction circuit, the available power may be limited. If thermostat 11 draws too much power, the illumination, display and network connection may be turned off. The present approach may avoid this issue by having extended knowledge of an ability of the power extraction circuit to provide power based on the particular HVAC equipment 13 installed. In addition, thermostat 11 may be designed to operate within that available power. In this manner, thermostat 11 may avoid having to turn off the illumination, display and network connection due to excessive power usage.


To recap, a thermostat may incorporate control wires that control heating, ventilation and air conditioning (HVAC) equipment, a thermostat control circuit configured to control the HVAC equipment, a radio module coupled to the thermostat control circuit to provide a network connection for the thermostat, and a power circuit system coupled to the control wires and providing power to the thermostat control circuit and the radio module.


The power circuit system may incorporate an extraction circuit configured to extract power from the control wires, a power storage device configured to store electrical current extracted from the control wires, common wire detection circuitry configured to detect a presence of a common wire among the control wires, and load determination circuitry configured to determine the electrical load impedance presented by HVAC equipment.


The power circuit system may further incorporate a rules table correlating the amount of power that can be extracted from the control wires with the load impedance of the HVAC equipment for determining the amount of power stored in the power storage device, and a communications protocol used for communications with the thermostat control circuit and the radio module. Messages are sent using the communications protocol that informs the thermostat control circuit and radio module of power parameters incorporating presence of the common wire, a charge on the power storage device and an amount of power that can be extracted from the HVAC equipment.


The thermostat control circuit may incorporate circuitry configured to control the HVAC equipment, a display, circuitry configured to show user information on the display, circuitry configured to illuminate the display, software configured to alter power used by changing the user information and an amount and time of illumination of the display, and a rules table that correlates thermostat operation to power parameters.


The rules table may incorporate one or more statements or items of a group consisting of: if the common wire is present, the thermostat control circuit uses more power than if the common wire is absent; if the common wire is absent, and the amount of power that can be extracted from the control wires is high, the thermostat control circuit uses more power than when the amount of power that can be extracted from the control wires is normal; if the common wire is absent, and the amount of power than that can be extracted from the control wires is low, the thermostat control circuit uses less power than when the amount of power that can be extracted from the control wires is normal; if the common wire is absent, and the charge on the power storage device is high, the thermostat control circuit uses more power than when the charge on the power storage device is normal; and/or if the common wire is absent present, and the charge on the power storage device is low, the thermostat control circuit uses less power than when the charge on the power storage device is normal. High may be greater than normal and normal may be greater than low.


The radio module may incorporate circuitry configured to communicate with a WiFi router, networking algorithms to communication through the WiFi router with a central server, software configured to group virtually all tasks to be performed in time, software configured to perform tasks periodically, TCP/IP configured to contain networking constants that control socket timeouts, software configured to create network channels for transfer of HVAC information between the thermostat control circuit and the central server, software configured to abort network communications, software configured to alter the power used by changing the task period, networking constants, allowing or disallowing network channels and aborting network communications, and/or a rules table that correlates thermostat operation to power parameters.


The rules table may incorporate one or more statements or items of a group consisting of: if the common wire is present, the WiFi radio module uses more power than if the common wire is absent; if the common wire is not present, and the amount of power that can be extracted from the control wires is high, the WiFi radio module uses more power than when the amount of power is normal; if the common wire is not present, and the amount of power that can be extracted from the control wires is low, the WiFi radio module uses less power than when the amount of power that can be extracted from the control wires is normal; if the common wire is not present, and the charge on the power storage device is high, the WiFi radio module uses more power than when the charge on the power storage device is normal; and if the common wire is not present, and the charge on the power storage device is low, the WiFi radio module uses less power than when the charge on the power storage is normal. High may be greater than normal and normal may be greater than low.


An approach for altering operation of a network attached thermostat to control power usage, may incorporate providing a thermostat for controlling HVAC equipment. The thermostat may incorporate a radio module, a power circuit, and a control circuit. The radio module may incorporate a processor and radio chip.


The approach may further incorporate reducing power of the processor peripherals with a stop mode of the processor, reducing power of the radio chip with a power save feature, and communicating with a server having the radio module.


The approach may further incorporate communicating with a server using the radio module. Communicating with the server may incorporate that when thermostat data have changed the data are sent to the server, a data session is had with the server, or there is a performance of a ping check-in as a TCP packet sent to the server.


The approach may further incorporate putting the processor into a stop mode and the radio chip into a power save mode to reduce power in the radio module when an application is idle.


The approach may further incorporate providing power from the power circuit to the radio module. The power circuit may draw a first amount of power from a voltage line when the HVAC equipment is on. The power circuit may extract a second amount of power when the HVAC equipment is off. The first amount of power may be greater than the second amount of power.


The second amount of power that the power circuit can extract may vary inversely with a load impedance with the HVAC equipment off.


The approach may further incorporate using the second amount of power to provide a charge to a super capacitor. The charge on the super capacitor may be available as power for the radio module.


A thermostat system may incorporate a power supply circuit configured for connection to heating, ventilation and air conditioning (HVAC) equipment, a control circuit connected to the power supply circuit, a radio module connected to the control circuit, and a sensor connected to the control circuit. The power supply circuit may incorporate a power extraction circuit having an output. The power extraction circuit may obtain power for the output from current through a load impedance of HVAC equipment.


The power extraction circuit may further incorporate a presence of a common power source wire that prevents the output from being necessarily limited in power. An absence of the common power source wire may cause the output to be limited in power from current through the load impedance of the HVAC equipment in an off mode, and from an amount of charge on a super capacitor. The amount of charge on the super capacitor may be obtained from current through the load impedance of the HVAC equipment in the off mode.


The radio module may incorporate a processor and a radio chip. The processor may have a stop mode. The radio chip may have a power save mode. Power consumption by the radio module may be reduced to a low power mode when the processor is in a stop mode or the radio chip is in a power save mode.


If the radio module is in the low power mode and thermostat data are new or vary, then the control circuit may wake up the radio module from the low power mode, and send the thermostat data to the radio module. The radio module may receive and store the thermostat data, and then return to the low power mode. The radio module may wake up for a scheduled transmission task and send the stored data to a predetermined destination.


Communication tasks of the radio module may be combined for increasing a period of the low power mode. The communication tasks may incorporate sending asynchronous data to a server and performing a ping check-in. If a data session is requested in the ping check-in, a data session may be opened and data be transferred from a server to the radio module.


The system may further incorporate a display. The display may incorporate illumination and a network connection that consumes a minimum amount of power. The minimum amount of power may be available from the power extraction circuit to prevent the display, the illumination, or the network connection from being turned-off.


In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.


Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.

Claims
  • 1. A thermostat comprising: control wires that control heating, ventilation and air conditioning (HVAC) equipment;a thermostat control circuit configured to control the HVAC equipment;a radio module coupled to the thermostat control circuit to provide a network connection for the thermostat; anda power circuit system coupled to the control wires and providing power to the thermostat control circuit and the radio module; andwherein the power circuit system comprises: an extraction circuit configured to extract power from the control wires;a power storage device configured to store electrical current extracted from the control wires;common wire detection circuitry configured to detect a presence of a common wire among the control wires; andload determination circuitry configured to determine the electrical load impedance presented by HVAC equipment;wherein the thermostat control circuit comprises: a rules table that correlates thermostat operation to power parameters, the rules table including statements comprising: if the common wire is absent and the amount of power that can be extracted from the control wires is high, the thermostat control circuit uses more power than when the amount of power that can be extracted from the control wires is normal;if the common wire is absent and the amount of power that can be extracted from the control wires is low, the thermostat control circuit uses less power than when the amount of power that can be extracted from the control wires is normal; andwherein high is greater than normal and normal is greater than low; andwherein the radio module comprises TCP/IP configured to contain networking constants that control socket timeouts and the socket timeouts are adjusted based, at least in part, on a determined electrical load impedance presented by the HVAC equipment.
  • 2. The thermostat of claim 1, wherein the power circuit system further comprises: a rules table correlating the amount of power that can be extracted from the control wires with the load impedance of the HVAC equipment for determining the amount of power stored in the power storage device; anda communications protocol used for communications with the thermostat control circuit and the radio module; andwherein messages are sent using the communications protocol that informs the thermostat control circuit and radio module of power parameters incorporating presence of the common wire, a charge on the power storage device and an amount of power that can be extracted from the HVAC equipment.
  • 3. The thermostat of claim 1, wherein the thermostat control circuit comprises: circuitry configured to control the HVAC equipment;a display;circuitry configured to show user information on the display;circuitry configured to illuminate the display; andsoftware configured to alter power used by changing the user information and an amount and time of illumination of the display.
  • 4. The thermostat of claim 1, wherein the rules table further comprises one or more statements of a group consisting of: if the common wire is present, the thermostat control circuit uses more power than if the common wire is absent;if the common wire is absent, and the charge on the power storage device is high, the thermostat control circuit uses more power than when the charge on the power storage device is normal; andif the common wire is absent present, and the charge on the power storage device is low, the thermostat control circuit uses less power than when the charge on the power storage device is normal.
  • 5. The thermostat of claim 1, wherein the radio module comprises: circuitry configured to communicate with a WiFi router;networking algorithms to communication through the WiFi router with a central server;software configured to group virtually all tasks to be performed in time;software configured to perform tasks periodically;software configured to create network channels for transfer of HVAC information between the thermostat control circuit and the central server;software configured to abort network communications;software configured to alter the power used by changing the task period, networking constants, allowing or disallowing network channels and aborting network communications; anda rules table that correlates thermostat operation to power parameters.
  • 6. The thermostat of claim 5, wherein the rules table comprises one or more statements of a group consisting of: if the common wire is present, the WiFi radio module uses more power than if the common wire is absent;if the common wire is not present, and the amount of power that can be extracted from the control wires is high, the WiFi radio module uses more power than when the amount of power is normal;if the common wire is not present, and the amount of power that can be extracted from the control wires is low, the WiFi radio module uses less power than when the amount of power that can be extracted from the control wires is normal;if the common wire is not present, and the charge on the power storage device is high, the WiFi radio module uses more power than when the charge on the power storage device is normal;if the common wire is not present, and the charge on the power storage device is low, the WiFi radio module uses less power than when the charge on the power storage is normal; andhigh is greater than normal and normal is greater than low.
  • 7. A method for altering operation of a network attached thermostat to control power usage, comprising: providing a thermostat for controlling HVAC equipment, wherein: the thermostat comprises a radio module, a power circuit, and a control circuit; andthe radio module comprises a processor and radio chip;determining when a next communication task of the radio module will be ready;comparing a time until the next communication task of the radio module will be ready to a threshold amount of time; andif the time until the next communication task of the radio module exceeds the threshold amount of time, putting the processor into a stop mode and the radio chip into a power save mode to reduce power in the radio module until the time until the next communication task of the radio module will be ready has expired;wherein the radio module comprises TCP/IP configured to contain networking constants that control socket timeouts and the socket timeouts are adjusted based, at least in part, on a determined electrical load impedance presented by the HVAC equipment.
  • 8. The method of claim 7, further comprising: communicating with a server using the radio module.
  • 9. The method of claim 7, further comprising: communicating with a server using the radio module; andwherein:communicating with the server comprises:when thermostat data have changed, the data are sent to the server;a data session is had with the server; orthere is a performance of a ping check-in as a TCP packet sent to the server.
  • 10. The method of claim 7, further comprising: providing power from the power circuit to the radio module; andwherein:the power circuit draws a first amount of power from a voltage line when the HVAC equipment is on;the power circuit extracts a second amount of power when the HVAC equipment is off; andthe first amount of power is greater than the second amount of power.
  • 11. The method of claim 10, wherein the second amount of power that the power circuit can extract varies inversely with a load impedance with the HVAC equipment off.
  • 12. The method of claim 11, further comprising: using the second amount of power to provide a charge to a super capacitor; andwherein the charge on the super capacitor is available as power for the radio module.
  • 13. A thermostat system comprising: a power supply circuit configured for connection to heating, ventilation and air conditioning (HVAC) equipment;a control circuit connected to the power supply circuit;a radio module connected to the control circuit, the radio module including a processor having a stop mode and a radio chip having a power save mode; anda sensor connected to the control circuit;wherein:the power supply circuit comprises a power extraction circuit having an output; andthe power extraction circuit can obtain power for the output from current through a load impedance of an HVAC equipment; andthe radio module performs a ping check-in with a remote server periodically and a period between sequential ping check-ins is varied based, at least in part, on the load impedance of the HVAC equipment.
  • 14. The system of claim 13, the power extraction circuit further comprises: a presence of a common power source wire that prevents the output from being necessarily limited in power; andwherein:an absence of the common power source wire causes the output to be limited in power from current through the load impedance of the HVAC equipment in an off mode, and from an amount of charge on a super capacitor; andthe amount of charge on the super capacitor is obtained from current through the load impedance of the HVAC equipment in the off mode.
  • 15. The system of claim 13, wherein power consumption by the radio module is reduced to a low power mode when the processor is in a stop mode or the radio chip is in a power save mode.
  • 16. The system of claim 15, wherein: if the radio module is in the low power mode and thermostat data are new or vary, then the control circuit wakes up the radio module from the low power mode, and sends the thermostat data to the radio module;the radio module receives and stores the thermostat data, and then returns to the low power mode; andthe radio module wakes up for a scheduled transmission task and sends the stored data to a predetermined destination.
  • 17. The system of claim 15, wherein communication tasks of the radio module are combined for increasing a period of the low power mode.
  • 18. The system of claim 17, wherein: the communication tasks comprise: sending asynchronous data to a server; andperforming the ping check-in; andif a data session is requested in the ping check-in, a data session is opened and data are transferred from a server to the radio module.
  • 19. The system of claim 13, further comprising: a display; andwherein: the display comprises illumination and a network connection that consumes a minimum amount of power; andthe minimum amount of power is available from the power extraction circuit to prevent the display, the illumination, or the network connection from being turned-off.
US Referenced Citations (429)
Number Name Date Kind
3464673 Cargo et al. Sep 1969 A
3665159 Becker et al. May 1972 A
3899713 Barkan et al. Aug 1975 A
3942028 Baker Mar 1976 A
4078720 Nurnberg Mar 1978 A
4079366 Wong Mar 1978 A
4093943 Knight Jun 1978 A
4151387 Peters, Jr. Apr 1979 A
4174807 Smith et al. Nov 1979 A
4197571 Grunert Apr 1980 A
4206872 Levine Jun 1980 A
4224615 Penz Sep 1980 A
4232819 Bost Nov 1980 A
4257555 Neel Mar 1981 A
4264034 Hyltin et al. Apr 1981 A
4274045 Goldstein Jun 1981 A
4296334 Wong Oct 1981 A
4298946 Hartsell et al. Nov 1981 A
4300199 Yoknis et al. Nov 1981 A
4308991 Peinetti et al. Jan 1982 A
4316256 Hendricks et al. Feb 1982 A
4332352 Jaeger Jun 1982 A
4337822 Hyltin et al. Jul 1982 A
4337893 Flanders et al. Jul 1982 A
4373664 Barker et al. Feb 1983 A
4379483 Farley Apr 1983 A
4382544 Stewart May 1983 A
4384213 Bogel May 1983 A
4386649 Hines et al. Jun 1983 A
4388692 Jones et al. Jun 1983 A
4431134 Hendricks et al. Feb 1984 A
4446913 Krocker May 1984 A
4479604 Didner Oct 1984 A
4503471 Hanajima et al. Mar 1985 A
4504778 Evans Mar 1985 A
4506827 Jamieson et al. Mar 1985 A
4556169 Zervos Dec 1985 A
4585164 Butkovich et al. Apr 1986 A
4606401 Levine et al. Aug 1986 A
4621336 Brown Nov 1986 A
4622544 Bially et al. Nov 1986 A
4628201 Schmitt Dec 1986 A
4641013 Dunnigan et al. Feb 1987 A
4646964 Parker et al. Mar 1987 A
4692596 Payne Sep 1987 A
4706177 Josephson Nov 1987 A
4717333 Carignan Jan 1988 A
4725001 Carney et al. Feb 1988 A
4745300 Kammerer et al. May 1988 A
4745311 Iwasaki May 1988 A
4806843 Mertens et al. Feb 1989 A
4811163 Fletcher Mar 1989 A
4829779 Munson et al. May 1989 A
4837731 Levine et al. Jun 1989 A
4881686 Mehta Nov 1989 A
4918439 Wozniak et al. Apr 1990 A
4939995 Feinberg Jul 1990 A
4942613 Lynch Jul 1990 A
4948040 Kobayashi et al. Aug 1990 A
4969508 Tate et al. Nov 1990 A
4992779 Sugino et al. Feb 1991 A
4997029 Otsuka et al. Mar 1991 A
5005365 Lynch Apr 1991 A
5012973 Dick et al. May 1991 A
5025134 Bensoussan et al. Jun 1991 A
5036698 Conti Aug 1991 A
5038851 Mehta Aug 1991 A
5053752 Epstein et al. Oct 1991 A
5065813 Berkeley et al. Nov 1991 A
5081411 Walker Jan 1992 A
5086385 Launey et al. Feb 1992 A
5088645 Bell Feb 1992 A
5118963 Gesin Jun 1992 A
5120983 Samann Jun 1992 A
5140310 DeLuca et al. Aug 1992 A
5161606 Berkeley et al. Nov 1992 A
5170935 Federspiel et al. Dec 1992 A
5172565 Wruck et al. Dec 1992 A
5181653 Foster et al. Jan 1993 A
5187797 Nielsen et al. Feb 1993 A
5192874 Adams Mar 1993 A
5210685 Rosa May 1993 A
5221877 Falk Jun 1993 A
5226591 Ratz Jul 1993 A
5230482 Ratz et al. Jul 1993 A
5238184 Adams Aug 1993 A
5251813 Kniepkamp Oct 1993 A
5259445 Pratt et al. Nov 1993 A
5272477 Tashima et al. Dec 1993 A
5277244 Mehta Jan 1994 A
5289047 Broghammer Feb 1994 A
5294849 Potter Mar 1994 A
5329991 Mehta et al. Jul 1994 A
5348078 Dushane et al. Sep 1994 A
5351035 Chrisco Sep 1994 A
5361009 Lu Nov 1994 A
5386577 Zenda Jan 1995 A
5390206 Rein et al. Feb 1995 A
5404934 Carlson et al. Apr 1995 A
5414618 Mock et al. May 1995 A
5429649 Robin Jul 1995 A
5439441 Grimsley et al. Aug 1995 A
5452197 Rice Sep 1995 A
5482209 Cochran et al. Jan 1996 A
5495887 Kathnelson et al. Mar 1996 A
5506572 Hills et al. Apr 1996 A
5526422 Keen Jun 1996 A
5537106 Mitsuhashi Jul 1996 A
5544036 Brown, Jr. et al. Aug 1996 A
5566879 Longtin Oct 1996 A
5570837 Brown et al. Nov 1996 A
5579197 Mengelt et al. Nov 1996 A
5590831 Manson et al. Jan 1997 A
5603451 Helander et al. Feb 1997 A
5654813 Whitworth Aug 1997 A
5668535 Hendrix et al. Sep 1997 A
5671083 Connor et al. Sep 1997 A
5673850 Uptegraph Oct 1997 A
5679137 Erdman et al. Oct 1997 A
5682206 Wehmeyer et al. Oct 1997 A
5711785 Maxwell Jan 1998 A
5732691 Maiello et al. Mar 1998 A
5736795 Zuehlke et al. Apr 1998 A
5761083 Brown, Jr. et al. Jun 1998 A
5782296 Mehta Jul 1998 A
5801940 Russ et al. Sep 1998 A
5810908 Gray et al. Sep 1998 A
5818428 Eisenbrandt et al. Oct 1998 A
5833134 Ho et al. Nov 1998 A
5839654 Weber Nov 1998 A
5840094 Osendorf et al. Nov 1998 A
5862737 Chin et al. Jan 1999 A
5873519 Beilfuss Feb 1999 A
5886697 Naughton et al. Mar 1999 A
5899866 Cyrus et al. May 1999 A
5902183 D'Souza May 1999 A
5903139 Kompelien May 1999 A
5909429 Satyanarayana et al. Jun 1999 A
5915473 Ganesh et al. Jun 1999 A
5917141 Naquin, Jr. Jun 1999 A
5917416 Read Jun 1999 A
D413328 Kazama Aug 1999 S
5937942 Bias et al. Aug 1999 A
5947372 Tiernan Sep 1999 A
5950709 Krueger et al. Sep 1999 A
6009355 Obradovich et al. Dec 1999 A
6013121 Chin et al. Jan 2000 A
6018700 Edel Jan 2000 A
6020881 Naughton et al. Feb 2000 A
6032867 Dushane et al. Mar 2000 A
D422594 Henderson et al. Apr 2000 S
6059195 Adams et al. May 2000 A
6081197 Garrick et al. Jun 2000 A
6084523 Gelnovatch et al. Jul 2000 A
6089221 Mano et al. Jul 2000 A
6101824 Meyer et al. Aug 2000 A
6104963 Cebasek et al. Aug 2000 A
6119125 Gloudeman et al. Sep 2000 A
6121875 Hamm et al. Sep 2000 A
6140987 Stein et al. Oct 2000 A
6141595 Gloudeman et al. Oct 2000 A
6145751 Ahmed Nov 2000 A
6149065 White et al. Nov 2000 A
6152375 Robison Nov 2000 A
6154081 Pakkala et al. Nov 2000 A
6167316 Gloudeman et al. Dec 2000 A
6190442 Redner Feb 2001 B1
6192282 Smith et al. Feb 2001 B1
6196467 Dushane et al. Mar 2001 B1
6205041 Baker Mar 2001 B1
6208331 Singh et al. Mar 2001 B1
6216956 Ehlers et al. Apr 2001 B1
6236326 Murphy May 2001 B1
6259074 Brunner et al. Jul 2001 B1
6260765 Natale et al. Jul 2001 B1
6285912 Ellison et al. Sep 2001 B1
6288458 Berndt Sep 2001 B1
6290140 Pesko et al. Sep 2001 B1
D448757 Okubo Oct 2001 S
6315211 Sartain et al. Nov 2001 B1
6318639 Toth Nov 2001 B1
6321637 Shanks et al. Nov 2001 B1
6330806 Beaverson et al. Dec 2001 B1
6344861 Naughton et al. Feb 2002 B1
6351693 Monie et al. Feb 2002 B1
6356038 Bishel Mar 2002 B2
6385510 Hoog et al. May 2002 B1
6394359 Morgan May 2002 B1
6397612 Kemkamp et al. Jun 2002 B1
6398118 Rosen et al. Jun 2002 B1
6448896 Bankus et al. Sep 2002 B1
6449726 Smith Sep 2002 B1
6453687 Sharood et al. Sep 2002 B2
D464948 Vasquez et al. Oct 2002 S
6460774 Sumida et al. Oct 2002 B2
6466132 Caronna et al. Oct 2002 B1
6478233 Shah Nov 2002 B1
6490174 Kompelien Dec 2002 B1
6502758 Cottrell Jan 2003 B2
6507282 Sherwood Jan 2003 B1
6512209 Yano Jan 2003 B1
6518953 Armstrong Feb 2003 B1
6518957 Lehtinen et al. Feb 2003 B1
6546419 Humpleman et al. Apr 2003 B1
6556899 Harvey et al. Apr 2003 B1
6566768 Zimmerman et al. May 2003 B2
6574537 Kipersztok et al. Jun 2003 B2
6578770 Rosen Jun 2003 B1
6580950 Johnson et al. Jun 2003 B1
6581846 Rosen Jun 2003 B1
6587739 Abrams et al. Jul 2003 B1
6595430 Shah Jul 2003 B1
6596059 Greist et al. Jul 2003 B1
D478051 Sagawa Aug 2003 S
6608560 Abrams Aug 2003 B2
6619055 Addy Sep 2003 B1
6619555 Rosen Sep 2003 B2
6621507 Shah Sep 2003 B1
6622925 Carner et al. Sep 2003 B2
6635054 Fjield et al. Oct 2003 B2
6663010 Chene et al. Dec 2003 B2
6671533 Chen et al. Dec 2003 B2
6685098 Okano et al. Feb 2004 B2
6702811 Stewart et al. Mar 2004 B2
6726112 Ho Apr 2004 B1
D492282 Lachello et al. Jun 2004 S
6771996 Bowe et al. Aug 2004 B2
6783079 Carey et al. Aug 2004 B2
6786421 Rosen Sep 2004 B2
6789739 Rosen Sep 2004 B2
6801849 Szukala et al. Oct 2004 B2
6807041 Geiger et al. Oct 2004 B2
6808524 Lopath et al. Oct 2004 B2
6810307 Addy Oct 2004 B1
6810397 Qian et al. Oct 2004 B1
6824069 Rosen Nov 2004 B2
6833990 LaCroix et al. Dec 2004 B2
6842721 Kim et al. Jan 2005 B2
6851621 Wacker et al. Feb 2005 B1
6868293 Schurr et al. Mar 2005 B1
6893438 Hall et al. May 2005 B2
6934862 Sharood et al. Aug 2005 B2
D512208 Kubo et al. Dec 2005 S
6973410 Seigel Dec 2005 B2
7001495 Essalik et al. Feb 2006 B2
D520989 Miller May 2006 S
7050026 Rosen May 2006 B1
7055759 Wacker et al. Jun 2006 B2
7080358 Kuzmin Jul 2006 B2
7083109 Pouchak Aug 2006 B2
7083189 Ogata Aug 2006 B2
7084774 Martinez Aug 2006 B2
7089088 Terry et al. Aug 2006 B2
7108194 Hankins, II Sep 2006 B1
7130719 Ehlers et al. Oct 2006 B2
D531588 Peh Nov 2006 S
7133748 Robinson Nov 2006 B2
D533515 Klein et al. Dec 2006 S
7146253 Hoog et al. Dec 2006 B2
7152806 Rosen Dec 2006 B1
7156318 Rosen Jan 2007 B1
7163156 Kates Jan 2007 B2
7188002 Chapman, Jr. et al. Mar 2007 B2
D542236 Klein et al. May 2007 S
7212887 Shah et al. May 2007 B2
7222800 Wruck et al. May 2007 B2
7225054 Amundson et al. May 2007 B2
7231605 Ramakasavan Jun 2007 B1
7232075 Rosen Jun 2007 B1
7240289 Naughton et al. Jul 2007 B2
7244294 Kates Jul 2007 B2
7261762 Kang et al. Aug 2007 B2
7263283 Knepler Aug 2007 B2
7274973 Nichols et al. Sep 2007 B2
7302642 Smith et al. Nov 2007 B2
7331187 Kates Feb 2008 B2
7331426 Jahkonen Feb 2008 B2
7341201 Stanimirovic Mar 2008 B2
7354005 Carey et al. Apr 2008 B2
RE40437 Rosen Jul 2008 E
7419532 Sellers et al. Sep 2008 B2
7435278 Terlson Oct 2008 B2
7451606 Harrod Nov 2008 B2
7452396 Terlson et al. Nov 2008 B2
7476988 Mulhouse et al. Jan 2009 B2
7489094 Steiner et al. Feb 2009 B2
7496627 Moorer et al. Feb 2009 B2
7500026 Fukanaga et al. Mar 2009 B2
7505914 McCall Mar 2009 B2
7542867 Steger et al. Jun 2009 B2
7556207 Mueller et al. Jul 2009 B2
7574283 Wang et al. Aug 2009 B2
7584897 Schultz et al. Sep 2009 B2
7594960 Johansson Sep 2009 B2
7595613 Thompson et al. Sep 2009 B2
7600694 Helt et al. Oct 2009 B2
7604046 Bergman et al. Oct 2009 B2
7617691 Street et al. Nov 2009 B2
7642674 Mulhouse Jan 2010 B2
7644591 Singh et al. Jan 2010 B2
7665019 Jaeger Feb 2010 B2
7676282 Bosley Mar 2010 B2
7692559 Face et al. Apr 2010 B2
7707189 Haselden et al. Apr 2010 B2
7713339 Johansson May 2010 B2
7739282 Smith et al. Jun 2010 B1
7755220 Sorg et al. Jul 2010 B2
7770242 Sell Aug 2010 B2
7786620 Vuk et al. Aug 2010 B2
7793056 Boggs et al. Sep 2010 B2
7814516 Stecyk et al. Oct 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7838803 Rosen Nov 2010 B1
7852645 Fouquet et al. Dec 2010 B2
7859815 Black et al. Dec 2010 B2
7865252 Clayton Jan 2011 B2
7941431 Bluhm et al. May 2011 B2
7952485 Schecter et al. May 2011 B2
7956719 Anderson, Jr. et al. Jun 2011 B2
7957775 Allen, Jr. et al. Jun 2011 B2
7984220 Gerard et al. Jul 2011 B2
7992764 Magnusson Aug 2011 B2
7992794 Leen et al. Aug 2011 B2
8032254 Amundson et al. Oct 2011 B2
8060470 Davidson et al. Nov 2011 B2
8087593 Leen Jan 2012 B2
8091796 Amundson et al. Jan 2012 B2
8110945 Simard et al. Feb 2012 B2
8138634 Ewing et al. Mar 2012 B2
8167216 Schultz et al. May 2012 B2
8183818 Elhalis May 2012 B2
8216216 Warnking et al. Jul 2012 B2
8219249 Harrod et al. Jul 2012 B2
8239066 Jennings et al. Aug 2012 B2
8276829 Stoner et al. Oct 2012 B2
8280556 Besore et al. Oct 2012 B2
8314517 Simard et al. Nov 2012 B2
8346396 Amundson et al. Jan 2013 B2
8417091 Kim et al. Apr 2013 B2
8437878 Grohman et al. May 2013 B2
8532190 Shimizu et al. Sep 2013 B2
8554374 Lunacek et al. Oct 2013 B2
8574343 Bisson et al. Nov 2013 B2
8613792 Ragland et al. Dec 2013 B2
8621881 Votaw et al. Jan 2014 B2
8623117 Zavodny et al. Jan 2014 B2
8629661 Shimada et al. Jan 2014 B2
8680442 Reusche et al. Mar 2014 B2
8704672 Hoglund et al. Apr 2014 B2
8729875 Vanderzon May 2014 B2
8731723 Boll et al. May 2014 B2
8734565 Hoglund et al. May 2014 B2
8768341 Coutelou et al. Jul 2014 B2
8881172 Schneider Nov 2014 B2
8886179 Pathuri et al. Nov 2014 B2
8886314 Crutchfield et al. Nov 2014 B2
8892223 Leen et al. Nov 2014 B2
8902071 Barton et al. Dec 2014 B2
9002523 Erickson et al. Apr 2015 B2
9071145 Simard et al. Jun 2015 B2
9080784 Dean-Hendricks et al. Jul 2015 B2
9143006 Lee et al. Sep 2015 B2
9206993 Barton et al. Dec 2015 B2
9234877 Hattersley et al. Jan 2016 B2
9264035 Tousignant et al. Feb 2016 B2
9272647 Gawade et al. Mar 2016 B2
9366448 Dean-Hendricks et al. Jun 2016 B2
9374268 Budde et al. Jun 2016 B2
9419602 Tousignant et al. Aug 2016 B2
20010029585 Simon et al. Oct 2001 A1
20010052459 Essalik et al. Dec 2001 A1
20020011923 Cunningham et al. Jan 2002 A1
20020022991 Sharood et al. Feb 2002 A1
20020082746 Schubring et al. Jun 2002 A1
20020092779 Essalik et al. Jul 2002 A1
20020181251 Kompelien Dec 2002 A1
20030033230 McCall Feb 2003 A1
20030034897 Shamoon et al. Feb 2003 A1
20030034898 Shamoon et al. Feb 2003 A1
20030040279 Ballweg Feb 2003 A1
20030060821 Hall et al. Mar 2003 A1
20030103075 Rosselot Jun 2003 A1
20030177012 Drennan Sep 2003 A1
20040262410 Hull Dec 2004 A1
20050083168 Breitenbach Apr 2005 A1
20050270151 Winick Dec 2005 A1
20060112700 Choi et al. Jun 2006 A1
20060196953 Simon et al. Sep 2006 A1
20060242591 Van Dok et al. Oct 2006 A1
20070013534 DiMaggio Jan 2007 A1
20070045429 Chapman, Jr. et al. Mar 2007 A1
20070114293 Gugenheim May 2007 A1
20070114295 Jenkins et al. May 2007 A1
20070119961 Kaiser May 2007 A1
20070241203 Wagner et al. Oct 2007 A1
20070277061 Ashe Nov 2007 A1
20070289731 Deligiannis et al. Dec 2007 A1
20070290924 McCoy Dec 2007 A1
20070296260 Stossel Dec 2007 A1
20080015740 Osann Jan 2008 A1
20090143880 Amundson et al. Jun 2009 A1
20090165644 Campbell Jul 2009 A1
20100084482 Kennedy et al. Apr 2010 A1
20100204834 Comerford et al. Aug 2010 A1
20110073101 Lau et al. Mar 2011 A1
20110185895 Freen Aug 2011 A1
20120126019 Warren May 2012 A1
20120199660 Warren Aug 2012 A1
20120233478 Mucignat Sep 2012 A1
20120273580 Warren Nov 2012 A1
20120323377 Hoglund et al. Dec 2012 A1
20120325919 Warren Dec 2012 A1
20130158714 Barton et al. Jun 2013 A1
20130158715 Barton et al. Jun 2013 A1
20130158717 Zywicki et al. Jun 2013 A1
20130158718 Barton et al. Jun 2013 A1
20130158720 Zywicki et al. Jun 2013 A1
20130213952 Boutin et al. Aug 2013 A1
20130238142 Nichols et al. Sep 2013 A1
20130245838 Zywicki et al. Sep 2013 A1
20130261807 Zywicki et al. Oct 2013 A1
20140062672 Gudan Mar 2014 A1
20140312131 Tousignant et al. Oct 2014 A1
20140312697 Landry et al. Oct 2014 A1
20150001930 Juntunen et al. Jan 2015 A1
20150115045 Tu Apr 2015 A1
20150370265 Ren et al. Dec 2015 A1
20150370268 Tousignant et al. Dec 2015 A1
20160010880 Bravard et al. Jan 2016 A1
Foreign Referenced Citations (19)
Number Date Country
1035448 Jul 1978 CA
3334117 Apr 1985 DE
0070414 Jan 1983 EP
0434926 Aug 1995 EP
0678204 Mar 2000 EP
0985994 Mar 2000 EP
1033641 Sep 2000 EP
1143232 Oct 2001 EP
1074009 Mar 2002 EP
2138919 Dec 2009 EP
2491692 Apr 1982 FR
2711230 Apr 1995 FR
9711448 Mar 1997 WO
9739392 Oct 1997 WO
0043870 Jul 2000 WO
0152515 Jul 2001 WO
0179952 Oct 2001 WO
0223744 Mar 2002 WO
2010021700 Feb 2010 WO
Non-Patent Literature Citations (172)
Entry
Inventek, “Inventek Systems, ISM4319-M3X-L44-X Embedded Serial-to-Wi-Fi Module eS-WiFi™ 802.11 b/g/n Data Sheet”, Inventek: Billerica, Feb. 6, 2012 (accessed from <<http://www.inventeksys.com/wp-content/uploads/2013/02/ISM4319—M3x—I44—Functional—Spec.pdf>>on Jul. 25, 2016).
ST Microelectronics. “Connectivity line, ARM®-based 32-bit MCU with 64/256 KB Flash, USB OTG, Ethernet, 10 timers, 2 CANs, 2 ADCs, 14 communication interfaces” (accessed from <<http://www.st.com/content/ccc/resource/technical/document/datasheet/e4/f3/1a/89/5a/02/46/ae/CD00220364.pdf/files/CD00220364.pdf/jcr:content/translations/en.CD00220364.pdf>>).
U.S. Appl. No. 14/088,306, filed Nov. 22, 2013.
U.S. Appl. No. 14/300,228, filed Jun. 9, 2014.
U.S. Appl. No. 14/300,232, filed Jun. 9, 2014.
U.S. Appl. No. 14/301,175, filed Jun. 10, 2014.
Lux TX500 Series Smart Temp Electronic Thermostat, 3 pages, prior to Jul. 7, 2004.
Lux TX9000 Installation, 3 pages, prior to Apr. 21, 2005.
Lux, “9000RF Remote Instructions,” 2 pages, prior to Nov. 30, 2007.
Lux, “511 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004.
Lux, “600 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004.
Lux, “602 Series Multi-Stage Programmable Thermostat,” Owner's Manual, 2 pages, prior to Jul. 7, 2004.
Lux, “60512110 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004.
Lux, “70019000 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004.
Lux, “PSPH521 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004.
Lux, “TX1500 Series Smart Temp Electronic Thermostat,” Owner's Manual, 6 pages, prior to Jul. 7, 2004.
METASYS, “HVAC PRO for Windows User's Manual,” 308 pages, 1998.
Mounting Template for Ritetemp Thermostat 8082, 1 page, 2002.
OMRON Electronic Components, LLC, “Micro Tilt Sensor D6B,” Cat. No. BO2WAD1, 2 pages, Jun. 2002.
OMRON Electronic Components, LLC, “Micro Tilt Sensor D6B,” Cat. No. JB301-E3-01, 6 pages, Mar. 2005.
Operation Manual for Ritetemp Touch Screen Thermostat 8082, 8 pages, 2002.
PG&E, “SmartAC Thermostat Programming Web Site Guide,” 2 pages, prior to Sep. 7, 2011.
Proliphix, 2004. “Web Enabled IP Thermostats, Intelligent HVAC Control,” Proliphix Inc., 2 pages, on or before Aug. 28, 2004.
Proliphix, “Web Enabled IP Thermostats, Ultimate in Energy Efficiency!,” Proliphix Inc., 2 pages, on or before Aug. 28, 2004.
Proliphix, Inc., “NT10e & NT20e,” 54 pages, on or before Aug. 30, 2005.
Quick Start Guide for Ritetemp Thermostat 8082, 1 page, 2002.
Remote Control Power Requirement for Ritetemp Thermostat 8082, 1 page, 2002.
Ritetemp Operation 8029, 3 pages, Jun. 19, 2002.
Ritetemp Operation 8050, 5 pages, Jun. 26, 2002.
Ritetemp Operation 8085, pp. 1-6, prior to Apr. 21, 2005.
Saravanan et al, “Recontigurable Wireless Interface for Networking Sensors,” IJCSNS International Journal of computer Science and Network Security, vol. 8 No. 7, pp. 270-276. Revised Jul. 20, 2008.
Screenshot of http://lagotek.com/index.html?currentSection=Touchlt, Lagotek, 1 page, prior to Mar. 29, 2012.
Sealed Unit Parts Co., Inc., Supco & CTC Thermostats . . . loaded with features, designed for value!, 6 pages, prior to Apr. 21, 2005.
Sharp Corporation, “GP1S036HEZ Phototransistor Output, Transmissive Photointerrupter with Tilt Direction (4-Direction) Detecting,” pp. 1-11, Oct. 3, 2005.
Signetics Linear Products, “TDA1024 Zero Crossing Triac Trigger,” Product Specification, 14 pages, Sep. 1985.
Totaline Model P474-1035 Owner's Manual Programmable 5-2 Day Digital Thermostat, pp. 1-21, Apr. 2003.
Totaline Star CPE230RF, Commercial Programmable Thermostat Wireless Transmitter, Owner's Manual, pp. 1-16, Oct. 1998.
Totaline Star P/N P474-0130 Non-Programmable Digital Thermostat Owner's Manual, pp. 1-22, prior to Apr. 21, 2005.
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100, 24 pages, Apr. 2001.
Totaline, 1998. “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100FM, 23 pages, Nov. 1998.
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P474-1050, 21 pages, Nov. 1998.
Totaline, 2001. “Intellistat Combination Temperature and Humidity Control,” Owner's Manual P/N P374-1600, 25 pages, Jun. 2001.
Totaline, “P/N P374-0431 Thermostat Remote Control and Receiver,” Owner's Manual, 11 pages, prior to Nov. 30, 2007.
Totaline, “P474-1100RF, P474-1100REC Wireless Thermostat,” 1 page, prior to Nov. 30, 2007.
Totaline, “Programmable Thermostat Configurable for Advanced Heat Pump or Dual Fuel Operation,” Owner's Manual P/N P374-1500, 24 pages, Jun. 1999.
Totaline, “Wireless Remote Sensor, Model P474-0401-1RF/Rec,” 2 pages, prior to Nov. 30, 2007.
Totaline, “Instructions P/N P474-1010”, Manual, 2 pages, Dec. 1998.
Totaline, “Programmable Thermostat”, Homeowner's Guide, 27 pages, Dec. 1998.
Totaline, “Wireless Programmable Digital Thermostat,” Owner's Manual 474-1100RF, 22 pages, 2000.
Trane, “System Programming, Tracer Summit Version 14, BMTW-SVP01D-EN,” 623 pages, 2002.
Trane, “Wireless Zone Sensor. Where Will Wireless Technology Take You?,” 4 pages, Feb. 2006.
Travis Industries, Remote Fireplace Thermostat, Part #99300651, 6 pages, printed Feb. 3, 2003.
Trouble Shooting Guide for Ritetemp Thermostat 8082, 1 page, 2002.
Visor Handheld User Guide, 280 pages, Copyright 1999-2000.
Warmly Yours, “Model TH111GFCI-P (120 VAC),” Manual, pp. 1-4, prior to Jul. 7, 2004.
Mite-Rodgers 1F80-224 Programmable Electronic Digital Thermostat, Installation and Operation Instructions, 8 pages, prior to Apr. 21, 2005.
White-Rodgers Comfort-Set III Thermostat, pp. 1-44, prior to Jul. 7, 2004.
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 5/2 Day Programmable Thermostat, 7 pages, prior to Jul. 7, 2004.
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 Non-Programmable Thermostat, 6 pages, prior to Apr. 21, 2005.
White-Rodgers, “Installation Instructions for Heating & Air Conditioning IF72 5/2 Day Programmable Heat Pump Thermostat,” 8 pages, prior to Jul. 7, 2004.
White-Rodgers, “Comfort-Set 90 Series Thermostat,” Manual, pp. 1-24, prior to Jul. 7, 2004.
White-Rodgers, 1F80-240 “(for Heating Only systems) Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004.
White-Rodgers, 1F80-241 “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 6 pages, prior to Jul. 7, 2004.
White-Rodgers, 1F80-261 “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004.
White-Rodgers, 1F81-261 “Programmable Electronic Digital Multi-Stage Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004.
White-Rodgers, 1F82-261 “Programmable Electronic Digital Heat Pump Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004.
White-Rodgers, Comfort-Set 90 Series Premium, 4 pages, prior to Apr. 21, 2005.
www.icmcontrols.com, Simplecomfort, SC3000 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004.
www.icmcontrols.com, Simplecomfort, SC3001 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004.
www.icmcontrols.com, Simplecomfort, SC3006 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004.
vvww.icmcontrols.com, Simplecomfort, SC3201 2 Stage Heat Pump Manual Changeover, 1 page, prior to Jul. 7, 2004.
www.icmcontrols.com, Simplecomfort, SC3801 2 Stage Heat/2 Stage Cool 2 Stage Heat Pump/Audio Changeover, 1 page, prior to Jul. 7, 2004.
Freudenthal et al., “Communicating Extensive Smart Home Functionality to Users of All Ages: the Design of a Mixed-Initiative Multimodal Thermostat-Interface,” pp. 34-39, Mar. 12-13, 2001.
Gentex Corporation, HD135, 135° Fixed Temperature Heat Detector AC Pwered, 120V, 60Hz With Battery Backup, Installation Instructions—Owner's Information, pp. 1-5, Jun. 1, 1998.
Gentex Corporation, 9000 Series, Photoelectric Type Single Station/Multi-Station Smoke Alarms AC Powered With Battery Backup, Installation Instructions—Owner's Information, pp. 9-1 to 9-6, Jan. 1, 1993.
Harris et al., “Optimizing Memory Transactions,” Microsoft Research Havard University, 12 pages, May 25, 2012.
Hendon Semiconductors, “OM1894 Dual Sensing Precision Triac Control,” Product Specification, Rev. 2.0, 21 pages, Apr. 19, 2007.
Honeywell Brivis Deluxe Programmable Thermostat, pp. 1-20, 2002.
Honeywell Brivis T8602C Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002.
Honeywell CT8602C Professional Fuel Saver Thermostat, pp. 1-6, 1995.
Honeywell Electronic Programmable Thermostat, Owner's Guide, pp. 1-20, 2003.
Honeywell Electronic Programmable Thermostats, Installation Instructions, pp. 1-8, 2003.
Honeywell News Release, “Honeywell's New Sysnet Facilities Integration System for Boiler Plant and Combustion Safety Processes,” 4 pages, Dec. 15, 1995.
Honeywell T8002 Programmable Thermostat, Installation Instructions, pp. 1-8, 2002.
Honeywell T8602A,B,C,D and TS8602A,C Chronotherm III Fuel Saver Thermostats, Installation Instructions, pp. 1-12, 1995.
Honeywell T8602D Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002.
Honeywell TH8000 Series Programmable Thermostats, Owner's Guide, pp. 1-44, 2004.
Honeywell, “Excel Building Supervisor-Integrated R7044 and FS90 Ver. 2.0,” Operator Manual, 70 pp., Apr. 1995.
Honeywell, “Installation Guide: Wireless Entry/Exit Remote,” 12 pages, 2011.
Honeywell, “Introduction of the S7350A Honeywell WebPAD Information Appliance,” Home and Building Control Bulletin, 2 pages, Aug. 29, 2000; Picture of WebPad Device with touch screen, 1 page; and screen shots of WebPad Device, 4 pages.
Honeywell, “RedLINK™ Wireless Comfort Systems,” RedLINK Wireless Technology, 8 pages, Aug. 2011.
Honeywell, “System Installation Guide: Important Instructions,” Honeywell International Inc., 25 pages, 2011.
Honeywell, “Total Connect Online Help Guide,” Revision A, 800-02577-TC, Mar. 2010.
Honeywell, “Total Connect User Guide,” Revision B, 34 pages, May 15, 2012.
Honeywell, 2012. “VisionPRO® 8000 Thermostats,” downloaded from http://yourhome.honeywell.com, 2 pages, May 24, 2012.
Honeywell, “W7006A Home Controller Gateway User Guide,” 31 pages, Jul. 2001.
Honeywell, MagicStat® CT3200 Programmable Thermostat, Installation and Programming Instructions, pp. 1-24, 2001.
Honeywell, Wireless Entry/Exit Remote, Operating Manual, 9 pages, 2011.
http://hunter-thermostats.com/hunter—programmable—thermostats.html, Hunter Thermostat 44668 Specifications, and 14758 Specifications, 2 pages, Printed Jul. 13, 2011.
http://www.cc.gatech.edu/computing/classes/cs6751—94—falligroupdclimate-2/node1.html, “Contents,” 53 pages, printed Sep. 20, 2004.
http://www.dimplex.com/en/home—heating/linear—convector—baseboards/products/Ipc—series/inear—proportional—convector, Dimplex Coporation, “Linear Convector LPC Series,” 2 pages, May 2011.
http://www.enernetcorp.com/, Enernet Corporation, “Wireless Temperature Control” 1 page 2011.
http://www.enernetcorp.com/t9000-wireless-thermostat.html, Enernet Corporation, “T9000 Series Wireless Fan Coil Thermostat,” Product Brochure, 2 pages, 2011.
http://www.enocean-alliance.org/en/products/regulvar—rw-ssr347-15a/, Regulvar Corporation, “RW-SSR347-15A, Relais sans fil à semi-conducteurs” 3 pages, Aug. 8, 2009.
http://www.enocean-alliance.org/en/products/regulvar—rw-tp01/, Regulvar Corporation, “RW-TP01, Capteur de température sans fil” 3 pages, Aug. 9, 2009.
http://www.forwardthinking.honeywell.com/products/wireless/focus—pro/focus—pro—feature.html, Honeywell Corporation, “Wireless FocusPRO® pages”, 2 pages, 2011.
http://www.ritetemp.info/rtMenu—13.html, Rite Temp 8082, 6 pages, printed Jun. 20, 2003.
http://www.thermostatsales.com, Robertshaw, “9610 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004.
http://www.thermostatsales.com, Robertshaw, “9700 Deluxe Programmable Thermostat” 3 pages, printed Jun. 17, 2004.
http://www.thermostatsales.com, Robertshaw, “9710 Deluxe Programmable Thermostat,” 3 pages, printed Jun. 17, 2004.
http://www.thermostatsales.com, Robertshaw, “9720 Deluxe Programmable Thermostat,” 3 pages, printed Jun. 17, 2004.
Hunter, “44200/44250,” Owner's Manual, 32 pages, prior to Jul. 7, 2004.
Hunter, “44300/44350,” Owner's Manual, 35 pages, prior to Jul. 7, 2004.
Hunter, “Auto Saver 550”, Owner's Manual Model 44550, 44 pages, prior to Jul. 7, 2004.
Hunter, “Model 44758 Remote Sensor,” Owner's Manual, 2 pages, Revision Sep. 4, 2008.
Install Guide for Ritetemp Thermostat 8082, 6 pages, 2002.
Invensys™, “9700i 9701i 9715i 9720i Deluxe Programmable Thermostats,” User's Manual, pp. 1-28, prior to Jul. 7, 2004.
Larsson, “Battery Supervision in Telephone Exchanges,” Ericsson Components AB Sweden, 5 pages, Downloaded May 5, 2012.
Lennox, “Network Control Panel (NCP),” User's Manual, 18 pages, Nov. 1999.
Lennox, “Prodigy Control System,” Lennox Industries, 4 pages, May 25, 2012.
Logitech, “Harmony 880 Remote User Manual,” v. 1, pp. 1-15, prior to Nov. 30, 2007.
Lux ELV1 Programmable Line Voltage Thermostat, Installation Instructions, 3 pages, prior to Jul. 7, 2004.
“RCS X10 Thermostat Plug-in for HomeSeer Beta Version 2.0.105,” 25 pages, prior to Sep. 7, 2011.
“CorAccess Systems/In Home,” http://web.archive.org/web20011212084427/www.coraccess.com/home.html, 1 page, copyright 2001, printed Aug. 19, 2004.
“HAI Company 2004. Background,” http://www.homeauto.com/AboutHAI/abouthai—main.htm, 2 pages, printed Aug. 19, 2004.
“High-tech options take hold in new homes—Aug. 28, 2000—Dallas Business Journal,” http://bizjoumals.com/dallas/stories/2000/08/28/focus4, 3 pages, dated Aug. 28, 2000, printed Aug. 19, 2004.
“Home Toys Review—Touch Linc”, http://www.hometoys.com/htinews/aug99/reviews/touchlinc/touchlinc.htm, 3 pages, dated Aug. 1999, printed Aug. 20, 2004.
“HTI News Release,” http://www.hometoys.com/htinews/apr99/releases/ha101.htm, 3 pages, Apr., 1999.
“Mark of Excellence Award Finalist Announced,” http://64.233.167.104/search?Q=cache:ciOA2YtYaBIJ:www.hometoys.com/releases/mar. . . , 6 pages, Leopard Touchscreen on p. 2, dated prior to Mar. 4, 2000, printed Aug. 20, 2004.
“Product Review—Philips Pronto Remote Control,” http://hometheaterhifi.com/volume—6—2/philipsprontoremotecontrol.html, 5 pages, dated May 1999, printed Aug. 20, 2004.
“RC X10 Automation Forum: Control your Heating and Cooling System with Pronto(1/1),” http://www.remotecentral.com/cgi-bin/mboard/rc-x10/thread.cgi?12, 2 pages, dated Apr. 23, 1999, printed Aug. 20, 2004.
“Spotlight on integrated systems,” Custom Builder, vol. 8, No. 2, p. 66(6), Mar.-Apr. 1993.
“Vantage Expands Controls for AudioNideo, HVAC and Security,” http://www.hometoys.com/htinews/aug99/releases/vantage03.htm, 2 pages, dated Aug. 3, 1999, printed Aug. 20, 2004.
ADI, “Leopard User Manual,” 93 pages, 2001.
Adicon 2500, “The Automator,” 4 pages, Oct.-Dec. 2000.
ADT Security Services, “iCenter Advanced User Interface 8142ADT,” Installation and Setup Guide, 4 pages, May 2001; First Sale Feb. 2001.
AED Electronics, Inc., “Presenting Climatouch the Most Innovative Thermostat in the World!,” 2 pages, prior to Nov. 30, 2007.
Andrews et al., “Clicky: User-Centric Input for Active Spaces,” 17 pages, Aug. 2004.
Aprilaire Electronic Thermostats Models 8344, 8346, 8348, 8363, 8365, 8366 Operating Instructions, 8 pages, 2003.
Aube Technologies, Electronic Thermostat for Heating System Model TH135-01, 5 pages, Aug. 14, 2001.
Aube Technologies, TH140-28 Electronic Programmable Thermostat, Installation Instructions and User Guide, pp. 1-4, Jan. 22, 2004.
AutomatedBuildings.com Article—“Thin Client” Solutions, “Pressure, Air Flow, Temperature, Humidity & Valves,” Dwyer Instruments, Inc., 5 pages, printed Sep. 20, 2004.
Blake et al., “Seng 310 Final Project Demo Program” Illustration, 3 pages, Apr. 6, 2001.
Blake et al., “Seng 310 Final Project” Report, dated Apr. 6, 2001.
Blister Pack Insert from a Ritetemp 8082 Touch Screen Thermostat Product, 2 pages, 2002.
Braeburn Model 3000 Owner's Manual, pp. 1-13, 2001.
Braeburn Model 5000 Owner's Manual, pp. 1-17, 2001.
BRK Electronics Maximum Protection Plus Ultimate Convenience Smoke Alarm, 24 pages, Sep. 2000.
BRK First Alert, User's Manual, Smoke and Fire Alarms, pp. 1-7, Nov. 2002.
Business Wire, “MicroTouch Specialty Products Group to Capitalize on Growing Market for Low-Cost Digital Matrix Touchscreens,” p1174 (2 pages), Jan. 6, 1999.
Cardio Manual, available at http://www.secantca/En/Documentation/Cardio2é-Manual.pdf, Cardio Home Automation Inc., 55 pages, printed Sep. 28, 2004.
Cardio, by Secant; http://www.hometoys.com/htinews/apr98/reviews/cardio.htm, “HTINews Review,” Feb. 1998, 5 pages, printed Sep. 14, 2004.
Carrier Microelectronic Programmable Thermostat Owner's Manual, pp. 1-24, May 1994.
Carrier TSTATCCRFO1 Programmable Digital Thermostat, pp. 1-21, prior to Apr. 21, 2005.
Carrier, “Edge Performance Programmable Owner's Manual,” 64 pages, 2007.
Carrier, “Programmable Dual Fuel Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-12, Oct. 1998.
Carrier, “Programmable Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-16, Sep. 1998.
Carrier, “Standard Programmable Thermostat,” Homeowner's Manual, pp. 1-8 pp., 1998.
Carrier, “Thermidistat Control, Installation, Start-Up, and Operating Instructions,” pp. 1-12, Aug. 1999.
Carrier, “Comfort Programmable Owner's Manual,” Carrier Touch-N-Go, Catalog No: 0M-TCPHP-4CA 60 pages, 2010.
Cirrus Logic, Inc., “CS1501 Digital Power Factor Correction Control IC,” 16 pages, 2012.
Climatouch, User Manual, Climatouch CTO3TSB Thermostat, Climatouch CTO3TSHB Thermostat with Humidity Control, Outdoor UHF Temperature Transmitter 217S31, 19 pages, Printed Sep. 15, 2004.
International Search Report for Corresponding Application No. PCT/US2014/044229, dated Oct. 13, 2014.
CorAccess, “Companion 6,” User Guide, pp. 1-20, Jun. 17, 2002.
Danfoss RT51/51RF & RT52/52RF User Instructions, 2 pages, Jun. 2004.
DeKoven et al., “Designing Collaboration in Consumer Products,” 2 pages, 2001.
DeKoven et al., “Measuring Task Models in Designing Intelligent Products,” 2 pages, Jan. 13-16, 2002.
DESA Heating Products, “Wireless Hand-Held Remote Control Sets Models (C) GHRCB and (C)GHRCTB, Operating Instructions,” 4 pages, May 2003.
Domotique Secant Home Automation—Web Page, available at http://www.secant.ca/En/Company/Default.asp, 1 page, printed Sep. 28, 2004.
Emme Core User Guide, Version 1.1, 47 pages, Jan. 2011.
Firex Smoke Alarm, Ionization Models AD, ADC Photoelectric Model Pad, 4 pages, prior to Apr. 21, 2005.
Fluke, “561 HVAC Pro” Infrared Thermometer User's Manual, 22 pages, Downloaded May 24, 2012.
Related Publications (1)
Number Date Country
20150144706 A1 May 2015 US