The present application is based on International Application Number PCT/IB2007/002741 filed Sep. 20, 2007, and claims priority from, German Application Number 10 2006 044 514.7, filed Sep. 21, 2006, the disclosures of which are hereby incorporated by reference herein in their entirety.
The present invention relates to a thermostatic valve defined in the preamble of claim 1.
Thermostatic valves are used foremost in automotive internal combustion-engine cooling systems. They control the flow of coolant through the engine's heat exchanger.
Conventionally such thermostatic valves comprise a valve head which is biased by a spring toward a valve seat and loaded on the opposite side by an expansible element in order to lift the valve head off the valve seat as a function of temperature. Sealing at the valve seat is implemented by a flat sealing annulus which in most cases is forced into position between two valve seats, such as flat annulus bodies. These valve seats are forced by screws toward each other. Typically the elastomeric flat sealing annulus is made separately by injection molding or it shall be molded in a two-component injection molding procedure to geometrically interlock with a valve head.
The objective of the present invention is to create a thermostatic valve allowing simple assembly and in particular it may be assembled in wholly automated manner, and entails fewer costs relating to the sealing element.
This problem is solved by the features of claim 1.
In the thermostatic valve of the present invention, the valve head is fitted at its circumference with an annular groove and the flat sealing element/annulus is stamped out of an elastomeric material, in particular an EPDM, which swells in the presence of water. The thickness of this sealing element is the same as or slightly less than the width of said annular groove.
Flat sealing annuli may be stamped very economically out of a flat, elastomeric material. Moreover such flat sealing annuli may be inserted in very simple manner into a valve head groove. Such a step may be entirely automated.
It is clear that during its assembly, the flat sealing annulus must have free access to said annular groove. On the other hand, the flat sealing annulus must be reliable kept inside said groove even when acted on by forces tending to dislodge it out of said groove, and therefore it is made of a material which, when in presence of a mixture of glycol and water—such as conventionally used in cooling systems—shall make said flat sealing annulus swell. Illustratively EPDM swells by about 15% by vol. when making contact with glycol/water. This increase in volume is adequate to jam the flat sealing annulus in the valve head, whereby, during piston operation, such dislodging forces are prevented from pulling said flat sealing annulus out of said groove.
In one embodiment mode of the present invention, the valve head is integrally made of plastic at least in the annular groove zone. In this manner the valve seat need not be manufactured being fitted with at least two valve seats.
In another embodiment mode of the present invention, the valve head is fitted at its free end facing the valve seat with a circumferentially conical bevel flaring toward the groove. The flat sealing annulus may be inserted in especially easy manner by means of said bevel into the annular groove.
In a further embodiment mode of the present invention, one wall of said groove comprises at least one elevation and the opposite wall a recess opposite said elevation. The elevation(s) and recess(es) may be annular or in the form of several mutually apart bosses and recesses. When the flat sealing annulus is made to swell, the said elevations and recesses will geometrically interlock and thereby the resistance to being dislodged shall be enhanced. Alternatively and in another embodiment mode of the present invention, at least one borehole may be constituted from the valve head's free end and run parallel to the valve head's axis and shall cross the groove. The flat sealing element is fitted with at least one hole of a diameter less than that of the borehole. Lastly a pin may be inserted into the borehole and made to pass through the flat sealing annulus' hole. In a further embodiment of the present invention, said pin may be made integral with the valve head. During assembly, the pin is separated by tool impact from the valve head and driven into the borehole, thereby affixing the flat sealing annulus into the valve head.
The invention is elucidated below in relation to the appended drawings.
As further shown in
Such a flat sealing annulus is illustratively shown in the lower view of
In order that the flat sealing annulus 24, 24a may be more easily inserted into the annular groove 18, the valve head 14 is fitted near its free end with a circumferential conical surface 26 flaring toward the tappet 12.
In a variation relative to
In the embodiment mode shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2006 044 514 | Sep 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2007/002741 | 9/20/2007 | WO | 00 | 1/13/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/035193 | 3/27/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3797805 | Nielsen | Mar 1974 | A |
4911400 | Gruber | Mar 1990 | A |
7581712 | Yoshino et al. | Sep 2009 | B2 |
Number | Date | Country |
---|---|---|
2055067 | May 1972 | DE |
2141082 | Feb 1973 | DE |
2305027 | Aug 1974 | DE |
3829830 | Mar 1990 | DE |
1183430 | Apr 2002 | EP |
1306594 | May 2003 | EP |
1083747 | Sep 1967 | GB |
2408310 | May 2005 | GB |
9819089 | May 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20090250525 A1 | Oct 2009 | US |