This patent specification relates to systems, methods, and related computer program products for the monitoring and control of energy-consuming systems or other resource-consuming systems. More particularly, this patent specification relates to user interfaces for control units that govern the operation of energy-consuming systems, household devices, or other resource-consuming systems, including user interfaces for thermostats that govern the operation of heating, ventilation, and air conditioning (HVAC) systems.
While substantial effort and attention continues toward the development of newer and more sustainable energy supplies, the conservation of energy by increased energy efficiency remains crucial to the world's energy future. According to an October 2010 report from the U.S. Department of Energy, heating and cooling account for 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Along with improvements in the physical plant associated with home heating and cooling (e.g., improved insulation, higher efficiency furnaces), substantial increases in 5 energy efficiency can be achieved by better control and regulation of home heating and cooling equipment. By activating heating, ventilation, and air conditioning (HVAC) equipment for judiciously selected time intervals and carefully chosen operating levels, substantial energy can be saved while at the same time keeping the living space suitably comfortable for its occupants.
Some thermostats offer programming abilities that provide the potential for balancing user comfort and energy savings. However, users are frequently intimidated by a dizzying array of switches and controls. Thus, the thermostat may frequently resort to default programs, thereby reducing user satisfaction and/or energy-saving opportunities.
Provided according to some embodiments is programmable device, such as a thermostat, for control of an HVAC system. Configurations and positions of device components allow for the device to improve energy conservation and to simultaneously allow users to experience pleasant interactions with the device (e.g., to set preferences). The device has an outer ring that is rotatable, such that a user may circularly scroll through selection options (e.g., corresponding to temperature setpoints). For example, a setpoint temperature may gradually increase as a user rotates the ring in a clockwise direction. Inward pressing of the outer ring may also allow a user to view an interactive menuing system. The user may interact with the menuing system via rotations and/or inward pressings of the outer ring. Thus, the user may be provided with an intuitive and powerful system in which a setpoint temperature and other thermostat operational controls may be set.
In one embodiment the device comprises a passive infrared (PIR) motion sensor disposed inside a housing of the thermostat for sensing occupancy in the vicinity of the device. The PIR motion sensor has a radiation receiving surface and is able to detect lateral movement of an occupant in front of the forward-facing surface of the housing. The device further comprises a grille member having one or more openings and included along the forward-facing surface of the housing, the grille member being placed over the radiation receiving surface of the PIR motion sensor. The grille member is configured and dimensioned to visually conceal and protect the PIR motion sensor disposed inside the housing, the visual concealment promoting a visually pleasing quality of the device, while at the same time permitting the PIR motion sensor to effectively detect the lateral movement of the occupant. In one embodiment, the grille member openings are slit-like openings oriented along a substantially horizontal direction.
In one embodiment a temperature sensor is also positioned behind the grille member, the temperature sensor also being visually concealed behind the grille member. In one embodiment the grille member is formed from a thermally conductive material such as a metal, and the temperature sensor is placed in thermal communication with the metallic grille, such as by using a thermal paste or the like. Advantageously, in addition to exposing the temperature sensor to ambient room air by virtue of the grille openings, the metallic grille member can further improve temperature sensing performance by acting as a sort of “thermal antenna” for the temperature sensor.
In some embodiments, a thermostat is provided. The thermostat may include: a power source; a housing; one or more temperature sensors positioned within the housing to measure an ambient air temperature; a ring-shaped user-interface component configured to track a rotational input motion of a user; a processing system disposed within the housing and coupled to the one or more temperature sensors and to the ring-shaped user interface component, the processing system being configured to dynamically identify a setpoint temperature value based on the tracked rotational input motion; an electronic display coupled to the processing system and configured to dynamically display a digital numerical value representative of the identified setpoint temperature value; and a plurality of heating, ventilation, and air conditioning (HVAC) wire connectors coupled to the processing system, the processing system being configured to send at least one control signal through the HVAC wire connectors to an HVAC system based at least in part on a comparison of the measured ambient temperature and the setpoint temperature value; wherein said ring-shaped user-interface component is further configured to be inwardly pressable by the user along a direction of an axis of rotation of the rotational input motion; wherein said processing system, said electronic display, and said ring-shaped user interface component are collectively configured such that (i) an interactive thermostat menuing system is accessible to the user by an inward pressing of the ring-shaped user interface component, and (ii) a user navigation within the interactive thermostat menuing system is achievable by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
In some embodiments, a method for control of an HVAC system by a thermostat is provided. The thermostat may include: a housing, one or more temperature sensors, a ring-shaped user-interface component, a processing system, an electronic display, and a plurality of HVAC wire connectors. The method may include: measuring an ambient air temperature using the one or more temperature sensors; detecting and tracking rotational movements of the ring-shaped user-interface component to track at least one rotational input motion of a user; dynamically identifying a setpoint temperature value based on the tracked rotational input motion; dynamically displaying a digital numerical value representative of the identified setpoint temperature value on the electronic display; sending at least one control signal through the HVAC wire connectors to the HVAC system based at least in part on a comparison of the measured ambient air temperature and the setpoint temperature value; detecting an inward pressing of the ring-shaped user-interface component by the user, the inward pressing being along a direction of an axis of rotation of said tracked rotational movements of the ring-shaped user-interface component; and responsive to said detected inward pressing of the ring-shaped user-interface component, providing the user with an interactive thermostat menuing system on said electronic display, comprising providing user navigation within the interactive thermostat menuing system by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
In some embodiments, a thermostat is provided. The thermostat may include: a disk-like housing including a circular front face; an electronic display centrally disposed on the front face; an annular ring member disposed around the centrally disposed electronic display, said annular ring member and said housing being mutually configured such that (i) said annular ring member is rotatable around a front-to-back axis of the thermostat, and (ii) said annular ring member is inwardly pressable along a direction of the front-to-back axis; one or more temperature sensors positioned within the housing to measure an ambient air temperature; a processing system disposed within the housing and coupled to the one or more temperature sensors and to the annular ring member; said processing system being configured and programmed to dynamically alter a setpoint temperature value based on a user rotation of the annular ring member; said processing system being further configured and programmed to send at least one control signal to an HVAC system based at least in part on a comparison of the measured ambient air temperature and the setpoint temperature value; said processing system being further configured and programmed to provide an interactive thermostat menuing system on said electronic display responsive to an inward pressing of the annular ring member; said processing system being further configured and programmed to provide user navigation within the interactive thermostat menuing system based on rotation of the annular ring member by the user and inward pressing of the annular ring member by the user.
The subject matter of this patent specification relates to the subject matter of the following commonly assigned applications, each of which is incorporated by reference herein: U.S. Ser. No. 12/881,430 filed Sep. 14, 2010; U.S. Ser. No. 12/881,463 filed Sep. 14, 2010; U.S. Prov. Ser. No. 61/415,771 filed Nov. 19, 2010; U.S. Prov. Ser. No. 61/429,093 filed Dec. 31, 2010; U.S. Ser. No. 12/984,602 filed Jan. 4, 2011; U.S. Ser. No. 12/987,257 filed Jan. 10, 2011; U.S. Ser. No. 13/033,573 filed Feb. 23, 2011; U.S. Ser. No. 29/386,021, filed Feb. 23, 2011; U.S. Ser. No. 13/034,666 filed Feb. 24, 2011; U.S. Ser. No. 13/034,674 filed Feb. 24, 2011; U.S. Ser. No. 13/034,678 filed Feb. 24, 2011; U.S. Ser. No. 13/038,191 filed Mar. 1, 2011; U.S. Ser. No. 13/038,206 filed Mar. 1, 2011; U.S. Ser. No. 29/399,609 filed Aug. 16, 2011; U.S. Ser. No. 29/399,614 filed Aug. 16, 2011; U.S. Ser. No. 29/399,617 filed Aug. 16, 2011; U.S. Ser. No. 29/399,618 filed Aug. 16, 2011; U.S. Ser. No. 29/399,621 filed Aug. 16, 2011; U.S. Ser. No. 29/399,623 filed Aug. 16, 2011; U.S. Ser. No. 29/399,625 filed Aug. 16, 2011; U.S. Ser. No. 29/399,627 filed Aug. 16, 2011; U.S. Ser. No. 29/399,630 filed Aug. 16, 2011; U.S. Ser. No. 29/399,632 filed Aug. 16, 2011; U.S. Ser. No. 29/399,633 filed Aug. 16, 2011; U.S. Ser. No. 29/399,636 filed Aug. 16, 2011; U.S. Ser. No. 29/399,637 filed Aug. 16, 2011; U.S. Ser. No. 13/199,108, filed Aug. 17, 2011; U.S. Ser. No. 13/267,871 filed Oct. 6, 2011; U.S. Ser. No. 13/267,877 filed Oct. 6, 2011; U.S. Ser. No. 13/269,501, filed Oct. 7, 2011; U.S. Ser. No. 29/404,096 filed Oct. 14, 2011; U.S. Ser. No. 29/404,097 filed Oct. 14, 2011; U.S. Ser. No. 29/404,098 filed Oct. 14, 2011; U.S. Ser. No. 29/404,099 filed Oct. 14, 2011; U.S. Ser. No. 29/404,101 filed Oct. 14, 2011; U.S. Ser. No. 29/404,103 filed Oct. 14, 2011; U.S. Ser. No. 29/404,104 filed Oct. 14, 2011; U.S. Ser. No. 29/404,105 filed Oct. 14, 2011; U.S. Ser. No. 13/275,307 filed Oct. 17, 2011; U.S. Ser. No. 13/275,311 filed Oct. 17, 2011; U.S. Ser. No. 13/317,423 filed Oct. 17, 2011; U.S. Ser. No. 13/279,151 filed Oct. 21, 2011; U.S. Ser. No. 13/317,557 filed Oct. 21, 2011; U.S. Prov. Ser. No. 61/627,996 filed Oct. 21, 2011; PCT/US11/61339 filed Nov. 18, 2011; PCT/US11/61344 filed Nov. 18, 2011; PCT/US11/61365 filed Nov. 18, 2011; PCT/US11/61379 filed Nov. 18, 2011; PCT/US11/61391 filed Nov. 18, 2011; PCT/US11/61479 filed Nov. 18, 2011; PCT/US11/61457 filed Nov. 18, 2011; and PCT/US11/61470 filed Nov. 18, 2011. The above-referenced patent applications are collectively referenced herein as “the commonly assigned incorporated applications.”
Provided according to one or more embodiments are systems, methods, computer program products, and related business methods for controlling one or more HVAC systems based on one or more versatile sensing and control units (VSCU units), each VSCU unit being configured and adapted to provide sophisticated, customized, energy-saving HVAC control functionality while at the same time being visually appealing, non-intimidating, elegant to behold, and delightfully easy to use. The term “thermostat” is used hereinbelow to represent a particular type of VSCU unit (Versatile Sensing and Control) that is particularly applicable for HVAC control in an enclosure. Although “thermostat” and “VSCU unit” may be seen as generally interchangeable for the contexts of HVAC control of an enclosure, it is within the scope of the present teachings for each of the embodiments hereinabove and hereinbelow to be applied to VSCU units having control functionality over measurable characteristics other than temperature (e.g., pressure, flow rate, height, position, velocity, acceleration, capacity, power, loudness, brightness) for any of a variety of different control systems involving the governance of one or more measurable characteristics of one or more physical systems, and/or the governance of other energy or resource consuming systems such as water usage systems, air usage systems, systems involving the usage of other natural resources, and systems involving the usage of various other forms of energy. Each VSCU unit includes a user-interface component, such as a rotatable ring. Using the ring, a user can easily navigate through and select between selection options (e.g., to set a temperature setpoint or identify preferences). For example, a user may rotate a ring (e.g., in a clockwise direction); a processing system may dynamically identify a setpoint temperature value (e.g., higher than a previous value) based on rotational input; an electronic display may dynamically display a digital numerical value representative of the identified setpoint temperature value. Further, the user may be able to view and/or navigate through a menuing system using the ring. For example, a user input (e.g., inwards pressure on the ring) may result in a presentation of a menuing system on the display. A user may rotate the ring to, e.g., scroll through selection options and select an option by pressing on the ring. Inwards pressure on the ring may cause a distinct sensory response (e.g., a clicking sound or feel) that may confirm to the user that the selection has been made. In some instances, the ring is the primary or only user-input component within the VSCU. Thus, a user will not be intimidated by a large number of controls and will be able to easily understand how to interact with the unit.
Nevertheless, each VSCU unit may be advantageously provided with a selectively layered functionality, such that unsophisticated users are only exposed to a simple user interface, but such that advanced users can access and manipulate many different energy-saving and energy tracking capabilities. For example, an advanced user may be able to set a plurality of time-dependent temperature setpoints (i.e., scheduled setpoints) through thermostat interactions via the rotatable ring, while an unsophisticated user may limit such interactions to only set seemingly or actually static setpoints. Importantly, even for the case of unsophisticated users who are only exposed to the simple user interface, the VSCU unit provides advanced energy-saving functionality that runs in the background, the VSCU unit quietly using multi-sensor technology to “learn” about the home's heating and cooling environment and optimizing the energy-saving settings accordingly.
The VSCU unit also “learns” about the users themselves through user interactions with the device (e.g., via the rotatable ring) and/or through automatic learning of the users' preferences. For example, in a congenial “setup interview”, a user may respond to a few simple questions (e.g., by rotating the rotatable ring to a position at which a desired response option is displayed). Multi-sensor technology may later be employed to detect user occupancy patterns (e.g., what times of day they are home and away), and a user's control over set temperature on the dial may be tracked over time. The multi-sensor technology is advantageously hidden away inside the VSCU unit itself, thus avoiding the hassle, complexity, and intimidation factors associated with multiple external sensor-node units. On an ongoing basis, the VSCU unit processes the learned and sensed information according to one or more advanced control algorithms, and then automatically adjusts its environmental control settings to optimize energy usage while at the same time maintaining the living space at optimal levels according to the learned occupancy patterns and comfort preferences of the user. Even further, the VSCU unit is programmed to promote energy-saving behavior in the users themselves by virtue of displaying, at judiciously selected times on its visually appealing user interface, information that encourages reduced energy usage, such as historical energy cost performance, forecasted energy costs, and even fun game-style displays of congratulations and encouragement.
Advantageously, the selectively layered functionality of the VSCU unit allows it to be effective for a variety of different technological circumstances in home and business environments, thereby making the same VSCU unit readily saleable to a wide variety of customers. For simple environments having no wireless home network or internet connectivity, the VSCU unit operates effectively in a standalone mode, being capable of learning and adapting to its environment based on multi-sensor technology and user input, and optimizing HVAC settings accordingly. However, for environments that do indeed have home network or internet connectivity, the VSCU unit can operate effectively in a network-connected mode to offer a rich variety of additional capabilities.
It is to be appreciated that while one or more embodiments is detailed herein for the context of a residential home, such as a single-family house, the scope of the present teachings is not so limited, the present teachings being likewise applicable, without limitation, to duplexes, townhomes, multi-unit apartment buildings, hotels, retail stores, office buildings, industrial buildings, and more generally any living space or work space having one or more HVAC systems. It is to be further appreciated that while the terms user, customer, installer, homeowner, occupant, guest, tenant, landlord, repair person, and the like may be used to refer to the person or persons who are interacting with the VSCU unit or other device or user interface in the context of some particularly advantageous situations described herein, these references are by no means to be considered as limiting the scope of the present teachings with respect to the person or persons who are performing such actions. Thus, for example, the terms user, customer, purchaser, installer, subscriber, and homeowner may often refer to the same person in the case of a single-family residential dwelling, because the head of the household is often the person who makes the purchasing decision, buys the unit, and installs and configures the unit, and is also one of the users of the unit and is a customer of the utility company and/or VSCU data service provider. However, in other scenarios, such as a landlord-tenant environment, the customer may be the landlord with respect to purchasing the unit, the installer may be a local apartment supervisor, a first user may be the tenant, and a second user may again be the landlord with respect to remote control functionality. Importantly, while the identity of the person performing the action may be germane to a particular advantage provided by one or more of the embodiments—for example, the password-protected temperature governance functionality described further herein may be particularly advantageous where the landlord holds the sole password and can prevent energy waste by the tenant—such identity should not be construed in the descriptions that follow as necessarily limiting the scope of the present teachings to those particular individuals having those particular identities.
It is to be appreciated that although exemplary embodiments are presented herein for the particular context of HVAC system control, there are a wide variety of other resource usage contexts for which the embodiments are readily applicable including, but not limited to, water usage, air usage, the usage of other natural resources, and the usage of other (i.e., non-HVAC-related) forms of energy, as would be apparent to the skilled artisan in view of the present disclosure. Therefore, such application of the embodiments in such other resource usage contexts is not outside the scope of the present teachings.
As used herein, “setpoint” or “temperature setpoint” refers to a target temperature setting of a temperature control system, such as one or more of the VSCU units described herein, as set by a user or automatically according to a schedule. As would be readily appreciated by a person skilled in the art, many of the disclosed thermostatic functionalities described hereinbelow apply, in counterpart application, to both the heating and cooling contexts, with the only different being in the particular setpoints and directions of temperature movement. To avoid unnecessary repetition, some examples of the embodiments may be presented herein in only one of these contexts, without mentioning the other. Therefore, where a particular embodiment or example is set forth hereinbelow in the context of home heating, the scope of the present teachings is likewise applicable to the counterpart context of home cooling, and vice versa, to the extent such counterpart application would be logically consistent with the disclosed principles as adjudged by the skilled artisan.
The outer ring 106 preferably has an outer finish identical to that of the main body 108, while the sensor ring 104 and circular display monitor 102 have a common circular glass (or plastic) outer covering that is gently arced in an outward direction and that provides a sleek yet solid and durable-looking overall appearance. The outer ring 106 may be disposed along a front face of a housing of the VSCU unit 100. The front face may be circular, and the housing may be disk-like in shape. The outer ring may substantially surround the circular display monitor or substantially surround a portion of the circular display monitor visible to a user. The outer ring 106 may be generally coincident with an outer lateral periphery of said disk-like shape, as illustrated, e.g., in
The sensor ring 104 contains any of a wide variety of sensors including, without limitation, infrared sensors, visible-light sensors, and acoustic sensors. Preferably, the glass (or plastic) that covers the sensor ring 104 is smoked or mirrored such that the sensors themselves are not visible to the user. An air venting functionality is preferably provided, such as by virtue of the peripheral gap 110, which allows the ambient air to be sensed by the internal sensors without the need for visually unattractive “gills” or grill-like vents.
For one embodiment, the inward push of
By virtue of user rotation of the outer ring 106 (referenced hereafter as a “ring rotation”) and the inward pushing of the outer ring 106 (referenced hereinafter as an “inward click”) responsive to intuitive and easy-to-read prompts on the circular display monitor 102, the VSCU unit 100 is advantageously capable of receiving all necessary information from the user for basic setup and operation. Preferably, the outer ring 106 is mechanically mounted in a manner that provides a smooth yet viscous feel to the user, for further promoting an overall feeling of elegance while also reducing spurious or unwanted rotational inputs. According to various implementations, the outer ring 106 rotates on plastic bearings and uses an optical digital encoder to measure the rotational movement and/or rotational position of the outer ring 106. In accordance with alternate implementations, other technologies such as mounting the outer ring 106 on a central shaft may be employed. For one embodiment, the VSCU unit 100 recognizes three fundamental user inputs by virtue of the ring rotation and inward click: (1) ring rotate left, (2) ring rotate right, and (3) inward click.
According to some implementations, multiple types of user input may be generated depending on the way a pushing inward of head unit front including the outer ring 106 is effectuated. In some implementations a single brief push inward of the outer ring 106 until the audible and/or tactile click occurs followed by a release (single click) can be interpreted as one type of user input (also referred to as an “inward click”). In other implementations, pushing the outer ring 106 in and holding with an the inward pressure for an amount of time such as 1-3 seconds can be interpreted as another type of user input (also referred to as a “press and hold”). According to some further implementations, other types of user input can be effectuated by a user such as double and/or multiple clicks, and pressing and holding for longer and/or shorter periods of time. According to other implementations, speed-sensitive or acceleration-sensitive rotational inputs may also be implemented to create further types of user inputs (e.g., a very large and fast leftward rotation specifies an “Away” occupancy state, while a very large and fast rightward rotation specifies an “Occupied” occupancy state).
Although the scope of the present teachings is not so limited, it is preferred that there not be provided a discrete mechanical HEAT-COOL toggle switch, or HEAT-OFF-COOL selection switch, or HEAT-FAN-OFF-COOL switch anywhere on the VSCU unit 100, this omission contributing to the overall visual simplicity and elegance of the VSCU unit 100 while also facilitating the provision of advanced control abilities that would otherwise not be permitted by the existence of such a switch. It is further highly preferred that there be no electrical proxy for such a discrete mechanical switch (e.g., an electrical push button or electrical limit switch directly driving a mechanical relay). Instead, it is preferred that the switching between these settings be performed under computerized control of the VSCU unit 100 responsive to its multi-sensor readings, its programming (optionally in conjunction with externally provided commands/data provided over a data network), and/or the above-described “ring rotation” and “inward click” user inputs.
The VSCU unit 100 comprises physical hardware and firmware configurations, along with hardware, firmware, and software programming that is capable of carrying out the functionalities described explicitly herein or in one of the commonly assigned incorporated applications. In view of the instant disclosure, a person skilled in the art would be able to realize the physical hardware and firmware configurations and the hardware, firmware, and software programming that embody the physical and functional features described herein without undue experimentation using publicly available hardware and firmware components and known programming tools and development platforms. Similar comments apply to described devices and functionalities extrinsic to the VSCU unit 100, such as devices and programs used in remote data storage and data processing centers that receive data communications from and/or that provide data communications to the VSCU unit 100. By way of example, references hereinbelow to machine learning and mathematical optimization algorithms, as carried out respectively by the VSCU unit 100 in relation to home occupancy prediction and setpoint optimization, for example, can be carried out using one or more known technologies, models, and/or mathematical strategies including, but not limited to, artificial neural networks, Bayesian networks, genetic programming, inductive logic programming, support vector machines, decision tree learning, clustering analysis, dynamic programming, stochastic optimization, linear regression, quadratic regression, binomial regression, logistic regression, simulated annealing, and other learning, forecasting, and optimization techniques.
In either case, the VSCU unit 100 can advantageously serve as an “inertial wedge” for inserting an entire energy-saving technology platform into the home. Simply stated, because most homeowners understand and accept the need for home to have a thermostat, even the most curmudgeonly and techno-phobic homeowners will readily accept the simple, non-intimidating, and easy-to-use VSCU unit 100 into their homes. Once in the home, of course, the VSCU unit 100 will advantageously begin saving energy for a sustainable planet and saving money for the homeowner, including the curmudgeons. Additionally, however, as homeowners “warm up” to the VSCU unit 100 platform and begin to further appreciate its delightful elegance and seamless operation, they will be more inclined to take advantage of its advanced features, and they will furthermore be more open and willing to embrace a variety of compatible follow-on products and services as are described further hereinbelow. This is an advantageous win-win situation on many fronts, because the planet is benefitting from the propagation of energy-efficient technology, while at the same time the manufacturer of the VSCU unit and/or their authorized business partners can further expand their business revenues and prospects. For clarity of disclosure, the term “VSCU Efficiency Platform” refers herein to products and services that are technologically compatible with the VSCU unit 100 and/or with devices and programs that support the operation of the VSCU unit 100.
Some implementations of the VSCU unit 100 incorporate one or more sensors to gather data from the environment associated with the house 201. Sensors incorporated in VSCU unit 100 may detect occupancy, temperature, light and other environmental conditions and influence the control and operation of HVAC system 299. VSCU unit 100 uses a grille member (not shown in
The HVAC system is selectively actuated via control electronics 212 that communicate with the VSCU unit 100 over control wires 298. Thus, for example, as known in the art, for a typical simple scenario of a four-wire configuration in which the control wires 298 consist of power (R), heat (W), cool (Y), and fan (G), the VSCU unit 100 will short-circuit W to R to actuate a heating cycle (and then disconnect W from R to end the heating cycle), will short-circuit Y to R to actuate a cooling cycle (and then disconnect Y from R to end the cooling cycle), and will short-circuit G to R to turn on the fan (and then disconnect G from R to turn off the fan). For a heating mode, when VSCU unit 100 determines that an ambient temperature is below a lower threshold value equal to a setpoint temperature minus a swing value, the heating cycle will be actuated until the ambient temperature rises to an upper threshold value equal to the setpoint value plus the swing value. For a cooling mode, when VSCU unit 100 determines that an ambient temperature is above an upper threshold value equal to a setpoint temperature plus a swing value, the cooling cycle will be actuated until the ambient temperature lowers to a lower threshold value equal to the setpoint value minus the swing value. Without limitation, the swing values for heating and cooling can be the same or different, the upper and lower swing amounts can be symmetric or asymmetric, and the swing values can be fixed, dynamic, or user-programmable, all without departing from the scope of the present teachings.
When this happens, as illustrated in
Also displayed is a setpoint icon 302 disposed along a periphery of the circular display monitor 102 at a location that is spatially representative the current setpoint. Although it is purely electronic, the setpoint icon 302 is reminiscent of older mechanical thermostat dials, and advantageously imparts a feeling of familiarity for many users as well as a sense of tangible control.
Notably, the example of
Referring now to
Whenever the actual current temperature is different than the setpoint temperature, a representation (e.g., a digital numeric representation) of an actual temperature readout 306 is provided in relatively small digits along the periphery of the circular a location spatially representative the actual current temperature. Further provided is a trailing icon 308, which could alternatively be termed a tail icon or difference-indicating, that extends between the location of the actual temperature readout 306 and the setpoint icon 302. Further provided is a time-to-temperature readout 310 that is indicative of a prediction, as computed by the VSCU unit 100, of the time interval required for the HVAC system to bring the temperature from the actual current temperature to the setpoint temperature.
In some embodiments, user interactions with the VSCU unit 100 by virtue of manipulations of the outer ring 106 are analyzed and non-numeric indicators (e.g., related to environmental favorability of the action) are presented to the user.
For one embodiment, the VSCU unit 100 is designed to be entirely silent unless a user has walked up and begun controlling the unit. Advantageously, there are no clicking-type annoyances when the heating or cooling units are activated as with conventional prior art thermostats. Optionally, the VSCU unit 100 can be configured to synthesize artificial audible clicks, such as can be output through a piezoelectric speaker, to provide “tick” feedback as the user dials through different temperature settings. Thus, in some instances, VSCU unit 100 includes an audio output device configured to output synthesized audible ticks through said audio output device in correspondence with user rotation of the outer ring 106.
Via the single outer ring 106, a user may easily be able to perform multiple types of interactions with the VSCU unit 100. For example, as described above, the user may be able to set a setpoint temperature value. Other types of interactions may additionally be performed using the rotating and clicking features of the same outer ring 106. A selection component (e.g., ring 106) and electronic display 102 may enable a user to, e.g.: (1) identify a type of variable to be set or information to be input; and/or (2) identify a value for one or more variables and/or for one or more information fields.
For example, an HVAC system may include a plurality of variable categories (e.g., energy, schedule, settings, heating/cooling mode, etc.). As described in greater detail below, display 102 may be configured to present a circular menu: as the user rotates outer ring 106, a different category may appear at or near a top of the display. A user may select a particular type of category by clicking outer ring 106. Selection of some categories allows a user to view available sub-menus. For example, rotation of outer ring 106 may cause an apparent translation of the entire screen, such that a first sub-menu moves off of the screen as a second sub-menu moves on to the screen. In some instances, the user may be able to instantly interact with the displayed sub-menu even without clicking ring 106.
Each variable and/or information field may be defined by a value. The value may include, e.g., a numeric value (e.g., a setpoint-temperature variable is set at “75”), a word (e.g., a password is set as “Password”), a letter (e.g., a thermostat is identified as Thermostat “A”), a selection amongst a plurality of options (e.g., smart learning is “Enabled”), etc. An active variable/field may be identified based on a user's selection of the variable/field, a default thermostat state and/or other information.
Various value options may then be presented to the user. For example, a list of options may be presented in a grid-like fashion on the display, and a user may move a highlighted option by rotating outer ring 106. As another example, alphanumeric characteristics may be arcuately presented around an outer border of electronic display 316. In some embodiments, the options are indicatively presented (e.g., by presenting a series of tick marks, representing options of evenly spaced values), and one or more options (e.g., a highlighted option) may be expressly presented (e.g., by displaying a value of the highlighted option at or near a center of the display). A user may rotate outer ring 106 until a desired option is highlighted. When a selection is highlighted, the selection may be confirmed by an inward click input on the outer ring 106.
The screens shown, according to some embodiments, are displayed on a thermostat 100 on a round dot-matrix electronic display 102 having a rotatable ring 106.
Upon user rotation of the rotatable ring 106 (see
Menu items may include text (e.g., “Schedule”) and/or icons (e.g., disks 510 and 512).
Menu items may further indicate a currently active selection or mode of operation. For example, one of disks 510 and 512, in this case the heating disk 512, is highlighted with a colored outline, to indicate the current operating mode (i.e. heating or cooling) of the thermostat. In one alternative embodiment, the mode icon 509 can be replaced with the text string “HEAT/COOL/OFF” or simply the word “MODE”.
If in inward click is performed from screen 508, a menu screen 514 appears (e.g. using a “coin flip” transition). In screen 514 the user can view the current mode (marked with a check mark). Screen 514 illustrates another way in which rotatable ring 106 may be used to make a selection. A plurality of selection options may be presented, with one or more options being emphasized (e.g., highlighted). A user may highlight a different option by rotating rotatable ring 106. For example, as a user rotates rotatable ring 106 in a clockwise fashion, options further down the list become highlighted. Once the user is satisfied that the desired option is highlighted, they may click the ring to confirm the selection. Thus, in the example shown in screen 514, a user may rotate rotatable ring 106 clockwise to move the highlighting from “HEAT” to “COOL” or “OFF.” The user may then establish the selection by clicking the ring, and thereby change the mode. If “COOL” is selected then the thermostat will change over to cooling mode (such changeover as might be performed in the springtime), and the cooling disk icon will highlighted on screens 514 and 508. The menu can also be used to turn the thermostat off by selecting “OFF.” In cases the connected HVAC system only has heating or cooling but not both, the words “HEAT” or “COOL” or “OFF” are displayed on the menu 520 instead of the colored disks.
Screen 608 has a central disk 606 indicating the name of the sub-menu, in this case the Fan mode. Some sub menus only contain a few options which can be selected or toggled among by inward clicking alone. For example, the Fan sub-menu 608 only has two settings “automatic” (shown in screen 608) and “always on” (shown in screen 610). In this case the fan mode is changed by inward clicking, which simply toggles between the two available options. Ring rotation shifts to the next (or previous) settings sub-menu item. Thus rotating the ring from the fan sub-menu shift to the system on/off sub-menu shown in screens 612 (in the case of system “ON”) and 614 (in the case of system “OFF”). The system on/off sub-menu is another example of simply toggling between the two available options using the inward click user input.
Screens 666 and 667 are used to toggle between Celsius and Fahrenheit units, according to some embodiments. According to some embodiments, if Celsius units is selected, then half-degrees are displayed by the thermostat when numerical temperature is provided (for example, a succession of 21, 215, 22, 225, 23, 235, and so forth in an example in which the user is turning up the rotatable ring on the main thermostat display). According to another embodiment, there is another sub-menu screen disk (not shown) that is equivalent to the “Brightness” and “Click Sound” disks in the menu hierarchy, and which bears one of the two labels “SCREEN ON when you approach” and “SCREEN ON when you press,” the user being able to toggle between these two options by an inward click when this disk is displayed. When the “SCREEN ON when you approach” is active, the proximity sensor-based activation of the electronic display screen 102 is provided (as described above with the description accompanying
For one embodiment, the VSCU unit 100 is programmed to provide a software lockout functionality, wherein a person is required to enter a password or combination before the VSCU unit 100 will accept their control inputs. The user interface for password request and entry can be similar to that shown in
Thus, as exemplified in
The outer rotatable ring 812 allows the user to make adjustments, such as selecting a new target temperature. For example, by rotating the outer ring 812 clockwise, the target temperature can be increased, and by rotating the outer ring 812 counter-clockwise, the target temperature can be decreased. The thermostat 800 may be configured to receive a plurality of types of inputs by virtue of the rotatable ring 812, such as a scrolling input and a selection input. For example, a rotation of the ring may allow a user to scroll through an array of selection options, and inwards pressure exerted on the ring (inward click) may allow a user to select one of the options (e.g., corresponding to a particular scroll position).
The outer rotatable ring 812 may include a component that may be physically rotated, or, in other embodiments, a static component that may sense a user's virtual rotation of the ring. For some embodiments, the outer rotatable ring 812 may include a touch pad configured to track arcuate motion of a user's finger on the touch pad. The touch pad may comprise, e.g., a ring-shaped or circular area. In some instances, the touch pad includes multiple portions (e.g., to detect arcuate motion in a first ring-shaped area and to detect tapping in a second inner circular area). Boundaries of a touch pad area may be identified to a user using, e.g., visual or tactile cues. For example, a ring-shaped touchpad area may be indented compared to neighboring areas on the thermostat 800, or the area may be a different color than neighboring areas.
For preferred embodiments such as those of
The front face of the thermostat 800 comprises a clear cover 814 that according to some embodiments is polycarbonate, and a metallic portion 824 preferably having a number of slots formed therein as shown. According to some embodiments, the surface of cover 814 and metallic portion 824 form a common outward arc or spherical shape gently arcing outward, and this gentle arcing shape is continued by the outer ring 812.
Although being formed from a single lens-like piece of material such as polycarbonate, the cover 814 has two different regions or portions including an outer portion 814o and a central portion 814i. According to some embodiments, the cover 814 is painted or smoked around the outer portion 814o, but leaves the central portion 814i visibly clear so as to facilitate viewing of an electronic display 816 disposed thereunderneath. According to some embodiments, the curved cover 814 acts as a lens that tends to magnify the information being displayed in electronic display 816 to users. According to some embodiments the central electronic display 816 is a dot-matrix layout (individually addressable) such that arbitrary shapes can be generated, rather than being a segmented layout. According to some embodiments, a combination of dot-matrix layout and segmented layout is employed. According to some embodiments, central display 816 is a backlit color liquid crystal display (LCD). An example of information displayed on the electronic display 816 is illustrated in
Particular presentations displayed on the electronic display 816 may depend on detected user input. For example, one of a plurality of variables (e.g., current setpoint temperature versus learning status) or variable values (e.g., 65 degrees versus 75 degrees) may be displayed. The one being displayed may depend on a user's rotation of the outer rotatable ring 812. Thus, for example, when the device is configured to display a current setpoint temperature, the value being displayed may gradually increase as the user rotates the ring in a clockwise direction. The sign of the change in the displayed temperature may depend on whether the user is rotating the ring in a clockwise or counterclockwise direction. The speed at which the displayed temperature is changing may depend (e.g., in a linear manner) on the speed at which the user is rotating the ring.
As described above, a displayed characteristic may vary depending on received user input. For example, a displayed temperature may increase as a user rotates the outer rotatable ring 812 clockwise, or a highlighted indicator may progress across a list of displayed options as the user rotates the ring 812. Further, or additionally, user inputs may cause the appearance of new types of information. For example, if a user is viewing setpoint-temperature options, a dramatic clockwise rotation may cause a flashing red symbol (to convey an anti-environmental message). Thus, a relationship may exist between a single type of user input (e.g., ring rotation) and a change in an active variable (e.g., setpoint temperature changes), and relationships may further exist between the single type of user input and an inactive variable (e.g., an environmental warning flag). The latter relationship may be indirect and depend on a value or change in values of the active variable.
The presentations on the electronic display 816 may depend on one or more types of user input. For example, the display may change in a first manner (e.g., to show a varying selection option) as a user rotates the outer rotatable ring 812 and may change in a second manner (e.g., to confirm a selection or default to a menu screen) as the user exerts inwards pressure on the outer rotatable ring 812.
According to some embodiments, metallic portion 824 has number of slot-like openings so as to facilitate the use of a passive infrared motion sensor 830 mounted therebeneath. The metallic portion 824 can alternatively be termed a metallic front grille portion. Further description of the metallic portion/front grille portion is provided in the commonly assigned U.S. Ser. No. 13/199,108, supra. The design of the metallic portion 824 compliments the sleek, simple, uncluttered and elegant design of thermostat 800 while facilitating the integration and operation of sensors located within a housing of the thermostat. In the implementation as illustrated, thermostat 800 is enclosed by housing with a forward-facing surface including the cover 814 and the metallic portion 324. Some implementations of the housing include a back plate and a head unit. The housing provides an attractive and durable configuration for one or more integrated sensors used by thermostat 800 and contained therein. In some implementations, the metallic portion 824 may be flush-mounted with the cover 814 on the forward-facing surface of housing. Together the metallic portion 824 as incorporated in housing does not detract from home or commercial decor, and indeed can serve as a visually pleasing centerpiece for the immediate location in which it is located.
The metallic portion 824 is designed to conceal sensors from view promoting a visually pleasing quality of the thermostat yet permitting them to receive their respective signals. Openings in the metallic portion 824 along the forward-facing surface of the housing allow signals to pass through that would otherwise not pass through the cover 814. For example, glass, polycarbonate or other similar materials used for cover 814 are capable of transmitting visible light but are highly attenuating to infrared energy having longer wavelengths in the range of 10 microns, which is the radiation band of operation for many passive infrared (PIR) occupancy sensors. Notably, included in the thermostat 800, according to some preferred implementations, is an ambient light sensor (not shown) and an active proximity sensor (not shown) positioned near the top of the thermostat just behind the cover 814. Unlike PIR sensors, the ambient light sensor and active proximity sensor are configured to detect electromagnetic energy in the visible and shorter-infrared spectrum bands having wavelengths less than 1 micron, for which the glass or polycarbonate materials of the cover 814 are not highly attenuating. In some implementations, the metallic portion 824 includes openings in accordance with one or more implementations that allow the longer-wavelength infrared radiation to pass through the openings towards a passive infrared (PIR) motion sensor 830 as illustrated. Because the metallic portion 824 is mounted over the radiation receiving surface of PIR motion sensor 830, PIR motion sensor 830 continues to receive the longer wavelength infrared radiation through the openings and detect occupancy in an enclosure.
Additional implementations of the metallic portion 824 also facilitate additional sensors to detect other environmental conditions. The metallic portion may at least partly conceal and/or protect one or more such sensors. In some implementations, the metallic portion 824 helps a temperature sensor situated inside of the thermostat's housing measure the ambient temperature of air. Openings in the metallic portion 824 promote air flow towards a temperature sensor located below the metallic portion 824 thus conveying outside temperatures to the interior of the housing. In further implementations, the metallic portion 824 may be thermally coupled to a temperature sensor promoting a transfer of heat from outside the housing.
The thermostat 800 is preferably constructed such that the electronic display 816 is at a fixed orientation and does not rotate with the outer ring 812, so that the electronic display 816 remains easily read by the user. For some embodiments, the cover 814 and metallic portion 824 also remain at a fixed orientation and do not rotate with the outer ring 812. According to one embodiment in which the diameter of the thermostat 800 is about 80 mm, the diameter of the electronic display 816 is about 45 mm. According to some embodiments an LED indicator 880 is positioned beneath portion 824 to act as a low-power-consuming indicator of certain status conditions. For, example the LED indicator 880 can be used to display blinking red when a rechargeable battery of the thermostat is very low and is being recharged. More generally, the LED indicator 880 can be used for communicating one or more status codes or error codes by virtue of red color, green color, various combinations of red and green, various different blinking rates, and so forth, which can be useful for troubleshooting purposes.
Motion sensing as well as other techniques can be use used in the detection and/or predict of occupancy, as is described further in the commonly assigned U.S. Ser. No. 12/881,430, supra. According to some embodiments, occupancy information is used in generating an effective and efficient scheduled program. Preferably, an active proximity sensor 870A is provided to detect an approaching user by infrared light reflection, and an ambient light sensor 870B is provided to sense visible light. The proximity sensor 870A can be used to detect proximity in the range of about one meter so that the thermostat 800 can initiate “waking up” when the user is approaching the thermostat and prior to the user touching the thermostat. Such use of proximity sensing is useful for enhancing the user experience by being “ready” for interaction as soon as, or very soon after the user is ready to interact with the thermostat. Further, the wake-up-on-proximity functionality also allows for energy savings within the thermostat by “sleeping” when no user interaction is taking place our about to take place. The ambient light sensor 870B can be used for a variety of intelligence-gathering purposes, such as for facilitating confirmation of occupancy when sharp rising or falling edges are detected (because it is likely that there are occupants who are turning the lights on and off), and such as for detecting long term (e.g., 24-hour) patterns of ambient light intensity for confirming and/or automatically establishing the time of day.
According to some embodiments, for the combined purposes of inspiring user confidence and further promoting visual and functional elegance, the thermostat 800 is controlled by only two types of user input, the first being a rotation of the outer ring 812 as shown in
According to some embodiments, the thermostat 800 includes a processing system 860, display driver 864 and a wireless communications system 866. The processing system 860 may be disposed within a housing of thermostat 800, coupled to one or more temperature sensors of thermostat 800 and/or coupled to rotatable ring 812. The processing system 860 may be configured to dynamically identify user input via rotatable ring 812, dynamically identifying a variable value (e.g., a setpoint temperature value), and/or dynamically identify an HVAC-control-related property. The processing system 860 may be configured and programmed to provide an interactive thermostat menuing system (e.g., such as the menuing system shown in
For example, an active variable (e.g., variable-value selection, setpoint selection, zip-code selection) may be determined based on a default state, smart logic or previously received user input. A relationship between the variable and user input may be identified. The relationship may be, e.g., linear or non-linear, continuous or discrete, and/or saturating or non-saturating. Such relationships may be pre-defined and stored within the thermostat. User input may be detected. Analysis of the user input may include, e.g., identifying: a type of user input (tapping versus rotation), a degree of input (e.g., a degree of rotation); a final input position (e.g., a final angular position of the rotatable ring); an input location (e.g., a position of a tapping); and/or a speed of input (e.g., a speed of rotation). Using the relationship, the processing system 860 may then determine a display indicator, such as a digital numerical value representative of an identified value of a variable (e.g., a setpoint temperature). The display indicator may be displayed on display area 816. For example, a digital numerical value representative of a setpoint temperature to be displayed may be determined based on a prior setpoint value and a saturating and continuous relationship between rotation input and the temperature. The displayed value may be, e.g., numeric, textual or graphical.
The processing system 860 may further set a variable value in accordance with a user selection. For example, a particular type of user input (e.g., inwards pressure exertion) may be detected. A value of a selected variable may be determined based on, e.g., a prior ring rotation, displayed variable value, etc. The variable may then be set to this value.
The processing system 860, according to some embodiments, is capable of carrying out the governance of the operation of thermostat 800 including the user interface features described herein. The processing system 860 is further programmed and configured to carry out other operations as described further hereinbelow and/or in other ones of the commonly assigned incorporated applications. For example, processing system 860 is further programmed and configured to maintain and update a thermodynamic model for the enclosure in which the HVAC system is installed, such as described in U.S. Ser. No. 12/881,463, supra. According to some embodiments, the wireless communications system 866 is used to communicate with devices such as personal computers and/or other thermostats or HVAC system components, which can be peer-to-peer communications, communications through one or more servers located on a private network, and/or communications through a cloud-based service.
For example, where grille member 990 is made from a thermally conductive material such as a metal or metallic alloy, it operates as a “thermal antenna” and absorbs ambient temperature from a broader area than temperature sensor 330 could otherwise sample. A temperature sensor positioned substantially normal to the head unit circuit board towards grille member 990 may be close enough to receive heat absorbed by grille member 990. In some implementations, applying a thermally conductive materials, such as a paste, thermal adhesive or thermal grease between temperature sensor 330 and inward facing surface of grille member 990 improves the thermal conductivity between these two components and the accuracy of the temperature measurement. Thermally coupling grille member 990 with temperature sensor 330 assists temperature sensor 330 to measure the ambient air temperature outside rather than inside of the housing holding the thermostat.
A temperature sensor 330 uses a pair of thermal sensors to more accurately measure ambient temperature. A first or upper thermal sensor 330a associated with temperature sensor 330 tends to gather temperature data closer to the area outside or on the exterior of the thermostat while a second or lower thermal sensor 330b tends to collect temperature data more closely associated with the interior of the housing. In one implementation, each of the temperature sensors 330a and 330b comprises a Texas Instruments TMP112 digital temperature sensor chip, while the PIR motion sensor 334 comprises PerkinElmer DigiPyro PYD 1998 dual element pyrodetector.
To more accurately determine the ambient temperature, the temperature taken from the lower thermal sensor 330b is taken into consideration in view of the temperatures measured by the upper thermal sensor 330a and when determining the effective ambient temperature. This configuration can advantageously be used to compensate for the effects of internal heat produced in the thermostat by the microprocessor(s) and/or other electronic components therein, thereby obviating or minimizing temperature measurement errors that might otherwise be suffered. In some implementations, the accuracy of the ambient temperature measurement may be further enhanced by thermally coupling upper thermal sensor 330a of temperature sensor 330 to grille member 990 as the upper thermal sensor 330a better reflects the ambient temperature than lower thermal sensor 330b. Details on using a pair of thermal sensors to determine an effective ambient temperature is disclosed in U.S. Pat. No. 4,741,476, which is incorporated by reference herein.
With exemplary reference to
In accordance with the teachings of the commonly assigned U.S. Ser. No. 13/269,501, supra, the commonly assigned U.S. Ser. No. 13/275,307, supra, and others of the commonly assigned incorporated applications, the thermostat 800 represents an advanced, multi-sensing, microprocessor-controlled intelligent or “learning” thermostat that provides a rich combination of processing capabilities, intuitive and visually pleasing user interfaces, network connectivity, and energy-saving capabilities (including the presently described auto-away/auto-arrival algorithms) while at the same time not requiring a so-called “C-wire” from the HVAC system or line power from a household wall plug, even though such advanced functionalities can require a greater instantaneous power draw than a “power-stealing” option (i.e., extracting smaller amounts of electrical power from one or more HVAC call relays) can safely provide. By way of example, the head unit microprocessor 1302 can draw on the order of 250 mW when awake and processing, the LCD module 960 can draw on the order of 250 mW when active. Moreover, the Wi-Fi module 1410 can draw 250 mW when active, and needs to be active on a consistent basis such as at a consistent 2% duty cycle in common scenarios. However, in order to avoid falsely tripping the HVAC relays for a large number of commercially used HVAC systems, power-stealing circuitry is often limited to power providing capacities on the order of 100 mW-200 mW, which would not be enough to supply the needed power for many common scenarios.
The thermostat 800 resolves such issues at least by virtue of the use of the rechargeable battery (or equivalently capable onboard power storage medium) that will recharge during time intervals in which the hardware power usage is less than what power stealing can safely provide, and that will discharge to provide the needed extra electrical power during time intervals in which the hardware power usage is greater than what power stealing can safely provide. In order to operate in a battery-conscious manner that promotes reduced power usage and extended service life of the rechargeable battery, the thermostat 800 is provided with both (i) a relatively powerful and relatively power-intensive first processor (such as a Texas Instruments AM3703 microprocessor) that is capable of quickly performing more complex functions such as driving a visually pleasing user interface display and performing various mathematical learning computations, and (ii) a relatively less powerful and less power-intensive second processor (such as a Texas Instruments MSP430 microcontroller) for performing less intensive tasks, including driving and controlling the occupancy sensors. To conserve valuable power, the first processor is maintained in a “sleep” state for extended periods of time and is “woken up” only for occasions in which its capabilities are needed, whereas the second processor is kept on more or less continuously (although preferably slowing down or disabling certain internal clocks for brief periodic intervals to conserve power) to perform its relatively low-power tasks. The first and second processors are mutually configured such that the second processor can “wake” the first processor on the occurrence of certain events, which can be termed “wake-on” facilities. These wake-on facilities can be turned on and turned off as part of different functional and/or power-saving goals to be achieved. For example, a “wake-on-PROX” facility can be provided by which the second processor, when detecting a user's hand approaching the thermostat dial by virtue of an active proximity sensor (PROX, such as provided by a Silicon Labs SI1142 Proximity/Ambient Light Sensor with I2C Interface), will “wake up” the first processor so that it can provide a visual display to the approaching user and be ready to respond more rapidly when their hand touches the dial. As another example, a “wake-on-PIR” facility can be provided by which the second processor will wake up the first processor when detecting motion somewhere in the general vicinity of the thermostat by virtue of a passive infrared motion sensor (PIR, such as provided by a PerkinElmer DigiPyro PYD 1998 dual element pyrodetector). Notably, wake-on-PIR is not synonymous with auto-arrival, as there would need to be N consecutive buckets of sensed PIR activity to invoke auto-arrival, whereas only a single sufficient motion event can trigger a wake-on-PIR wake-up. Sleep-wake timing and techniques are further described in PCT/US11/61437.
As
In some implementations, the PIR motion sensor has a pair of differential sensing elements setup with opposing polarity to reject the common-mode signal produced by radiation 1810. When occupant 1808 is not present or not moving, sudden overall changes in radiation 1810 caused by sunlight, heat or vibration produce complimentary signals from the pair of differential sensing elements simultaneously. The complimentary signals from the pair of differential sensing elements immediately cancel out these false-positive or common-mode signals.
In comparison, an occupant 1808 moving laterally in the direction of the arrows in
In accordance with an alternate implementation, sensitivity to height may be decreased as illustrated in
Since
In some implementations, different grille members may be manufactured with a different number of openings having slit-like dimensions arranged in one or more rows. For example, a person installing thermostat 1910 may select and install different grille members depending on the desired sensitivity to the heights of the occupants and the location of the thermostat 1910 on a wall or other location. In other implementations, the installer may use a mask member attached to the back openings in the grille member to modify the openings and adjust the sensitivity to height. Instead of manufacturing different grille members, one grille member can be altered using the mask member to cover or uncover the desired number of openings in the grille member. For example, the mask member may be plastic or metal fittings with slit-like dimensions applied to the backside of grille member 1902 that fill one or more of openings 1906. These fittings of the mask member may be finished in the same tone or color as the surface of grille member 1902 in order to blend into the overall appearance of the grille member 1902. Accordingly, the sensitivity to the height of occupants may be varied depending on the coverage by the mask member of the substantially horizontal slit-like openings used to pass the emitted radiation to the receiving surface of the PIR motion sensor.
Referring to
Additionally, the integration operations may also provide a passive infrared (PIR) motion sensor disposed inside the housing and used to sense occupancy in the vicinity of the thermostat (2004). In some implementations, the PIR motion sensor has a radiation receiving surface able to detect the radiation emitted towards the forward-facing surface of the housing by the lateral movement of a nearby occupant. Occupancy information detected by the PIR motion sensor may be used by the thermostat to better adjust heating or cooling operations of an HVAC in an enclosure such as a residential house. In some implementations, a thermostat may use the occupancy information to turn the HVAC on when occupancy is detected and off when no occupancy is detected by the PIR motion sensor. In alternate implementations, the thermostat may use the occupancy information generated by the PIR motion sensor as part of a heuristic that learns when an enclosure is likely to be occupied or unoccupied and anticipates the heating or cooling requirements. This heuristic may use real-time and historic geographic weather trends and other factors combined with learned occupancy patterns to determine when the enclosure needs cooling or heating. A temperature sensor disposed inside the housing may also be provided to detect the ambient temperature in the vicinity of the thermostat. The PIR motion sensor and temperature sensor may be similar to PIR motion sensor 334 and temperature sensor 330 respectively as previously described.
Integration operations in accordance with the present invention may further attach a grille member along a forward-facing surface of the housing and placed over the radiation receiving surface of the PIR motion sensor (2006). As previously described, the grille member may substantially conceal and protects the PIR motion sensor disposed inside the housing. Concealing the PIR motion sensor promotes a visually pleasing quality of the thermostat as well as protects the PIR motion sensor during manufacture, shipment, installation and use. In some implementations, the grille member may be similar to grille member 990. Accordingly, the grille member may be manufactured from one or more materials selected from a set of materials including: metal, plastic, glass, carbon-composite, metallic-carbon composite and metallic alloy. The grille member may be a thermally conductive material such as a metal or metal alloy and may be thermally coupled to the temperature sensor also disposed inside the housing of the thermostat. In some implementations, thermally coupling the temperature sensor to the grille member assists with the temperature sensors ability to measure an ambient temperature of air measured outside of the housing rather than inside of the housing.
Provided according to one preferred embodiment is a self-qualification algorithm by which a thermostat determines whether it can, or cannot, reliably go into an auto-away state to save energy, i.e., whether it has “sensor confidence” for its PIR activity. For one preferred embodiment, the auto-away facility is disabled for a predetermined period such as 7 days after device startup (i.e., initial installation or factory reset). On days 5, 6, and 7 from startup (or other empirically predetermined suitable sample time period), the PIR activity is tracked by discrete sequential “time buckets” of activity, such as 5-minute buckets, where a bucket is either empty (if no occupancy event is sensed in that interval) or full (if one or more occupancy events is sensed in that interval). Out of the total number of buckets for that time period (24×12×3=864 for 5-minute buckets), if there is greater than a predetermined threshold percentage of buckets that are full, then “sensor confidence” is established, and if there is less than that percentage of full buckets, then there is no sensor confidence established. The predetermined threshold can be empirically determined for a particular model, version, or setting of the thermostat. In one example, it has been found that 3.5% is a suitable threshold, i.e., if there are 30 or more full buckets for the three-day sample, then “sensor confidence” is established, although this will vary for different devices models and settings.
Provided according to another preferred embodiment is a method for the automated computation of an optimal threshold value for the active proximity detector (PROX) of the thermostat 1800, by virtue of additional occupancy information provided by its PIR sensor. In order to conserve power and extend the lifetime of the LCD display and the rechargeable battery, as well as for aesthetic advantages in preventing the thermostat from acting as an unwanted nightlight, the PROX detector is integrated into the thermostat 1800 and polled and controlled by the back plate microcontroller (hereinafter “BPμC”) on a consistent basis to detect the close proximity of a user, the LCD display being activated only if there is a walk-up user detected and remaining dark otherwise. Operationally, the PROX is polled by the BPμC at regular intervals, such as every 1/60th of a second, and a PROX signal comprising a DC-removed version of the PROX readings (to obviate the effects of changes in ambient lighting) is generated by the BPμC and compared to a threshold value, termed herein a “PROX threshold”. If the PROX signal is greater than the PROX threshold, the BPμC wakes up the head unit microprocessor (“hereinafter “HUμP”), which then activates the LCD display. It is desirable for the PROX threshold to be judiciously chosen such that (i) the PROX facility is not overly sensitive to noise and background activity, which would lead to over-triggering of the PROX and unnecessary waking of the power-intensive HUμP and LCD display, but that (ii) the PROX is not overly insensitive such that the quality of the user experience in walk-up thermostat use will suffer (because the user needs to make unnatural motion, for example, such as waving their hand, to wake up the unit).
According to one preferred embodiment, the PROX threshold is recomputed at regular intervals (or alternatively at irregular intervals coincident with other HUμP activity) by the HUμP based on a recent history of PROX signal readings, wherein PIR data is included as a basis for selecting the historical time intervals over which the PROX signal history is processed. It has been found that the best PROX thresholds are calculated for sample periods in which the noise in the PROX signal is due to “natural” background noise in the room (such as household lamps), rather than when the PROX signal is cluttered with occupant activity that is occurring in the room which, generally speaking, can cause the determined PROX threshold to be higher than optimal, or otherwise sub-optimal. Thus, according to a preferred embodiment, the HUμP keeps a recent historical record of both PIR activity (which it is collecting anyway for the auto-away facility) as well as PROX signal readings, and then periodically computes a PROX threshold from the recent historical PROX data, wherein any periods of PIR-sensed occupant activity are eliminated from the PROX data sample prior to computation of the PROX threshold. In this way, a more reliable and suitably sensitive, but not overly sensitive, PROX threshold is determined. For one embodiment, the BPμC keeps one sample of the PROX signal data for every 5 minutes, and transfers that data to the HUμP each time the HUμP is woken up. For one embodiment, the HUμP keeps at least 24 hours of the PROX signal data that is received from the BPμC, and recomputes the PROX threshold at regular 24 hour intervals based on the most recent 24 hours of PROX data (together with a corresponding 24 hours of PIR-sensed occupancy data, such as the above-described auto-away “buckets” of activity). For another embodiment, the PROX threshold is recomputed by the HUμP every time it is about to enter into a sleep state. The recomputed PROX threshold is transferred to the BPμC, which then uses that new PROX threshold in determining whether a PROX event has occurred. In other preferred embodiments, the thermostat is further configured to harness the available ALS (ambient light sensor) data to generate an event better PROX threshold, since it is known that ambient light can add to the background PROX signal noise as well as to the DC value of the PROX readings.
While examples and implementations have been described, they should not serve to limit any aspect of the present invention. Accordingly, various modifications may be made without departing from the spirit and scope of the invention. Indeed, while the occupancy sensor positioned behind the grille member is characterized in one or more embodiments supra as being a PIR sensor, for which the above-described configurations are particularly advantageous, the scope of the present teachings is not so limited. Moreover, it is to be appreciated that while the grille member is characterized in one or more embodiments supra as being generally forward-facing, which is useful for more common scenarios in which the thermostat is mounted on a wall at a moderate height above the floor that makes it easy to reach, the scope of the present teachings is not so limited. By way of example, there is provided in some further embodiments a thermostat, comprising a housing including a region of interest-facing surface (ROI-facing surface), where the ROI corresponds to the relevant area or volume of the house (or other enclosure) for which occupancy or occupancy-related events are to be sensed. The thermostat further includes an occupancy sensor disposed inside the housing and used to sense occupancy in the ROI, the occupancy sensor having at least one receiving surface and being able to detect the presence and/or movement of the occupant in the ROI. The thermostat further includes a grille member having one or more openings and included along the ROI-facing surface of the housing and placed over the one or more receiving surfaces of the occupancy sensor that substantially conceals and protects the occupancy sensor disposed inside the housing, whereby the concealment of the occupancy sensor by the grille member promotes a visually pleasing quality of the thermostat yet permits the occupancy sensor to effectively detect the presence and/or movement of the occupant in the ROI. The ROI-facing surface can be a forward-facing surface for a conventional wall-mounted location, or can be a downward-facing surface (including a diagonally-outward downward angle) for a mounting location that is above a doorway, for example, such that persons going in and out of the room are sensed. The occupancy sensor can include, for example, one or more of a PIR sensor, an actively transmitting proximity sensor, an ambient light sensor, and an ultrasound sensor. In the case of a PIR sensor and a mounting location over the doorway, the slotted openings in the grille member can be oriented in a direction normal to the door opening, such that movement toward and away from the door is more optimally sensed. It is to be further appreciated that the term thermostat, as used hereinabove and hereinbelow, can include thermostats having direct control wires to an HVAC system, and can further include thermostats that do not connect directly with the HVAC system, but that sense an ambient temperature at one location in an enclosure and cooperatively communicate by wired or wireless data connections with a separate thermostat unit located elsewhere in the enclosure, wherein the separate thermostat unit does have direct control wires to the HVAC system. By way of further example, the front face of the thermostat 100/800 is set forth in one or more embodiments supra as being a solid lens that tends to magnify the information being displayed in the underlying electronic display. The solid lens element furthermore provides a hard, solid surface that allows the user to treat the overall cap-like structure as a single, unitary input button for providing the inward click in many embodiments, such that the user does not need to press only on the outer ring but can also press anywhere on the interior as well to achieve an inward click input. Notably, however, the scope of the present teachings is not so limited. In alternative embodiments, this thicker lens to be omitted in favor of a thinner covering and the underlying electronic display can comprise a touch screen display. to allow a user to directly interact with the monitor. In other alternative embodiments, the outer ring is itself a touch screen or touch-sensitive surface, such that it may be virtually rotated by a user's finger movement. The display within the ring can include or omit touch-detection capabilities without departing from the scope of the present teachings. In one instance, an outer ring may be a physically rotatable ring, and a display presented in a middle aperture inside the ring may be a touch screen such that, for example, the user may select a type of variable to be set using the touch-screen display and then select a particular value for the variable using the outer ring. By way of further example, while rotation of the outer ring of the thermostat 100/800 is set forth in one or more embodiments supra as being detected optically based on a textured inner surface of the ring (using technology similar to that using in optical mice), the scope of the present teachings is not so limited. For example, the outer ring may be coupled to a disk, the disk having a plurality of holes, whose movement can be detected optically by optical sources and detectors placed on opposite sides. As another example, the outer ring may include a magnet at a fixed location. By detecting the angular location of the magnet over time (e.g., using fixed sensors), a mechanical rotation of the ring may be determined. As another example, the outer ring may include a plurality of mechanical catches, and a fixed switch or other mechanical sensor may count a number of contacts with the mechanical catches and estimate the mechanical rotation of the ring. By way of further example, while there are indeed many advantages of using an outer ring that is a continuous without fiducial markers, it is not necessarily outside the scope of the present teachings for the outer ring to be provided with some fiducial markers, or for the outer ring to be replaced by some other arc-shaped or linear component having equivalent functionality and advantages. Accordingly, the invention is not limited to the above-described implementations, but instead is defined by the appended claims in light of their full scope of equivalents.
Numerous specific details are included herein to provide a thorough understanding of the various implementations of the present invention. Those of ordinary skill in the art will realize that these various implementations of the present invention are illustrative only and are not intended to be limiting in any way. Other implementations of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure.
In addition, for clarity purposes, not all of the routine features of the implementations described herein are shown or described. One of ordinary skill in the art would readily appreciate that in the development of any such actual implementation, numerous implementation-specific decisions may be required to achieve specific design objectives. These design objectives will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine engineering undertaking for those of ordinary skill in the art having the benefit of this disclosure.
This application is a continuation of U.S. Ser. No. 14/487,616 filed Sep. 16, 2014, which is a continuation of U.S. Ser. No. 14/249,205 filed Apr. 9, 2014, which is a continuation of U.S. Ser. No. 13/921,152 filed on Jun. 18, 2013, which is a continuation of U.S. Ser. No. 13/632,734 filed on Oct. 1, 2012, which is a continuation of U.S. Ser. No. 13/487,475 filed on Jun. 4, 2012, which is a continuation of U.S. Ser. No. 13/351,688 filed on Jan. 17, 2012, which is a continuation-in-part of PCT/US11/61437 filed Nov. 18, 2011, which claimed the benefit of: U.S. Prov. Ser. No. 61/415,771 filed on Nov. 19, 2010; U.S. Prov. Ser. No. 61/429,093 filed on Dec. 31, 2010; and U.S. Prov. Ser. No. 61/627,996 filed on Oct. 21, 2011. U.S. Ser. No. 13/351,688 is further a continuation-in-part of U.S. Ser. No. 13/199,108 filed on Feb. 23, 2011, which is a continuation-in-part of U.S. Ser. No. 13/033,573 filed on Feb. 23, 2011, which claims the benefit of: U.S. Prov. Ser. No. 61/415,771 filed Nov. 19, 2010 and U.S. Prov. Ser. No. 61/429,093 filed Dec. 31, 2010. U.S. Ser. No. 13/351,688 is further a continuation-in-part of U.S. Ser. No. 13/269,501 filed on Oct. 7, 2011, which claims the benefit of U.S. Prov. Ser. No. 61/415,771 filed Nov. 19, 2010 and of U.S. Prov. Ser. No. 61/429,093 filed Dec. 31, 2010. U.S. Ser. No. 13/269,501 is also a continuation-in-part of U.S. Ser. No. 13/033,573 filed Feb. 23, 2011, which claims the benefit of: U.S. Prov. Ser. No. 61/415,771 filed Nov. 19, 2010 and U.S. Prov. Ser. No. 61/429,093 filed Dec. 31, 2010. Each of the above-listed applications is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1639299 | Kinnard | Aug 1927 | A |
2101637 | Howlett | Dec 1937 | A |
2492774 | Wild | Dec 1949 | A |
2558648 | Warner | Jun 1951 | A |
3025484 | Cunningham | Mar 1962 | A |
3991357 | Kaminski | Nov 1976 | A |
4223831 | Szarka | Sep 1980 | A |
4316577 | Adams et al. | Feb 1982 | A |
4335847 | Levine | Jun 1982 | A |
4408711 | Levine | Oct 1983 | A |
4460125 | Barker et al. | Jul 1984 | A |
4613139 | Robinson, II | Sep 1986 | A |
4615380 | Beckey | Oct 1986 | A |
4621336 | Brown | Nov 1986 | A |
4669654 | Levine | Jun 1987 | A |
4674027 | Beckey | Jun 1987 | A |
4685614 | Levine | Aug 1987 | A |
4741476 | Russo et al. | May 1988 | A |
4751961 | Levine et al. | Jun 1988 | A |
4768706 | Parfitt | Sep 1988 | A |
4847781 | Brown, III et al. | Jul 1989 | A |
4897798 | Cler | Jan 1990 | A |
4971136 | Mathur et al. | Nov 1990 | A |
4997029 | Otsuka et al. | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
D321903 | Chepaitis | Nov 1991 | S |
5065813 | Berkeley et al. | Nov 1991 | A |
5088645 | Bell | Feb 1992 | A |
5115967 | Wedekind | May 1992 | A |
5211332 | Adams | May 1993 | A |
5224648 | Simon et al. | Jul 1993 | A |
5224649 | Brown et al. | Jul 1993 | A |
5240178 | Dewolf et al. | Aug 1993 | A |
5244146 | Jefferson et al. | Sep 1993 | A |
D341848 | Bigelow et al. | Nov 1993 | S |
5294047 | Schwer et al. | Mar 1994 | A |
5303612 | Odom et al. | Apr 1994 | A |
5395042 | Riley et al. | Mar 1995 | A |
5415346 | Bishop | May 1995 | A |
5460327 | Hill et al. | Oct 1995 | A |
5462225 | Massara et al. | Oct 1995 | A |
5476221 | Seymour | Dec 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5485954 | Guy et al. | Jan 1996 | A |
5499196 | Pacheco | Mar 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5555927 | Shah | Sep 1996 | A |
5603451 | Helander et al. | Feb 1997 | A |
5611484 | Uhrich | Mar 1997 | A |
5627531 | Posso et al. | May 1997 | A |
5673850 | Uptegraph | Oct 1997 | A |
5690277 | Flood | Nov 1997 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
D396488 | Kunkler | Jul 1998 | S |
5779143 | Michaud | Jul 1998 | A |
5782296 | Mehta | Jul 1998 | A |
5808294 | Neumann | Sep 1998 | A |
5808602 | Sellers | Sep 1998 | A |
5816491 | Berkeley et al. | Oct 1998 | A |
5902183 | D'Souza | May 1999 | A |
5909378 | De Milleville | Jun 1999 | A |
5918474 | Khanpara et al. | Jul 1999 | A |
5924486 | Ehlers et al. | Jul 1999 | A |
5931378 | Schramm | Aug 1999 | A |
5959621 | Nawaz et al. | Sep 1999 | A |
5973662 | Singers et al. | Oct 1999 | A |
5977964 | Williams et al. | Nov 1999 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6032867 | Dushane et al. | Mar 2000 | A |
6062482 | Gauthier et al. | May 2000 | A |
6066843 | Scheremeta | May 2000 | A |
D428399 | Kahn et al. | Jul 2000 | S |
6093914 | Diekmann et al. | Jul 2000 | A |
6095427 | Hoium et al. | Aug 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
D435473 | Eckel et al. | Dec 2000 | S |
6164374 | Rhodes et al. | Dec 2000 | A |
6196468 | Young | Mar 2001 | B1 |
6206295 | LaCoste | Mar 2001 | B1 |
6207899 | Gillespie | Mar 2001 | B1 |
6211921 | Cherian et al. | Apr 2001 | B1 |
6213404 | Dushane et al. | Apr 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6286764 | Garvey et al. | Sep 2001 | B1 |
6298285 | Addink | Oct 2001 | B1 |
6311105 | Budike, Jr. | Oct 2001 | B1 |
D450059 | Itou | Nov 2001 | S |
6318639 | Toth | Nov 2001 | B1 |
6347747 | Nesbitt | Feb 2002 | B1 |
6349883 | Simmons et al. | Feb 2002 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6356204 | Guindi et al. | Mar 2002 | B1 |
6370894 | Thompson et al. | Apr 2002 | B1 |
6415205 | Myron et al. | Jul 2002 | B1 |
6438241 | Silfvast et al. | Aug 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
D464660 | Weng et al. | Oct 2002 | S |
6478233 | Shah | Nov 2002 | B1 |
6490174 | Kompelien | Dec 2002 | B1 |
6502758 | Cottrell | Jan 2003 | B2 |
6513723 | Mueller et al. | Feb 2003 | B1 |
6519509 | Nierlich et al. | Feb 2003 | B1 |
D471825 | Peabody | Mar 2003 | S |
6574581 | Bohrer et al. | Jun 2003 | B1 |
6595430 | Shah | Jul 2003 | B1 |
6619055 | Addy | Sep 2003 | B1 |
6622925 | Carner et al. | Sep 2003 | B2 |
D480401 | Kahn et al. | Oct 2003 | S |
6636197 | Goldenberg | Oct 2003 | B1 |
6641054 | Morey | Nov 2003 | B2 |
6641055 | Tiernan | Nov 2003 | B1 |
6643567 | Kolk et al. | Nov 2003 | B2 |
6644557 | Jacobs | Nov 2003 | B1 |
6645066 | Gutta et al. | Nov 2003 | B2 |
D485279 | DeCombe | Jan 2004 | S |
6726112 | Ho | Apr 2004 | B1 |
D491956 | Ombao et al. | Jun 2004 | S |
6769482 | Wagner et al. | Aug 2004 | B2 |
6785630 | Kolk et al. | Aug 2004 | B2 |
6798341 | Eckel et al. | Sep 2004 | B1 |
D497617 | Decombe et al. | Oct 2004 | S |
6814299 | Carey | Nov 2004 | B1 |
6824069 | Rosen | Nov 2004 | B2 |
6851621 | Wacker et al. | Feb 2005 | B1 |
6864879 | Nojima et al. | Mar 2005 | B2 |
D503631 | Peabody | Apr 2005 | S |
6891838 | Petite et al. | May 2005 | B1 |
6909921 | Bilger | Jun 2005 | B1 |
6951306 | DeLuca | Oct 2005 | B2 |
D511527 | Hernandez et al. | Nov 2005 | S |
6975958 | Bohrer et al. | Dec 2005 | B2 |
6990821 | Singh et al. | Jan 2006 | B2 |
7000849 | Ashworth et al. | Feb 2006 | B2 |
7024336 | Salsbury et al. | Apr 2006 | B2 |
7028912 | Rosen | Apr 2006 | B1 |
7035805 | Miller | Apr 2006 | B1 |
7038667 | Vassallo et al. | May 2006 | B1 |
7055759 | Wacker et al. | Jun 2006 | B2 |
7083109 | Pouchak | Aug 2006 | B2 |
7108194 | Hankins, II | Sep 2006 | B1 |
7109970 | Miller | Sep 2006 | B1 |
7111788 | Reponen | Sep 2006 | B2 |
7114554 | Bergman et al. | Oct 2006 | B2 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7135965 | Chapman, Jr. et al. | Nov 2006 | B2 |
7140551 | de Pauw et al. | Nov 2006 | B2 |
7141748 | Tanaka et al. | Nov 2006 | B2 |
7142948 | Metz | Nov 2006 | B2 |
7149729 | Kaasten et al. | Dec 2006 | B2 |
7152806 | Rosen | Dec 2006 | B1 |
7156318 | Rosen | Jan 2007 | B1 |
7159789 | Schwendinger | Jan 2007 | B2 |
7159790 | Schwendinger et al. | Jan 2007 | B2 |
7181317 | Amundson et al. | Feb 2007 | B2 |
7188482 | Sadegh et al. | Mar 2007 | B2 |
7222494 | Peterson et al. | May 2007 | B2 |
7222800 | Wruck | May 2007 | B2 |
7225054 | Amundson et al. | May 2007 | B2 |
7225057 | Froman et al. | May 2007 | B2 |
D544877 | Sasser | Jun 2007 | S |
7258280 | Wolfson | Aug 2007 | B2 |
D550691 | Hally et al. | Sep 2007 | S |
7264175 | Schwendinger et al. | Sep 2007 | B2 |
7274972 | Amundson et al. | Sep 2007 | B2 |
7287709 | Proffitt et al. | Oct 2007 | B2 |
7289887 | Rodgers | Oct 2007 | B2 |
7299996 | Garrett | Nov 2007 | B2 |
7302642 | Smith et al. | Nov 2007 | B2 |
7333880 | Brewster et al. | Feb 2008 | B2 |
7346467 | Bohrer et al. | Mar 2008 | B2 |
D566587 | Rosen | Apr 2008 | S |
7379791 | Tamarkin et al. | May 2008 | B2 |
RE40437 | Rosen | Jul 2008 | E |
7418663 | Pettinati et al. | Aug 2008 | B2 |
7427926 | Sinclair et al. | Sep 2008 | B2 |
7434742 | Mueller et al. | Oct 2008 | B2 |
7451937 | Flood et al. | Nov 2008 | B2 |
7455240 | Chapman, Jr. et al. | Nov 2008 | B2 |
7460690 | Cohen et al. | Dec 2008 | B2 |
7469550 | Chapman, Jr. et al. | Dec 2008 | B2 |
D588152 | Okada | Mar 2009 | S |
7498576 | Micko | Mar 2009 | B2 |
7509753 | Nicosia et al. | Mar 2009 | B2 |
D589792 | Clabough et al. | Apr 2009 | S |
D590412 | Saft et al. | Apr 2009 | S |
D593120 | Bouchard et al. | May 2009 | S |
7537171 | Mueller et al. | May 2009 | B2 |
D594015 | Singh et al. | Jun 2009 | S |
D595309 | Sasaki et al. | Jun 2009 | S |
7555364 | Poth et al. | Jun 2009 | B2 |
D596194 | Vu et al. | Jul 2009 | S |
D597101 | Chaudhri et al. | Jul 2009 | S |
7558648 | Hoglund et al. | Jul 2009 | B2 |
D598463 | Hirsch et al. | Aug 2009 | S |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7571865 | Nicodem et al. | Aug 2009 | B2 |
7575179 | Morrow et al. | Aug 2009 | B2 |
D599810 | Scalisi et al. | Sep 2009 | S |
7584899 | de Pauw et al. | Sep 2009 | B2 |
7600694 | Helt et al. | Oct 2009 | B2 |
D603277 | Clausen et al. | Nov 2009 | S |
D603421 | Ebeling et al. | Nov 2009 | S |
D604740 | Matheny et al. | Nov 2009 | S |
7614567 | Chapman, Jr. | Nov 2009 | B2 |
7620996 | Torres et al. | Nov 2009 | B2 |
D607001 | Ording | Dec 2009 | S |
7624931 | Chapman, Jr. et al. | Dec 2009 | B2 |
7634504 | Amundson | Dec 2009 | B2 |
7641126 | Schultz et al. | Jan 2010 | B2 |
7644869 | Hoglund et al. | Jan 2010 | B2 |
7667163 | Ashworth | Feb 2010 | B2 |
D613301 | Lee et al. | Apr 2010 | S |
D614194 | Guntaur et al. | Apr 2010 | S |
D614196 | Guntaur et al. | Apr 2010 | S |
7693582 | Bergman et al. | Apr 2010 | B2 |
7702424 | Cannon et al. | Apr 2010 | B2 |
7703694 | Mueller | Apr 2010 | B2 |
D614976 | Skafdrup et al. | May 2010 | S |
D615546 | Lundy et al. | May 2010 | S |
D616460 | Pearson et al. | May 2010 | S |
7721209 | Tilton | May 2010 | B2 |
7726581 | Naujok et al. | Jun 2010 | B2 |
D619613 | Dunn | Jul 2010 | S |
7761189 | Froman et al. | Jul 2010 | B2 |
7784704 | Harter | Aug 2010 | B2 |
7802618 | Simon et al. | Sep 2010 | B2 |
D625325 | Vu et al. | Oct 2010 | S |
D625734 | Kurozumi et al. | Oct 2010 | S |
D626133 | Murphy et al. | Oct 2010 | S |
7823076 | Borovsky et al. | Oct 2010 | B2 |
RE41922 | Gough et al. | Nov 2010 | E |
7845576 | Siddaramanna et al. | Dec 2010 | B2 |
7848900 | Steinberg et al. | Dec 2010 | B2 |
7854389 | Ahmed | Dec 2010 | B2 |
7861179 | Reed | Dec 2010 | B2 |
D630649 | Tokunaga et al. | Jan 2011 | S |
7890195 | Bergman et al. | Feb 2011 | B2 |
7900849 | Barton et al. | Mar 2011 | B2 |
7904209 | Podgorny et al. | Mar 2011 | B2 |
7904830 | Hoglund et al. | Mar 2011 | B2 |
7908116 | Steinberg et al. | Mar 2011 | B2 |
7908117 | Steinberg et al. | Mar 2011 | B2 |
7913925 | Ashworth | Mar 2011 | B2 |
D638835 | Akana et al. | May 2011 | S |
D640269 | Chen | Jun 2011 | S |
D640273 | Arnold et al. | Jun 2011 | S |
D640278 | Woo | Jun 2011 | S |
D640285 | Woo | Jun 2011 | S |
D641373 | Gardner et al. | Jul 2011 | S |
7984384 | Chaudhri et al. | Jul 2011 | B2 |
D643045 | Woo | Aug 2011 | S |
8010237 | Cheung et al. | Aug 2011 | B2 |
8019567 | Steinberg et al. | Sep 2011 | B2 |
8037022 | Rahman et al. | Oct 2011 | B2 |
D648735 | Arnold et al. | Nov 2011 | S |
D651529 | Mongell et al. | Jan 2012 | S |
8090477 | Steinberg | Jan 2012 | B1 |
8091375 | Crawford | Jan 2012 | B2 |
8091794 | Siddaramanna et al. | Jan 2012 | B2 |
8131207 | Hwang et al. | Mar 2012 | B2 |
8131497 | Steinberg et al. | Mar 2012 | B2 |
8131506 | Steinberg et al. | Mar 2012 | B2 |
8136052 | Shin et al. | Mar 2012 | B2 |
D656950 | Shallcross et al. | Apr 2012 | S |
D656952 | Weir et al. | Apr 2012 | S |
8156060 | Borzestowski et al. | Apr 2012 | B2 |
8166395 | Omi et al. | Apr 2012 | B2 |
D658674 | Shallcross et al. | May 2012 | S |
D660732 | Bould et al. | May 2012 | S |
8174381 | Imes et al. | May 2012 | B2 |
8174483 | Cheng | May 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8185164 | Kim | May 2012 | B2 |
8195313 | Fadell et al. | Jun 2012 | B1 |
D663743 | Tanghe et al. | Jul 2012 | S |
D663744 | Tanghe et al. | Jul 2012 | S |
D664559 | Ismail et al. | Jul 2012 | S |
8219249 | Harrod et al. | Jul 2012 | B2 |
8223134 | Forstall et al. | Jul 2012 | B1 |
8234581 | Kake | Jul 2012 | B2 |
D664978 | Tanghe et al. | Aug 2012 | S |
D665397 | Naranjo et al. | Aug 2012 | S |
8243017 | Brodersen et al. | Aug 2012 | B2 |
8253704 | Jang | Aug 2012 | B2 |
8253747 | Niles et al. | Aug 2012 | B2 |
8265798 | Imes | Sep 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8281244 | Neuman et al. | Oct 2012 | B2 |
8292494 | Rosa et al. | Oct 2012 | B2 |
D671136 | Barnett et al. | Nov 2012 | S |
8316022 | Matsuda et al. | Nov 2012 | B2 |
D673171 | Peters et al. | Dec 2012 | S |
D673172 | Peters et al. | Dec 2012 | S |
8341557 | Pisula et al. | Dec 2012 | B2 |
D677180 | Plitkins et al. | Mar 2013 | S |
8406816 | Marui et al. | Mar 2013 | B2 |
8442695 | Imes et al. | May 2013 | B2 |
8442752 | Wijaya et al. | May 2013 | B2 |
8446381 | Molard et al. | May 2013 | B2 |
D687043 | Matas et al. | Jul 2013 | S |
D687044 | Ruff | Jul 2013 | S |
D687045 | Plitkins et al. | Jul 2013 | S |
D687046 | Plitkins et al. | Jul 2013 | S |
D687047 | Hales et al. | Jul 2013 | S |
D687050 | Matas et al. | Jul 2013 | S |
D687056 | Matas et al. | Jul 2013 | S |
D687057 | Plitkins | Jul 2013 | S |
D687058 | Corcoran et al. | Jul 2013 | S |
D687059 | Bruck et al. | Jul 2013 | S |
8478447 | Fadell et al. | Jul 2013 | B2 |
8489243 | Fadell et al. | Jul 2013 | B2 |
D687851 | Sloo et al. | Aug 2013 | S |
8510255 | Fadell et al. | Aug 2013 | B2 |
D690322 | Matas et al. | Sep 2013 | S |
D691629 | Matas et al. | Oct 2013 | S |
D696677 | Corcoran et al. | Dec 2013 | S |
8606374 | Fadell et al. | Dec 2013 | B2 |
D697526 | Bruck et al. | Jan 2014 | S |
D697930 | Crabtree et al. | Jan 2014 | S |
D701515 | Matas et al. | Mar 2014 | S |
D701869 | Matas et al. | Apr 2014 | S |
8689572 | Evans et al. | Apr 2014 | B2 |
8706270 | Fadell et al. | Apr 2014 | B2 |
8727611 | Huppi et al. | May 2014 | B2 |
8752771 | Warren et al. | Jun 2014 | B2 |
8757507 | Fadell et al. | Jun 2014 | B2 |
D711916 | Matas | Aug 2014 | S |
8843239 | Mighdoll et al. | Sep 2014 | B2 |
20010052052 | Peng | Dec 2001 | A1 |
20020005435 | Cottrell | Jan 2002 | A1 |
20020022991 | Sharood et al. | Feb 2002 | A1 |
20030034898 | Shamoon | Feb 2003 | A1 |
20030042320 | Decker | Mar 2003 | A1 |
20030112262 | Adatia et al. | Jun 2003 | A1 |
20030231001 | Bruning | Dec 2003 | A1 |
20040015504 | Ahad et al. | Jan 2004 | A1 |
20040034484 | Solomita, Jr. et al. | Feb 2004 | A1 |
20040055446 | Robbin et al. | Mar 2004 | A1 |
20040067731 | Brinkerhoff et al. | Apr 2004 | A1 |
20040074978 | Rosen | Apr 2004 | A1 |
20040095237 | Chen et al. | May 2004 | A1 |
20040164238 | Xu et al. | Aug 2004 | A1 |
20040249479 | Shorrock | Dec 2004 | A1 |
20040256472 | DeLuca | Dec 2004 | A1 |
20040260427 | Wimsatt | Dec 2004 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
20050040250 | Wruck | Feb 2005 | A1 |
20050043907 | Eckel et al. | Feb 2005 | A1 |
20050055432 | Rodgers | Mar 2005 | A1 |
20050071780 | Muller et al. | Mar 2005 | A1 |
20050090915 | Geiwitz | Apr 2005 | A1 |
20050103875 | Ashworth et al. | May 2005 | A1 |
20050119766 | Amundson et al. | Jun 2005 | A1 |
20050119793 | Amundson et al. | Jun 2005 | A1 |
20050120181 | Arunagirinathan et al. | Jun 2005 | A1 |
20050128067 | Zakrewski | Jun 2005 | A1 |
20050150968 | Shearer | Jul 2005 | A1 |
20050159847 | Shah et al. | Jul 2005 | A1 |
20050189429 | Breeden | Sep 2005 | A1 |
20050192915 | Ahmed et al. | Sep 2005 | A1 |
20050194456 | Tessier et al. | Sep 2005 | A1 |
20050195757 | Kidder et al. | Sep 2005 | A1 |
20050199737 | De Pauw et al. | Sep 2005 | A1 |
20050204997 | Fournier | Sep 2005 | A1 |
20050279840 | Schwendinger et al. | Dec 2005 | A1 |
20050279841 | Schwendinger et al. | Dec 2005 | A1 |
20050280421 | Yomoda et al. | Dec 2005 | A1 |
20050287424 | Schwendinger et al. | Dec 2005 | A1 |
20060000919 | Schwendinger et al. | Jan 2006 | A1 |
20060102732 | Garrett | May 2006 | A1 |
20060184284 | Froman et al. | Aug 2006 | A1 |
20060186214 | Simon et al. | Aug 2006 | A1 |
20060196953 | Simon et al. | Sep 2006 | A1 |
20060206220 | Amundson | Sep 2006 | A1 |
20060266949 | Bender et al. | Nov 2006 | A1 |
20070001830 | Dagci et al. | Jan 2007 | A1 |
20070045430 | Chapman et al. | Mar 2007 | A1 |
20070045433 | Chapman et al. | Mar 2007 | A1 |
20070045444 | Gray et al. | Mar 2007 | A1 |
20070050732 | Chapman et al. | Mar 2007 | A1 |
20070057079 | Stark et al. | Mar 2007 | A1 |
20070084941 | de Pauw et al. | Apr 2007 | A1 |
20070114295 | Jenkins | May 2007 | A1 |
20070114848 | Mulhouse | May 2007 | A1 |
20070115902 | Shamoon et al. | May 2007 | A1 |
20070132503 | Nordin | Jun 2007 | A1 |
20070157639 | Harrod | Jul 2007 | A1 |
20070158442 | Chapman et al. | Jul 2007 | A1 |
20070158444 | Naujok et al. | Jul 2007 | A1 |
20070173978 | Fein et al. | Jul 2007 | A1 |
20070177857 | Troost et al. | Aug 2007 | A1 |
20070220907 | Ehlers | Sep 2007 | A1 |
20070221741 | Wagner et al. | Sep 2007 | A1 |
20070225867 | Moorer et al. | Sep 2007 | A1 |
20070227721 | Springer et al. | Oct 2007 | A1 |
20070228183 | Kennedy et al. | Oct 2007 | A1 |
20070241203 | Wagner et al. | Oct 2007 | A1 |
20070246553 | Morrow et al. | Oct 2007 | A1 |
20070257120 | Chapman et al. | Nov 2007 | A1 |
20070278320 | Lunacek et al. | Dec 2007 | A1 |
20070296280 | Sorg et al. | Dec 2007 | A1 |
20080006709 | Ashworth et al. | Jan 2008 | A1 |
20080015740 | Osann | Jan 2008 | A1 |
20080015742 | Kulyk et al. | Jan 2008 | A1 |
20080048046 | Wagner et al. | Feb 2008 | A1 |
20080054082 | Evans et al. | Mar 2008 | A1 |
20080054084 | Olson | Mar 2008 | A1 |
20080099568 | Nicodem et al. | May 2008 | A1 |
20080151458 | Beland et al. | Jun 2008 | A1 |
20080155915 | Howe et al. | Jul 2008 | A1 |
20080191045 | Harter | Aug 2008 | A1 |
20080215240 | Howard et al. | Sep 2008 | A1 |
20080221737 | Josephson et al. | Sep 2008 | A1 |
20080238660 | Dayton et al. | Oct 2008 | A1 |
20080245480 | Knight et al. | Oct 2008 | A1 |
20080256475 | Amundson et al. | Oct 2008 | A1 |
20080273754 | Hick et al. | Nov 2008 | A1 |
20080290183 | Laberge et al. | Nov 2008 | A1 |
20080317292 | Baker et al. | Dec 2008 | A1 |
20090001180 | Siddaramanna et al. | Jan 2009 | A1 |
20090001181 | Siddaramanna et al. | Jan 2009 | A1 |
20090014654 | Zhevelev et al. | Jan 2009 | A1 |
20090024927 | Schrock et al. | Jan 2009 | A1 |
20090065595 | Kates | Mar 2009 | A1 |
20090082693 | Stafford | Mar 2009 | A1 |
20090099699 | Steinberg et al. | Apr 2009 | A1 |
20090125151 | Steinberg et al. | May 2009 | A1 |
20090140056 | Leen | Jun 2009 | A1 |
20090140057 | Leen | Jun 2009 | A1 |
20090140060 | Stoner et al. | Jun 2009 | A1 |
20090140064 | Schultz et al. | Jun 2009 | A1 |
20090143916 | Boll et al. | Jun 2009 | A1 |
20090143918 | Amundson et al. | Jun 2009 | A1 |
20090158188 | Bray et al. | Jun 2009 | A1 |
20090171862 | Harrod et al. | Jul 2009 | A1 |
20090194601 | Flohr | Aug 2009 | A1 |
20090195349 | Frader-Thompson et al. | Aug 2009 | A1 |
20090207122 | Cheng | Aug 2009 | A1 |
20090215534 | Wilson et al. | Aug 2009 | A1 |
20090254225 | Boucher et al. | Oct 2009 | A1 |
20090259713 | Blumrich et al. | Oct 2009 | A1 |
20090261174 | Butler et al. | Oct 2009 | A1 |
20090263773 | Kotlyar et al. | Oct 2009 | A1 |
20090273610 | Busch et al. | Nov 2009 | A1 |
20090283603 | Peterson et al. | Nov 2009 | A1 |
20090297901 | Kilian et al. | Dec 2009 | A1 |
20090312968 | Phillips | Dec 2009 | A1 |
20090327354 | Resnick et al. | Dec 2009 | A1 |
20100000417 | Tetreault et al. | Jan 2010 | A1 |
20100012737 | Kates | Jan 2010 | A1 |
20100019051 | Rosen | Jan 2010 | A1 |
20100025483 | Hoeynck et al. | Feb 2010 | A1 |
20100026379 | Simard | Feb 2010 | A1 |
20100050004 | Hamilton, II et al. | Feb 2010 | A1 |
20100053464 | Otsuka | Mar 2010 | A1 |
20100070084 | Steinberg et al. | Mar 2010 | A1 |
20100070085 | Harrod et al. | Mar 2010 | A1 |
20100070086 | Harrod et al. | Mar 2010 | A1 |
20100070089 | Harrod et al. | Mar 2010 | A1 |
20100070093 | Harrod et al. | Mar 2010 | A1 |
20100070234 | Steinberg et al. | Mar 2010 | A1 |
20100070907 | Harrod et al. | Mar 2010 | A1 |
20100076605 | Harrod et al. | Mar 2010 | A1 |
20100076835 | Silverman | Mar 2010 | A1 |
20100084482 | Kennedy et al. | Apr 2010 | A1 |
20100106305 | Pavlak et al. | Apr 2010 | A1 |
20100106322 | Grohman | Apr 2010 | A1 |
20100107070 | Devineni et al. | Apr 2010 | A1 |
20100107076 | Grohman et al. | Apr 2010 | A1 |
20100107103 | Wallaert et al. | Apr 2010 | A1 |
20100122167 | Ryu | May 2010 | A1 |
20100163633 | Barrett et al. | Jul 2010 | A1 |
20100167783 | Alameh et al. | Jul 2010 | A1 |
20100168924 | Tessier et al. | Jul 2010 | A1 |
20100179704 | Ozog | Jul 2010 | A1 |
20100198425 | Donovan | Aug 2010 | A1 |
20100211224 | Keeling et al. | Aug 2010 | A1 |
20100262298 | Johnson et al. | Oct 2010 | A1 |
20100262299 | Cheung et al. | Oct 2010 | A1 |
20100273610 | Johnson | Oct 2010 | A1 |
20100280667 | Steinberg | Nov 2010 | A1 |
20100282857 | Steinberg | Nov 2010 | A1 |
20100289643 | Trundle et al. | Nov 2010 | A1 |
20100308119 | Steinberg et al. | Dec 2010 | A1 |
20100318227 | Steinberg et al. | Dec 2010 | A1 |
20110001812 | Kang et al. | Jan 2011 | A1 |
20110015797 | Gilstrap | Jan 2011 | A1 |
20110015798 | Golden et al. | Jan 2011 | A1 |
20110015802 | Imes | Jan 2011 | A1 |
20110016017 | Carlin et al. | Jan 2011 | A1 |
20110022242 | Bukhin et al. | Jan 2011 | A1 |
20110029488 | Fuerst et al. | Feb 2011 | A1 |
20110046756 | Park | Feb 2011 | A1 |
20110046792 | Imes et al. | Feb 2011 | A1 |
20110046805 | Bedros et al. | Feb 2011 | A1 |
20110046806 | Nagel et al. | Feb 2011 | A1 |
20110054710 | Imes et al. | Mar 2011 | A1 |
20110077758 | Tran et al. | Mar 2011 | A1 |
20110077896 | Steinberg et al. | Mar 2011 | A1 |
20110082594 | Dage et al. | Apr 2011 | A1 |
20110106328 | Zhou et al. | May 2011 | A1 |
20110151837 | Winbush, III | Jun 2011 | A1 |
20110160913 | Parker et al. | Jun 2011 | A1 |
20110166712 | Kramer et al. | Jul 2011 | A1 |
20110166828 | Steinberg et al. | Jul 2011 | A1 |
20110167369 | van Os | Jul 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20110282937 | Deshpande et al. | Nov 2011 | A1 |
20110290893 | Steinberg | Dec 2011 | A1 |
20110307103 | Cheung et al. | Dec 2011 | A1 |
20110307112 | Barrilleaux | Dec 2011 | A1 |
20120017611 | Coffel et al. | Jan 2012 | A1 |
20120024969 | Kates | Feb 2012 | A1 |
20120031984 | Feldmeier et al. | Feb 2012 | A1 |
20120036250 | Vaswani et al. | Feb 2012 | A1 |
20120053745 | Ng | Mar 2012 | A1 |
20120065783 | Fadell et al. | Mar 2012 | A1 |
20120065935 | Steinberg et al. | Mar 2012 | A1 |
20120066168 | Fadell et al. | Mar 2012 | A1 |
20120085831 | Kopp | Apr 2012 | A1 |
20120086562 | Steinberg | Apr 2012 | A1 |
20120089523 | Hurri et al. | Apr 2012 | A1 |
20120101637 | Imes et al. | Apr 2012 | A1 |
20120125559 | Fadell et al. | May 2012 | A1 |
20120125592 | Fadell et al. | May 2012 | A1 |
20120126019 | Warren et al. | May 2012 | A1 |
20120126020 | Filson et al. | May 2012 | A1 |
20120126021 | Warren et al. | May 2012 | A1 |
20120128025 | Huppi et al. | May 2012 | A1 |
20120130546 | Matas et al. | May 2012 | A1 |
20120130547 | Fadell et al. | May 2012 | A1 |
20120130548 | Fadell et al. | May 2012 | A1 |
20120130679 | Fadell et al. | May 2012 | A1 |
20120131504 | Fadell et al. | May 2012 | A1 |
20120158350 | Steinberg et al. | Jun 2012 | A1 |
20120179300 | Warren et al. | Jul 2012 | A1 |
20120186774 | Matsuoka et al. | Jul 2012 | A1 |
20120191257 | Corcoran et al. | Jul 2012 | A1 |
20120199660 | Warren et al. | Aug 2012 | A1 |
20120203379 | Sloo et al. | Aug 2012 | A1 |
20120221151 | Steinberg | Aug 2012 | A1 |
20120229521 | Hales, IV et al. | Sep 2012 | A1 |
20120233478 | Mucignat et al. | Sep 2012 | A1 |
20120239207 | Fadell et al. | Sep 2012 | A1 |
20120239221 | Mighdoll et al. | Sep 2012 | A1 |
20120252430 | Imes et al. | Oct 2012 | A1 |
20120296488 | Dharwada et al. | Nov 2012 | A1 |
20130014057 | Reinpoldt et al. | Jan 2013 | A1 |
20130024799 | Fadell et al. | Jan 2013 | A1 |
20130046397 | Fadell et al. | Feb 2013 | A1 |
20130073506 | Camp et al. | Mar 2013 | A1 |
20130090767 | Bruck et al. | Apr 2013 | A1 |
20130099011 | Matsuoka et al. | Apr 2013 | A1 |
20140005837 | Fadell et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2202008 | Feb 2000 | CA |
19609390 | Sep 1997 | DE |
207295 | Jan 1987 | EP |
434926 | Jul 1991 | EP |
196069 | Dec 1991 | EP |
720077 | Jul 1996 | EP |
802471 | Oct 1997 | EP |
1065079 | Jan 2001 | EP |
1184804 | Mar 2002 | EP |
1731984 | Dec 2006 | EP |
1283396 | Mar 2007 | EP |
2157492 | Feb 2010 | EP |
1703356 | Sep 2011 | EP |
2212317 | May 1992 | GB |
59106311 | Jun 1984 | JP |
01252850 | Oct 1989 | JP |
09298780 | Nov 1997 | JP |
10023565 | Jan 1998 | JP |
2002087050 | Mar 2002 | JP |
2003054290 | Feb 2003 | JP |
1020070117874 | Dec 2007 | KR |
1024986 | Jun 2005 | NL |
0248851 | Jun 2002 | WO |
2005019740 | Mar 2005 | WO |
2008054938 | May 2008 | WO |
2009073496 | Jun 2009 | WO |
2010033563 | Mar 2010 | WO |
2011128416 | Oct 2011 | WO |
2011149600 | Dec 2011 | WO |
2012024534 | Feb 2012 | WO |
2013059671 | Apr 2012 | WO |
2012068436 | May 2012 | WO |
2012068437 | May 2012 | WO |
2012068453 | May 2012 | WO |
2012068459 | May 2012 | WO |
2012068495 | May 2012 | WO |
2012068503 | May 2012 | WO |
2012068507 | May 2012 | WO |
2012068447 | Jan 2013 | WO |
2013052389 | Apr 2013 | WO |
2013058820 | Apr 2013 | WO |
Entry |
---|
Supplementary European Search Report dated Mar. 1, 2016, for European Patent Application No. 12842627.7, 7 pages. |
Energy Joule, Ambient Devices, Jul. 23, 2011. Retrieved from: http://web.archive.org/web/20110723210421/http://www.ambientdevices.com/products/energyjoule.html on Aug. 1, 2012, 3 pages. |
International Patent Application No. PCT/US2012/030084, International Search Report & Written Opinion, mailed Jul. 6, 2012, 7 pages. |
International Application No. PCT/US2012/030084, International Preliminary Report on Patentability mailed on May 1, 2014, 7 pages. |
International Preliminary Report on Patentability mailed Apr. 8, 2014 for International Patent Application No. PCT/US2012/058207 filed Sep. 30, 2012, 8 pages. |
Advanced Model Owner's Manual, Bay Web Thermostat, manual [online], [retrieved on Nov. 7, 2012]. Retrieved from the Internet: <URL:http://www.bayweb.com/wp-content/uploads/BW-WT4-2DOC.pdf>, Oct. 6, 2011, 31 pages. |
Honeywell CT2700, An Electronic Round Programmable Thermostat—User's Guide, Honeywell, Inc., 1997, 8 pages. |
Honeywell CT8775A,C, The digital Round Non-Programmable Thermostats —Owner's Guide, Honeywell International Inc., 2003, 20 pages. |
Honeywell T8700C, An Electronic Round Programmable Thermostat—Owner's Guide, Honeywell, Inc., 1997, 12 pages. |
Honeywell T8775 The Digital Round Thermostat, Honeywell, 2003, 2 pages. |
Honeywell T8775AC Digital Round Thermostat Manual No. 69-1679EF-1, Retrieved from the Internet: URL: www.honeywell.com/yourhome, Jun. 2004, pp. 1-16. |
ICY 3815TT-001 Timer-Thermostat Package Box, ICY BV Product Bar Code No. 8717953007902, 2009, 2 pages. |
Introducing the New Smart Si Thermostat, Datasheet [online]. Ecobee, Mar. 2012 [retrieved on Feb. 25, 2013]. Retrieved from the Internet: <URL: https://www.ecobee.com/solutions/home/smart-si/>, Mar. 12, 2012, 4 pages. |
The Clever Thermostat, ICY BV Web Page, http://www.icy.nl/en/consumer/products/clever-thermostat, ICY BV, 2012, 1 page. |
The Clever Thermostat User Manual and Installation Guide, ICY BV ICY3815 Timer-Thermostat, 2009, pp. 1-36. |
U.S. Appl. No. 60/512,886, Volkswagen Rotary Knob for Motor Vehicle—English Translation of German Application filed Oct. 20, 2003. |
Arens et al., “Demand Response Electrical Appliance Manager—User Interface Design, Development and Testing”, Poster, Demand Response Enabling Technology Development, University of California Berkeley, Retrieved from dr. berkeley.edu/dream/posters/2005—6GUIposter. pdf, 2005, 1 page. |
Arens et al., “Demand Response Enabled Thermostat—Control Strategies and Interface”, Demand Response Enabling Technology Development Poster, University of California Berkeley, Retrieved from drberkeley.edu/dream/posters/2004—110EC—TstatPosterpdf, 2004, 1 page. |
Arens et al., “Demand Response Enabling Technology Development”, Phase I Report: Jun. 2003-Nov. 2005, Retrieved on Jul. 27, 2006 from P:/DemandRes/UC Papers/DR-Phase1Report-Final DraftApril24-2006.doc, University of California Berkeley, pp. 1-108. |
Arens et al., “New Thermostat Demand Response Enabling Technology”, Poster, University of California Berkeley, Jun. 10, 2004. |
Auslander et al., “UC Berkeley DR Research Energy Management Group”, Power Point Presentation, DR ETD Workshop, State of California Energy Commission, Jun. 11, 2007, pp. 1-35. |
Chen et al., “Demand Response-Enabled Residential Thermostat Controls”, Abstract, ACEEE Summer Study on Energy Efficiency in Buildings, Mechanical Engineering Dept. and Architecture Dept., University of California Berkeley, 2008, pp. 1-24 through 1-36. |
Detroitborg, “Nest Learning Thermostat: Unboxing and Review”, [online]. Feb. 2012 [retrieved on Aug. 22, 2013]. Retrieved from the Internet: <URL: http://www.youtube.com/watch?v=KrgcOL4oLzc>. |
Green, “Thermo Heat Tech Cool”, Popular Mechanics Electronic Thermostat Guide, Oct. 1985, pp. 155-158. |
Gao et al., “The Self-Programming Thermostat: Optimizing Setback Schedules Based on Home Occupancy Patterns”, Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Association for Computing Machinery, Nov. 2009, pp. 67-72. |
Meier et al., “Thermostat Interface Usability: A Survey”, Ernest Orlando Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, Berkeley California, Sep. 2010, pp. 1-73. |
International Patent Application No. PCT/US2011/061470 International Search Report & Written Opinion mailed Apr. 3, 2012, 11 pages. |
International Patent Application No. PCT/US2012/058207 International Search Report & Written Opinion mailed Jan. 11, 2013, 10 pages. |
Peffer et al., “A Tale of Two Houses: The Human Dimension of Demand Response Enabling Technology from a Case Study of Adaptive Wireless Thermostat”, Abstract, ACEEE Summer Study on Energy Efficiency in Buildings, Architecture Dept. and Mechanical Engineering Dept., University of California Berkeley., 2008, pp. 7-242 through 7-253. |
Peffer et al., “Smart Comfort At Home: Design of a Residential Thermostat to Achieve Thermal Comfort, and Save Money and Peak Energy”, University of California Berkeley, Mar. 2007, 1 page. |
Peffer, T. E. (2009). California DREAMing: the Design of Residential Demand Responsive Technology with People in Mind (Doctoral dissertation). University of California, Berkeley. |
Salus, “S-Series Digital Thermostat Instruction Manual-ST620 Model No. Instruction Manual”, www.salus-tech.com, Version 005, Apr. 29, 2010, 24 pages. |
Sanford, “iPod (Click Wheel) (2004)”, www.apple-history.com [retrieved on Apr. 9, 2012]. Retrieved from: http://apple-history.com/ipod, Apr. 9, 2012, 2 pages. |
Stigge, Jr., B. J. (2001). Informed Home Energy Behavior: Developing a tool for homeowners to monitor, plan and learn about energy conservation (Master's thesis). Massachusetts Institute of Technology, Cambridge. |
Wright et al., “DR ETD—Summary of New Thermostate, TempNode, & New Meter (UC Berkeley Project)”, Power Point Presentation, Public Interest Energy Research, University of California Berkeley. Retrieved from: http://dr.berkeley.edu/dream/presentations/2005—6CEC.pdf, 2005, pp. 1-49. |
Aprilaire Electronic Thermostats Model 8355 User's Manual Research Products Corporation Dec. 2000 16 pages. |
Braeburn 5300 Installer Guide Braeburn Systems LLC Dec. 9, 2009 10 pages. |
Braeburn Model 5200 Braeburn Systems LLC Jul. 20, 2011 11 pages. |
Ecobee Smart Si Thermostat Installation Manual Ecobee Apr. 3, 2012 40 pages. |
Ecobee Smart Si Thermostat User Manual Ecobee Apr. 3, 2012 44 pages. |
Ecobee Smart Thermostat Installation Manual Jun. 29, 2011 20 pages. |
Ecobee Smart Thermostat User Manual May 11, 2010 20 pages. |
Electric Heat Lock Out on Heat Pumps Washington State University Extension Energy Program Apr. 2010 pp. 1-3. |
Honeywell Installation Guide FocusPRO TH6000 Series Honeywell International Inc. Jan. 5, 2012 24 pages. |
Honeywell Operating Manual FocusPRO TH6000 Series Honeywell International Inc. Mar. 25, 2011 80 pages. |
Honeywell Prestige IAQ Product Data 2 Honeywell International Inc. Jan. 12, 2012 126 pages. |
Honeywell Prestige THX9321 and TXH9421 Product Data Honeywell International Inc. 68/0311 Jan. 2012 126 pages. |
Honeywell Prestige THX9321-9421 Operating Manual Honeywell International Inc. Jul. 6, 2011 120 pages. |
Hunter Internet Thermostat Installation Guide Hunter Fan Co. Aug. 14, 2012 8 pages. |
Lennox ComfortSense 5000 Owners Guide Lennox Industries Inc. Feb. 2008 32 pages. |
Lennox ComfortSense 7000 Owners Guide Lennox Industries Inc. May 2009 15 pages. |
Lennox iComfort Manual Lennox Industries Inc. Dec. 2010 20 pages. |
Lux PSPU732T Manual Lux Products Corporation Jan. 6, 2009 48 pages. |
NetX RP32-WIFI Network Thermostat Consumer Brochure Network Thermostat May 2011 2 pages. |
NetX RP32-WIFI Network Thermostat Specification Sheet Network Thermostat Feb. 28, 2012 2 pages. |
RobertShaw Product Manual 9620 Maple Chase Company Jun. 12, 2001 14 pages. |
RobertShaw Product Manual 9825i2 Maple Chase Company Jul. 17, 2006 36 pages. |
Sce Energy$mart Thermostat Study for Southern California Edison—Presentation of Study Results Population Research Systems Project #1010 Nov. 10, 2004 51 pages. |
SYSTXCCUIZ01-V Infinity Control Installation Instructions Carrier Corp May 31, 2012 20 pages. |
T8611G Chronotherm IV Deluxe Programmable Heat Pump Thermostat Product Data Honeywell International Inc. Oct. 1997 24 pages. |
TB-PAC TB-PHP Base Series Programmable Thermostats Carrier Corp May 14, 2012 8 pages. |
The Perfect Climate Comfort Center PC8900A W8900A-C Product Data Sheet Honeywell International Inc. Apr. 2001 44 pages. |
TP-PAC TP-PHP TP-NAC TP-NHP Performance Series ACHP Thermostat Installation Instructions Carrier Corp Sep. 2007 56 pages. |
Trane Communicating Thermostats for Fan Coil Trane May 2011 32 pages. |
Trane Communicating Thermostats for Heat Pump Control Trane May 2011 32 pages. |
Trane Install XL600 Installation Manual Trane Mar. 2006 16 pages. |
Trane XL950 Installation Guide Trane Mar. 2011 20 pages. |
Venstar T2900 Manual Venstar Inc. Apr. 2008 113 pages. |
Venstar T5800 Manual Venstar Inc. Sep. 7, 2011 63 pages. |
VisionPRO TH8000 Series Installation Guide Honeywell International Inc. Jan. 2012 12 pages. |
VisionPRO TH8000 Series Operating Manual Honeywell International Inc. Mar. 2011 96 pages. |
VisionPRO Wi-Fi Programmable Thermostat Honeywell International Inc. Operating Manual Aug. 2012 48 pages. |
White Rodgers (Emerson) Model 1F81-261 Installation and Operating Instructions White Rodgers Apr. 15, 2010 8 pages. |
White Rodgers (Emerson) Model IF98EZ-1621 Homeowner's User Guide White Rodgers Jan. 25, 2012 28 pages. |
Allen et al. “Real-Time Earthquake Detection and Hazard Assessment by ElarmS Across California” Geophysical Research Letters vol. 36 L00B08 2009 pp. 1-6. |
Bourke Server Load Balancing O'Reilly & Associates Inc. Aug. 2001 182 pages. |
De Almeida et al. “Advanced Monitoring Technologies for the Evaluation of Demand-Side Management Programs” Energy vol. 19 No. 6, 1994, pp. 661-678. |
Deleeuw “Ecobee WiFi Enabled Smart Thermostat Part 2: The Features Review” Retrieved from <URL: http:www.homenetworkenabled.comcontent.php?136-ecobee-WiFi-enabled-Smart-Thermostat-Part-2-The-Features-review> Dec. 2, 2011 5 pages. |
Gevorkian “Alternative Energy Systems in Building Design” 2009 pp. 195-200. |
Hoffman et al. “Integration of Remote Meter Reading Load Control and Monitoring of Customers' Installations for Customer Automation with Telephone Line Signaling” Electricity Distribution 1989. CIRED 1989. 10th International Conference on May 8-12, 1989 pp. 421-424. |
Levy “A Vision of Demand Response—2016” The Electricity Journal vol. 19 Issue 8 Oct. 2006 pp. 12-23. |
Loisos et al. “Buildings End-Use Energy Efficiency: Alternatives to Compressor Cooling” California Energy Commission Public Interest Energy Research Jan. 2000 80 pages. |
Lopes “Case Studies in Advanced Thermostat Control for Demand Response” AEIC Load Research Conference St. Louis MO Jul. 2004 36 pages. |
Lu et al. “The Smart Thermostat: Using Occupancy Sensors to Save Energy in Homes” In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems Nov. 3-5, 2010 pp. 211-224. |
Martinez “SCE Energy$mart Thermostat Program” Advanced Load Control Alliance Oct. 5, 2004 20 pages. |
Matty “Advanced Energy Management for Home Use” IEEE Transaction on Consumer Electronics vol. 35 No. 3 Aug. 1989 pp. 584-588. |
Motegi et al. “Introduction to Commercial Building Control Strategies and Techniques for Demand Response” Demand Response Research Center May 22, 2007 35 pages. |
Mozer “The Neural Network House: An Environmental that Adapts to it's Inhabitants” AAAI Technical Report SS-98-02 1998 pp. 110-114. |
White et al. “A Conceptual Model for Simulation Load Balancing” Proc. 1998 Spring Simulation Interoperability Workshop 1998 7 pages. |
International Preliminary Report on Patentability mailed Aug. 1, 2013 for International Patent Application PCT/US2011/061479 11 pages. |
International Patent Application No. PCT/US2011/061479 International Search Report issued Apr. 11, 2012, all pages. |
Notice of Allowance issued in U.S. Appl. No. 13/351,688 mailed on Apr. 10, 2012; 12 pages. |
Notice of Allowance issued in U.S. Appl. No. 13/351,688 mailed on Apr. 27, 2012; 13 pages. |
Corrected Notice of Allowability issued in U.S. Appl. No. 13/351,688 mailed on May 1, 2012; 7 pages. |
Non-final Rejection issued in U.S. Appl. No. 13/487,475 mailed on Jul. 19, 2012; 7 pages. |
Notice of Allowance issued in U.S. Appl. No. 13/487,475 mailed on Aug. 17, 2012; 13 pages. |
Number | Date | Country | |
---|---|---|---|
20150233595 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61415771 | Nov 2010 | US | |
61429093 | Dec 2010 | US | |
61627996 | Oct 2011 | US | |
61429093 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14487616 | Sep 2014 | US |
Child | 14702901 | US | |
Parent | 14249205 | Apr 2014 | US |
Child | 14487616 | US | |
Parent | 13921152 | Jun 2013 | US |
Child | 14249205 | US | |
Parent | 13632734 | Oct 2012 | US |
Child | 13921152 | US | |
Parent | 13487475 | Jun 2012 | US |
Child | 13632734 | US | |
Parent | 13351688 | Jan 2012 | US |
Child | 13487475 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2011/061437 | Nov 2011 | US |
Child | 13351688 | US | |
Parent | 13199108 | Aug 2011 | US |
Child | 13351688 | US | |
Parent | 13033573 | Feb 2011 | US |
Child | 13199108 | US | |
Parent | 13269501 | Oct 2011 | US |
Child | 13351688 | US | |
Parent | 13033573 | US | |
Child | 13269501 | US |