The smart energy market often utilizes a wireless network to provide metering and energy management. Wireless networking include neighborhood area networks for meters, using wireless networking for sub-metering within a building, home or apartment and using wireless networking to communicate to devices within the home. Different installations and utility preferences often result in different network topologies and operation. However, each network typically operates using the same basic principals to ensure interoperability. Also, smart energy devices within a home may be capable of receiving public pricing information and messages from the metering network. However, these devices may not have or need all the capabilities required to join a smart energy network.
A smart energy network may assume different network types, including a utility private home area network (HAN), a utility private neighborhood area network (NAN), or a customer private HAN. A utility private HAN may include an in-home display or a load control device working in conjunction with an energy service portal (ESP), but typically does not include customer-controlled devices.
A smart energy network may interface with different types of devices including a heating, ventilating, and air conditioning (HVAC) system. With the increasing cost of energy, it is important that a HVAC system operates efficiently and reliably. Consequently there is a real market need to provide information of different components in a HVAC system through a wireless network.
The present invention provides apparatuses and computer readable media for obtaining status information from a heating, ventilating, and air conditioning (HVAC) system and sending the status information to a remote networked device using a data container.
With another aspect of the invention, a thermostat obtains status information from a HVAC system, associates the status information with a corresponding index number, and includes the index number and HVAC information in a data container. The data container can assume different forms, including a customer-defined cluster or a publicly accessible cluster.
With another aspect of the invention, the HVAC information is encoded so that the HVAC information can be included as an attribute of a publicly accessible cluster.
With another aspect of the invention, HVAC information includes relay status of a relay in the HVAC system. The relay status may further include relay on time information and relay number of cycles information for the relay. The relay is identified by an index number that is included in an attribute.
With another aspect of the invention, a networked device receives HVAC information from a thermostat. The networked device receives at least one data container having a plurality of status information from a heating, ventilating, and air conditioning (HVAC) system in a data container. Each status information is associated with a different index number. The networked device can read a selected status information using a selected index number.
The foregoing summary of the invention, as well as the following detailed description of exemplary embodiments of the invention, is better understood when read in conjunction with the accompanying drawings, which are included by way of example, and not by way of limitation with regard to the claimed invention.
Embodiments of the invention reference the following terms.
Attribute: A data entity which represents a physical quantity or state. This data is communicated to other devices using commands.
Cluster: A container for one or more attributes and/or messages in a command structure.
With some embodiments, network 107 supports a wireless protocol, including ZigBee™ or other IEEE 802.15.4 based protocols. Additional embodiments include supporting network protocols using a Wi-Fi® protocol, a Bluetooth® protocol, or using wired connections, such as 10 BASE-T or 100 BASE-T Ethernet.
HVAC information may be provided from thermostat 101 to monitoring device 105 in accordance with a ZigBee smart energy specification, e.g., Smart Energy Profile Specification, ZigBee Standards Organization, May 2008 and ZigBee Cluster Library Specification, ZigBee Standards Organization, May 2008, which are incorporated by reference. However, sending HVAC information from thermostat 101 to monitoring device 101 as manufacturing specific information (customer-defined cluster) in a data container (cluster), which may be conveyed by the payload of a ZigBee Cluster Library (ZCL) frame format, may be difficult to an end user because the specific data format is typically not published and thus not easily available to the end user. As will be discussed, HVAC information may be facilitated by including HVAC information in a standard available cluster (publicly accessible cluster).
Thermostat 101 may include different HVAC information in a standard available cluster. For example, thermostat 101 may collect HVAC information, including control relay life, control relay number of cycles, end controlling device type, and the like. The HVAC information may be sent to a server, gateway, or other networked devices through manufacturing specific clusters. In addition, thermostat 101 may encode the HVAC information (e.g., as exemplified in
Attribute 301 shows the general data structure that can support attributes 303 and 305. Attributes 303 and 305 contain different HVAC information, which is associated with different index numbers. Attribute 303 includes an index number of ‘0’ to indicate that it contains HVAC type 313, total percentage on time (for HVAC system) 315, and reserved field 317 (which may be used for other HVAC status information). Attribute 305 contains relay information for a specific relay (e.g., relay 113 or relay 115) as identified by the index number 319. With a four-bit index field, exemplary data structure 300 may accommodate a maximum of 15 relays in HVAC system 103. Each attribute 311 contains relay on time 321, relay number of cycles 323, relay last hour on time 325, and relay last number of cycles 327 for the corresponding relay as identified by the index number. For example, when the index number equals ‘1’, the relay information corresponds to heating relay113 and when the index number equals ‘2’, the relay information corresponds to cooling relay 115.
By applying the reverse conversion process, a receiving device (e.g., monitoring device 105) can decode encoded HVAC information 503 to HVAC information 501. With the first read attribute, the receiving device receives a ManufacturerName attribute with an index number equal to ‘0’, thus indicating the HVAC system type and overall PCT information. Each subsequent read (having an index number greater than ‘0’) contains relay information for the corresponding HVAC relay.
Embodiments of the invention may include forms of computer-readable media as supported by memory 803. Computer-readable media include any available media that can be accessed by processing circuit 801. Computer-readable media may comprise storage media and communication media. Storage media include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, object code, data structures, program modules, or other data. Communication media include any information delivery media and typically embody data in a modulated data signal such as a carrier wave or other transport mechanism.
Memory 903 supports computer-readable media that can be accessed by a computing device 901 in accordance with the previous discussion.
As can be appreciated by one skilled in the art, a computer system with an associated computer-readable medium containing instructions for controlling the computer system can be utilized to implement the exemplary embodiments that are disclosed herein. The computer system may include at least one computer such as a microprocessor, digital signal processor, and associated peripheral electronic circuitry.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Number | Name | Date | Kind |
---|---|---|---|
5086385 | Launey et al. | Feb 1992 | A |
5838226 | Houggy et al. | Nov 1998 | A |
6029092 | Stein | Feb 2000 | A |
6192282 | Smith et al. | Feb 2001 | B1 |
6778945 | Chassin et al. | Aug 2004 | B2 |
6999996 | Sunderland | Feb 2006 | B2 |
7000422 | Street et al. | Feb 2006 | B2 |
7222800 | Wruck | May 2007 | B2 |
7228691 | Street et al. | Jun 2007 | B2 |
20030204595 | Lev et al. | Oct 2003 | A1 |
20040059815 | Buckingham et al. | Mar 2004 | A1 |
20050040248 | Wacker et al. | Feb 2005 | A1 |
20050150967 | Chapman, Jr. et al. | Jul 2005 | A1 |
20060055549 | Fischer et al. | Mar 2006 | A1 |
20060168170 | Korzeniowski | Jul 2006 | A1 |
20070061046 | Mairs et al. | Mar 2007 | A1 |
20080048046 | Wagner et al. | Feb 2008 | A1 |
20080099568 | Nicodem et al. | May 2008 | A1 |
20080218148 | Robertson et al. | Sep 2008 | A1 |
20090088902 | Williams | Apr 2009 | A1 |
20090206059 | Kiko | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
1699864 | Nov 2005 | CN |
Number | Date | Country | |
---|---|---|---|
20100100358 A1 | Apr 2010 | US |