This invention relates to the working end of a medical instrument that applies energy to tissue from a fluid within a microfluidic tissue-engaging surface fabricated by soft lithography means together with optional superlattice cooling means that allows for very precise control of energy application, for example in neurosurgery applications.
Various types of radiofrequency (Rf) and laser surgical instruments have been developed for delivering thermal energy to tissue, for example to cause hemostasis, to weld tissue or to cause a thermoplastic remodeling of tissue. While such prior art forms of energy delivery work well for some applications, Rf and laser energy typically cannot cause highly “controlled” and “localized” thermal effects that are desirable in microsurgeries or other precision surgeries. In general, the non-linear or non-uniform characteristics of tissue affect both laser and Rf energy distributions in tissue. The objective of sealing or welding tissue requires means for elevating the tissue temperature uniformly throughout a targeted site.
What is needed is an instrument and technique (i) that can controllably deliver thermal energy to non-uniform tissue volumes; (i) that can shrink, seal, weld or create lesions in selected tissue volumes without desiccation or charring of adjacent tissues; (iii); and (iv) that does not cause stray electrical current flow in tissue.
The present invention is adapted to provide improved methods of controlled thermal energy delivery to localized tissue volumes, for example for sealing, welding or thermoplastic remodeling of tissue. Of particular interest, the method causes thermal effects in targeted tissue without the use of Rf current flow through the patient's body.
In general, the thermally-mediated treatment method comprises causing a vapor-to-liquid phase state change in a selected media at a targeted tissue site thereby applying thermal energy substantially equal to the heat of vaporization of the selected media to said tissue site. The thermally-mediated therapy can be delivered to tissue by such vapor-to-liquid phase transitions, or “internal energy” releases, about the working surfaces of several types of instruments for endoluminal treatments or for soft tissue thermotherapies.
It has been found that the controlled application of internal energies in an introduced media-tissue interaction solves many of the vexing problems associated with energy-tissue interactions in Rf, laser and ultrasound modalities. The apparatus of the invention provides a fluid-carrying chamber in the interior of the device or working end. A source provides liquid media to the interior chamber wherein energy is applied to instantly vaporize the media. In the process of the liquid-to-vapor phase transition of a saline media in the interior of the working end, large amounts of energy are added to overcome the cohesive forces between molecules in the liquid, and an additional amount of energy is requires to expand the liquid 1000+ percent (PΔD) into a resulting vapor phase (see
In
This new ablation modality can utilize specialized instrument working ends for several cardiovascular therapies or soft tissue ablation treatments for tissue sealing, tissue shrinkage, tissue ablation, creation of lesions or volumetric removal of tissue. In general, the instrument and method of the invention advantageously cause thermal ablations rapidly and efficiently compared to conventional Rf energy application to tissue.
In one embodiment, the instrument of the invention provides a tissue engaging surface of a polymeric body that carries microfluidic channels therein. The tissue-engaging surfaces are fabricated by soft lithography means to provide the fluidic channels and optional conductive materials to function as electrodes.
In another embodiment, the instrument has a working end with a superlattice cooling component that cooperates with the delivery of energy. For example, in neurosurgery, the superlattice cooling can be used to allow a brief interval of thermal energy delivery to coagulate tissue followed by practically instantaneous cooling and renaturing of proteins in the coagulated tissue to allowing sealing and to prevent the possibility of collateral thermal damage. At the same time, the cooling means insures that tissue will not stick to a jaw structure. In a preferred embodiment, the invention utilizes a thermoelectric cooling system as disclosed by Rama Venkatasubramanian et al. in U.S. patent application Ser. No. 10/265,409 (Published Application No. 20030099279 published May 29, 2003) titled Phonon-blocking, electron-transmitting low-dimensional structures, which is incorporated herein by reference. The cooling system is sometimes referred to as a PBETS device, an acronym relating to the title of the patent application. The inventors (Venkatasubramanian et al) also disclosed related technologies in U.S. Pat. No. 6,300,150 titled Thin-film thermoelectric device and fabrication method of same, which is incorporated herein by reference.
In another embodiment, the instrument provides a tissue engaging surface with capillary dimension channels to draw a liquid into the channels wherein an energy emitter is used to eject vapor from the open ends of the capillaries.
The instrument and method of the invention generate vapor phase media that is controllable as to volume and ejection pressure to provide a not-to-exceed temperature level that prevents desiccation, eschar, smoke and tissue sticking.
The instrument and method of the invention advantageously creates thermal effects in a targeted tissue volume with substantially controlled lateral margins between the treated tissue and untreated tissue.
Additional advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.
Various embodiments of the present invention will be discussed with reference to the appended drawings. These drawings depict only illustrative embodiments of the invention and are not to be considered limiting of its scope.
1. Type “A” Thermotherapy Instrument.
Referring to
In
The second moving component or flexible loop 22B is actuatable by a slidable portion 24a of the loop that extends through a slot 25 in the working end to an actuator in the handle portion 14 as is known in the art (see
Now turning to the fluid-to-gas energy delivery means of the invention, referring to
Of particular interest, still referring to
The electrodes 40A and 40B of working end 10 have opposing polarities and are coupled to electrical generator 55.
Operation and use of the working end of
Now turning to
The above electrical energy deliver step is repeated at a high repetition rate to cause a pulsed form of thermal energy delivery in the engaged tissue. The fluid media M inflow may be continuous or pulsed to substantially fill chamber 30 before an electrical discharge is caused therein. The repetition rate of electrical discharges may be from about 1 Hz to 1000 Hz. More preferably, the repetition rate is from about 10 Hz to 200 Hz. The selected repetition rate preferably provides an interval between electrical discharges that allows for thermal relaxation of tissue, that may range from about 10 ms to 500 ms. The electrical source or voltage source 55 may provide a voltage ranging between about 100 volts and 10,000 volts to cause instant vaporization of the volume of fluid media M captured between the electrode elements 40A and 40B. After a selected time interval of such energy application to tissue T, that may range from about 1 second to 30 seconds, and preferably from about 5 to 20 seconds, the engaged tissue will be contain a core region in which the tissue constituents are denatured and intermixed under relatively high compression between surfaces 20A and 20B. Upon disengagement and cooling of the targeted tissue T, the treated tissue will be fused or welded. Over time, the body's wound healing response will reconstitute the treated tissue with an intermixed collagenous volume or scar-like tissue.
An optional method of controlling the repetition rate of electrical discharges comprises the measurement of electrical characteristics of media M within the chamber 30 to insure that the chamber is filled with the fluid media at time of the electrical discharge. The electrical measurement then would send a control signal to the controller 60 to cause each electrical discharge. For example, the liquid media M can be provided with selected conductive compositions in solution therein. The controller 60 then can send a weak electrical current between the paired electrodes 40A and 40B and thereafter sense the change in an impedance level between the electrodes as the chamber 30 is filled with fluid to generate the control signal.
Referring to
In
A working end similar to that of
Now referring to
The working end 300 of
In the system embodiment of
In
As represented in
As shown in
Another advantage of the invention is that the system propagates a therapeutic vapor media M′ from the working surface 320 that can be imaged using conventional ultrasound imaging systems. This will provide an advantage over other heat transfer mechanisms, such as ohmic heating, that cannot be directly imaged with ultrasound.
Another embodiment of the invention is shown in
In general, this embodiment includes (i) a polymeric monolith with microfluidic circuitry at an interior of the engagement surface for controlling the delivery of energy from the fluid to the engaged tissue; (ii) optional contemporaneous cooling of the microfluidic circuitry and engagement surface for controlling thermal effects in tissue; and (iii) optional coupling of additional Rf energy to the fluid media contemporaneous with ejection from the engagement surface to enhance energy application at the tissue interface.
Now referring to
In another embodiment, the engagement surface can have other suction ports (not shown) that are independent of the fluidic channels 420 for suctioning tissue into contact with the engagement surface 415. A suction source can be coupled to such suction ports.
In the embodiment of
Of particular interest, the microfabricated body 410 can be of an elastomer or other suitable polymer of any suitable modulus and can be made according to techniques based on replication molding wherein the polymer is patterned by curing in a micromachined mold. A number of suitable microfabrication processes are termed soft lithography. The term multilayer soft lithography combines soft lithography with the capability to bond multiple patterned layers of polymers to form a monolith with fluid and electric circuitry therein. A multilayer body 410 as in
The scope of the invention encompasses the use of multilayer soft lithography microfabrication techniques for making thermal vapor delivery surfaces and electrosurgical engagement surfaces, wherein such energy delivery surfaces consist of multiple layers 438 fabricated of soft materials with microfluidic circuitry therein as well as electrical conductor components.
In an optional embodiment illustrated in
In any embodiment of polymer body 410, as described above, the layers 438 can be microfabricated using soft lithography techniques to provide an open or channeled interior structure to allow fluid flows therethrough. The use of resilient polymers (e.g., silicone) is preferred and the more particular microfabrication techniques include any of the following. For example, microtransfer molding is used wherein a transparent, elastomeric polydimethylsiloxane (PDMS) stamp has patterned relief on its surface to generate features in the polymer. The PDMS stamp is filled with a prepolymer or ceramic precursor and placed on a substrate. The material is cured and the stamp is removed. The technique generates features as small as 250 nm and is able to generate multilayer body 410 as in
In a working end embodiment that is particularly adapted for microsurgery, as in the forceps of
FIGS. 16 and 17A-17B illustrate the microfluidic body 410 with channels 420 that carry a flowing conductive fluid 422 such as hypertonic saline. The fluid 422 is delivered in a liquid form to the forceps schematically shown in
In
In
Now turning to the superlattice cooling component 450 of the invention, it can be seen in
Superlattice cooling devices provide substantial performance improvements over conventional thermoelectric structures, also known as Peltier devices. It has been reported that superlattice thermoelectric material having a surface dimension of about 1 cm.sup.2 can provide 700 watts of cooling under a nominal temperature gradient. This would translate into an efficiency at least double that of conventional thermoelectric devices. The use of a superlattice cooling device in a surgical instrument further provides the advantage of wafer-scalability and the use of known processes for fabrication. The author first disclosed the use of thermoelectric cooling devices in a thermal-energy delivery jaw structure in U.S. Pat. No. 6,099,251 issued Aug. 8, 2000 (see Col. 21, lines 38-52).
In a typical embodiment, the thin-film superlattice cooling structure comprises a stack of at least 10 alternating thin semiconductor layers. More preferably, the superlattice structure includes at least 100 alternating layers, and can comprise 500 or more such nanoscale layers. In one embodiment, the thin film superlattice structure comprises alternating stacks of thin film layers of bismuth telluride and antimony telluride. The thin film superlattice structure thus comprises a circuit including a plurality of thin film layers of at least two dissimilar conductors wherein current propagates heat toward one end of the circuit thereby cooling the end of the circuit coupled to the energy-emitting surface. The superlattice cooling structures are coupled to an electrical source by independent circuitry, and can also be coupled with a control system to operate in a selected sequence with thermal energy delivery.
Referring to
Now turning to
Although particular embodiments of the present invention have been described above in detail, it will be understood that this description is merely for purposes of illustration. Specific features of the invention are shown in some drawings and not in others, and this is for convenience only and any feature may be combined with another in accordance with the invention. Further variations will be apparent to one skilled in the art in light of this disclosure and are intended to fall within the scope of the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 10/830,372 filed on Apr. 22, 2004 now U.S. Pat. No. 7,549,987, which claims the benefit of Provisional U.S. Patent Application No. 60/464,935 filed Apr. 22, 2003; is a continuation-in-part of U.S. patent application Ser. No. 10/017,582 filed Dec. 7, 2001, now U.S. Pat. No. 6,669,694, which claims the benefit of Provisional U.S. Patent Application No. 60/254,487 filed Dec. 9, 2000; and is a continuation-in-part of U.S. patent application Ser. No. 10/681,625 filed Oct. 7, 2003 now U.S. Pat. No. 7,647,259 which claims benefit of Provisional U.S. Patent Application No. 60/416,622 filed Oct. 7, 2002, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
408899 | Bioch et al. | Aug 1889 | A |
697181 | Smith | Apr 1902 | A |
1719750 | Bridge et al. | Sep 1927 | A |
3818913 | Wallach | Jun 1974 | A |
3880168 | Berman | Apr 1975 | A |
3930505 | Wallach | Jan 1976 | A |
4024866 | Wallach | May 1977 | A |
4083077 | Knight et al. | Apr 1978 | A |
4672962 | Hershenson | Jun 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4748979 | Hershenson | Jun 1988 | A |
4773410 | Blackmer et al. | Sep 1988 | A |
4793352 | Eichenlaub | Dec 1988 | A |
4872920 | Flynn et al. | Oct 1989 | A |
4898574 | Uchiyama et al. | Feb 1990 | A |
4915113 | Holman | Apr 1990 | A |
4950266 | Sinofsky | Aug 1990 | A |
4985027 | Dressel | Jan 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5011566 | Hoffman | Apr 1991 | A |
5084043 | Hertzmann et al. | Jan 1992 | A |
5102410 | Dressel | Apr 1992 | A |
5112328 | Taboada et al. | May 1992 | A |
5122138 | Manwaring | Jun 1992 | A |
5158536 | Sekins et al. | Oct 1992 | A |
5190539 | Fletcher et al. | Mar 1993 | A |
5217459 | Kamerling | Jun 1993 | A |
5217465 | Steppe | Jun 1993 | A |
5263951 | Spears et al. | Nov 1993 | A |
5277696 | Hagen | Jan 1994 | A |
5298298 | Hoffman | Mar 1994 | A |
5318014 | Carter | Jun 1994 | A |
5331947 | Shturman | Jul 1994 | A |
5334190 | Seiler | Aug 1994 | A |
5348551 | Spears et al. | Sep 1994 | A |
5352512 | Hoffman | Oct 1994 | A |
5417686 | Peterson et al. | May 1995 | A |
5424620 | Cheon et al. | Jun 1995 | A |
5433708 | Nichols et al. | Jul 1995 | A |
5433739 | Sluijter | Jul 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5524620 | Rosenschein | Jun 1996 | A |
5529076 | Schachar | Jun 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5554172 | Horner et al. | Sep 1996 | A |
5562608 | Sekins et al. | Oct 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5584872 | LaFontaine et al. | Dec 1996 | A |
5591157 | Hennings et al. | Jan 1997 | A |
5591162 | Fletcher et al. | Jan 1997 | A |
5616120 | Andrew et al. | Apr 1997 | A |
5620440 | Heckele et al. | Apr 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5700262 | Acosta et al. | Dec 1997 | A |
5707352 | Sekins et al. | Jan 1998 | A |
5735811 | Brisken | Apr 1998 | A |
5741247 | Rizoiu et al. | Apr 1998 | A |
5741248 | Stern et al. | Apr 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5782914 | Schankereli | Jul 1998 | A |
5785521 | Rizoiu et al. | Jul 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5824703 | Clark, Jr. | Oct 1998 | A |
5827268 | Laufer | Oct 1998 | A |
5843019 | Eggers et al. | Dec 1998 | A |
5843073 | Sinofsky | Dec 1998 | A |
5871469 | Eggers et al. | Feb 1999 | A |
5879329 | Ginsburg | Mar 1999 | A |
5885243 | Capetan et al. | Mar 1999 | A |
5888198 | Eggers et al. | Mar 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5913856 | Chia et al. | Jun 1999 | A |
5944686 | Patterson et al. | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5957919 | Laufer | Sep 1999 | A |
5964752 | Stone | Oct 1999 | A |
5968037 | Rizoiu | Oct 1999 | A |
5980504 | Sharkey et al. | Nov 1999 | A |
5986662 | Argiro et al. | Nov 1999 | A |
5989212 | Sussman et al. | Nov 1999 | A |
5989238 | Ginsburg | Nov 1999 | A |
5989249 | Kirwin | Nov 1999 | A |
5989445 | Wise et al. | Nov 1999 | A |
5997499 | Sussman et al. | Dec 1999 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6032077 | Pomeranz | Feb 2000 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6047700 | Eggers et al. | Apr 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6059011 | Giolo | May 2000 | A |
6063079 | Hovda et al. | May 2000 | A |
6063081 | Mulier et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6074358 | Andrew et al. | Jun 2000 | A |
6080128 | Sussman et al. | Jun 2000 | A |
6080151 | Swartz et al. | Jun 2000 | A |
6083255 | Laufer et al. | Jul 2000 | A |
6095149 | Sharkey et al. | Aug 2000 | A |
6099251 | LaFleur | Aug 2000 | A |
6102046 | Weinstein et al. | Aug 2000 | A |
6102885 | Bass | Aug 2000 | A |
6106516 | Massengill | Aug 2000 | A |
6110162 | Sussman et al. | Aug 2000 | A |
6113722 | Hoffman et al. | Sep 2000 | A |
6126682 | Sharkey et al. | Oct 2000 | A |
6130671 | Argiro | Oct 2000 | A |
6139571 | Fuller et al. | Oct 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6156036 | Sussman et al. | Dec 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6162232 | Shadduck | Dec 2000 | A |
6168594 | LaFontaine et al. | Jan 2001 | B1 |
6174308 | Goble et al. | Jan 2001 | B1 |
6179805 | Sussman et al. | Jan 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6194066 | Hoffman | Feb 2001 | B1 |
6196989 | Padget et al. | Mar 2001 | B1 |
6200333 | Laufer | Mar 2001 | B1 |
6206848 | Sussman et al. | Mar 2001 | B1 |
6210404 | Shadduck | Apr 2001 | B1 |
6210405 | Goble et al. | Apr 2001 | B1 |
6219059 | Argiro | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6231567 | Rizoiu et al. | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6254597 | Rizoiu et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6261311 | Sharkey et al. | Jul 2001 | B1 |
6264650 | Hovda et al. | Jul 2001 | B1 |
6264651 | Underwood et al. | Jul 2001 | B1 |
6264654 | Swartz et al. | Jul 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6287274 | Sussman et al. | Sep 2001 | B1 |
6290715 | Sharkey et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6300150 | Venkatasubramanian | Oct 2001 | B1 |
6312408 | Eggers et al. | Nov 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6315755 | Sussman | Nov 2001 | B1 |
6319222 | Andrew et al. | Nov 2001 | B1 |
6327505 | Medhkour et al. | Dec 2001 | B1 |
6331171 | Cohen | Dec 2001 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6375635 | Moutafis et al. | Apr 2002 | B1 |
6379350 | Sharkey et al. | Apr 2002 | B1 |
6391025 | Weinstein et al. | May 2002 | B1 |
6394949 | Crowley et al. | May 2002 | B1 |
6394996 | Lawrence et al. | May 2002 | B1 |
6398759 | Sussman et al. | Jun 2002 | B1 |
6398775 | Perkins et al. | Jun 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
6416508 | Eggers et al. | Jul 2002 | B1 |
6458231 | Wapner et al. | Oct 2002 | B1 |
6461350 | Underwood et al. | Oct 2002 | B1 |
6464694 | Massengill | Oct 2002 | B1 |
6464695 | Hovda et al. | Oct 2002 | B2 |
6468270 | Hovda et al. | Oct 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6468313 | Claeson et al. | Oct 2002 | B1 |
6482201 | Olsen et al. | Nov 2002 | B1 |
6482202 | Goble et al. | Nov 2002 | B1 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6500173 | Underwood et al. | Dec 2002 | B2 |
6508816 | Shadduck | Jan 2003 | B2 |
6517568 | Sharkey et al. | Feb 2003 | B1 |
6522930 | Schaer et al. | Feb 2003 | B1 |
6527761 | Soltesz et al. | Mar 2003 | B1 |
6527766 | Bair | Mar 2003 | B1 |
6540741 | Underwood et al. | Apr 2003 | B1 |
6544211 | Andrew et al. | Apr 2003 | B1 |
6544248 | Bass | Apr 2003 | B1 |
6547810 | Sharkey et al. | Apr 2003 | B1 |
6558379 | Batchelor et al. | May 2003 | B1 |
6575929 | Sussman et al. | Jun 2003 | B2 |
6575968 | Eggers et al. | Jun 2003 | B1 |
6579270 | Sussman et al. | Jun 2003 | B2 |
6582423 | Thapliyal et al. | Jun 2003 | B1 |
6585639 | Kotmel et al. | Jul 2003 | B1 |
6588613 | Pechenik et al. | Jul 2003 | B1 |
6589201 | Sussman et al. | Jul 2003 | B1 |
6589204 | Sussman et al. | Jul 2003 | B1 |
6592594 | Rimbaugh et al. | Jul 2003 | B2 |
6595990 | Weinstein et al. | Jul 2003 | B1 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6605087 | Swartz et al. | Aug 2003 | B2 |
6610043 | Ingenito | Aug 2003 | B1 |
6620130 | Ginsburg | Sep 2003 | B1 |
6620155 | Underwood et al. | Sep 2003 | B2 |
6623444 | Babaev | Sep 2003 | B2 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632220 | Eggers et al. | Oct 2003 | B1 |
6634363 | Danek et al. | Oct 2003 | B1 |
6648847 | Sussman et al. | Nov 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6653525 | Ingenito et al. | Nov 2003 | B2 |
6659106 | Hovda et al. | Dec 2003 | B1 |
6669685 | Rizoiu et al. | Dec 2003 | B1 |
6669694 | Shadduck | Dec 2003 | B2 |
6676628 | Sussman et al. | Jan 2004 | B2 |
6676629 | Andrew et al. | Jan 2004 | B2 |
6679264 | Deem et al. | Jan 2004 | B1 |
6679879 | Shadduck | Jan 2004 | B2 |
6682520 | Ingenito | Jan 2004 | B2 |
6692494 | Cooper et al. | Feb 2004 | B1 |
6695839 | Sharkey et al. | Feb 2004 | B2 |
6699212 | Kadziauskas et al. | Mar 2004 | B1 |
6699244 | Carranza et al. | Mar 2004 | B2 |
6712811 | Underwood et al. | Mar 2004 | B2 |
6712812 | Roschak et al. | Mar 2004 | B2 |
6719738 | Mehier | Apr 2004 | B2 |
6719754 | Underwood et al. | Apr 2004 | B2 |
6723064 | Babaev | Apr 2004 | B2 |
6726684 | Woloszko et al. | Apr 2004 | B1 |
6726708 | Lasheras | Apr 2004 | B2 |
6746447 | Davison et al. | Jun 2004 | B2 |
6755794 | Soukup | Jun 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6763836 | Tasto et al. | Jul 2004 | B2 |
6764487 | Mulier et al. | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6772012 | Ricart et al. | Aug 2004 | B2 |
6776765 | Soukup et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6805130 | Tasto et al. | Oct 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6837884 | Woloszko | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6852108 | Barry et al. | Feb 2005 | B2 |
6860847 | Alferness et al. | Mar 2005 | B2 |
6860868 | Sussman et al. | Mar 2005 | B1 |
6875194 | MacKool | Apr 2005 | B2 |
6896674 | Wolosko et al. | May 2005 | B1 |
6896675 | Leung et al. | May 2005 | B2 |
6901927 | Deem et al. | Jun 2005 | B2 |
6904909 | Andreas et al. | Jun 2005 | B2 |
6907881 | Suki et al. | Jun 2005 | B2 |
6911028 | Shadduck | Jun 2005 | B2 |
6918903 | Bass | Jul 2005 | B2 |
6921385 | Clements et al. | Jul 2005 | B2 |
6929640 | Underwood et al. | Aug 2005 | B1 |
6949096 | Davison et al. | Sep 2005 | B2 |
6955675 | Jain | Oct 2005 | B2 |
6960182 | Moutafis et al. | Nov 2005 | B2 |
6972014 | Eum et al. | Dec 2005 | B2 |
6986769 | Nelson et al. | Jan 2006 | B2 |
6991028 | Comeaux et al. | Jan 2006 | B2 |
6991631 | Wolosko et al. | Jan 2006 | B2 |
7022088 | Keast et al. | Apr 2006 | B2 |
7031504 | Argiro et al. | Apr 2006 | B1 |
7083612 | Littrup et al. | Aug 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7136064 | Zuiderveld | Nov 2006 | B2 |
7144402 | Kuester, III | Dec 2006 | B2 |
7144588 | Oray et al. | Dec 2006 | B2 |
7192400 | Campbell et al. | Mar 2007 | B2 |
7233820 | Gilboa | Jun 2007 | B2 |
7235070 | Vanney | Jun 2007 | B2 |
7335195 | Mehier | Feb 2008 | B2 |
7347859 | Garabedian et al. | Mar 2008 | B2 |
7549987 | Shadduck | Jun 2009 | B2 |
7585295 | Ben-Nun | Sep 2009 | B2 |
7674259 | Shadduck | Mar 2010 | B2 |
7892229 | Shadduck et al. | Feb 2011 | B2 |
8016823 | Shadduck | Sep 2011 | B2 |
20010020167 | Woloszko et al. | Sep 2001 | A1 |
20010029370 | Hodva et al. | Oct 2001 | A1 |
20010037106 | Shadduck | Nov 2001 | A1 |
20020049438 | Sharkey et al. | Apr 2002 | A1 |
20020077516 | Flanigan | Jun 2002 | A1 |
20020082667 | Shadduck | Jun 2002 | A1 |
20020095152 | Ciarrocca et al. | Jul 2002 | A1 |
20020111386 | Sekins et al. | Aug 2002 | A1 |
20020133147 | Marchitto et al. | Sep 2002 | A1 |
20020161326 | Sussman et al. | Oct 2002 | A1 |
20020177846 | Mulier et al. | Nov 2002 | A1 |
20020193789 | Underwood et al. | Dec 2002 | A1 |
20030028189 | Woloszko et al. | Feb 2003 | A1 |
20030040742 | Underwood et al. | Feb 2003 | A1 |
20030097126 | Woloszko et al. | May 2003 | A1 |
20030099279 | Venkatasubramanian et al. | May 2003 | A1 |
20030109869 | Shadduck | Jun 2003 | A1 |
20030130655 | Woloszko et al. | Jul 2003 | A1 |
20030130738 | Hovda et al. | Jul 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030163178 | Davison et al. | Aug 2003 | A1 |
20030181922 | Alferness | Sep 2003 | A1 |
20030212394 | Pearson et al. | Nov 2003 | A1 |
20030212395 | Woloszko et al. | Nov 2003 | A1 |
20030225364 | Kraft et al. | Dec 2003 | A1 |
20040024398 | Hovda et al. | Feb 2004 | A1 |
20040024399 | Sharps et al. | Feb 2004 | A1 |
20040031494 | Danek et al. | Feb 2004 | A1 |
20040038868 | Ingenito | Feb 2004 | A1 |
20040047855 | Ingenito | Mar 2004 | A1 |
20040049180 | Sharps et al. | Mar 2004 | A1 |
20040054366 | Davison et al. | Mar 2004 | A1 |
20040055606 | Hendricksen et al. | Mar 2004 | A1 |
20040068256 | Rizoiu et al. | Apr 2004 | A1 |
20040068306 | Shadduck | Apr 2004 | A1 |
20040087937 | Eggers et al. | May 2004 | A1 |
20040116922 | Hovda et al. | Jun 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040199226 | Shadduck | Oct 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20040254532 | Mehier | Dec 2004 | A1 |
20050004634 | Ricart et al. | Jan 2005 | A1 |
20050010205 | Hovda et al. | Jan 2005 | A1 |
20050119650 | Sanders et al. | Jun 2005 | A1 |
20050166925 | Wilson et al. | Aug 2005 | A1 |
20050171582 | Matlock | Aug 2005 | A1 |
20050187543 | Underwood et al. | Aug 2005 | A1 |
20050215991 | Altman et al. | Sep 2005 | A1 |
20050222485 | Shaw et al. | Oct 2005 | A1 |
20050228423 | Khashayar et al. | Oct 2005 | A1 |
20050228424 | Khashayar et al. | Oct 2005 | A1 |
20050240171 | Forrest | Oct 2005 | A1 |
20050283143 | Rizoiu | Dec 2005 | A1 |
20060004400 | McGurk et al. | Jan 2006 | A1 |
20060047291 | Barry | Mar 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060100619 | McClurken et al. | May 2006 | A1 |
20060130830 | Barry | Jun 2006 | A1 |
20060135955 | Shadduck | Jun 2006 | A1 |
20060161233 | Barry et al. | Jul 2006 | A1 |
20060200076 | Gonzalez et al. | Sep 2006 | A1 |
20060224154 | Shadduck et al. | Oct 2006 | A1 |
20070036417 | Argiro et al. | Feb 2007 | A1 |
20070091087 | Zuiderveld | Apr 2007 | A1 |
20080033493 | Deckman et al. | Feb 2008 | A1 |
20080103566 | Mehier | May 2008 | A1 |
20080110457 | Barry et al. | May 2008 | A1 |
20080114297 | Barry et al. | May 2008 | A1 |
20080132826 | Shadduck et al. | Jun 2008 | A1 |
20090105702 | Shadduck | Apr 2009 | A1 |
20090105703 | Shadduck | Apr 2009 | A1 |
20090149846 | Hoey et al. | Jun 2009 | A1 |
20090216220 | Hoey et al. | Aug 2009 | A1 |
20100076416 | Hoey et al. | Mar 2010 | A1 |
20100160905 | Shadduck | Jun 2010 | A1 |
20100204688 | Hoey et al. | Aug 2010 | A1 |
20100262133 | Hoey et al. | Oct 2010 | A1 |
20110077628 | Hoey et al. | Mar 2011 | A1 |
20110118717 | Shadduck | May 2011 | A1 |
20110160648 | Hoey | Jun 2011 | A1 |
20110264090 | Shadduck et al. | Oct 2011 | A1 |
20120065632 | Shadduck | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
WO 0011927 | Mar 2000 | WO |
WO 0029055 | May 2000 | WO |
WO0029055 | May 2000 | WO |
WO 02069821 | Sep 2002 | WO |
WO 03070302 | Aug 2003 | WO |
WO03070302 | Aug 2003 | WO |
WO 03086498 | Oct 2003 | WO |
WO 2005025635 | Mar 2005 | WO |
WO 2005102175 | Nov 2005 | WO |
WO 2006003665 | Jan 2006 | WO |
WO 2006055695 | May 2006 | WO |
WO 2009009398 | Jan 2009 | WO |
Entry |
---|
Coda, et al., “Effects of pulmonary reventilation on gas exchange after cryolytic disobstruction of endobronchial tumors,” Minerva Medical, vol. 72, pp, 1627-1631, Jun. 1981 (with English translation). |
Fishman et al., “A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema,” N Engl J Med, vol. 348, No. 21, pp. 2059-2073, May 22, 2003. |
Homasson, et al, “Bronchoscopic cryotherapy for airway structures caused by tumors,” Chest, vol. 90, No. 2, pp. 159-164, Aug. 1986. |
Li, K. , “Efficient optimal net surface detection for image segmentation—from theory to practice” M.Sc. Thesis, The University of Iowa, 2003. |
Marasso, et al., “Cryosurgery in bronchoscopic treatment of tracheobronchial stenosis,” Chest, vol. 103, No, 2, pp. 472-474, Feb. 1993. |
Marasso, et al., “Radiofrequency resection of bronchial tumours in combination with cryotherapy: evaluation of a new technique,” Thorax, vol. 53, pp. 106-109, 1998. |
Mathur et al., “Fiberoptic bronchoscopic cryotherapy in the management of tracheobronchial obstruction,” Chest, vol. 110, No. 3, pp. 718-723, Sep. 1996. |
Morice et al. “Endobrinchial argon plasma coagulation for treatment of hemotysis and neoplastic airway obstruction,” Chest, vol. 119, No. 3, pp. 781-787, Mar. 2001. |
Moulding et al., “Preliminary studies for achieving transcervical oviduct occlusion by hot water or low-pressure steam,” Advancesin Planned Parenthood, vol. 12, No. 2: pp. 79-85, 1977. |
Quinn, J., “Use of neodymium ytrrrium aluminum garnet laser in long-term palliation of airway obstruction,” Connecticut Medicine, vol. 59, No. 7, pp, 407-412, Jul. 1995. |
Sutedja, et al., “Bronchoscopic treatment of lung tumors,” Elsevier, Lung Cancer, 11, pp. 1-17, 1994. |
Tschirren et al.: “Intrathoracic airway trees segmentation and airway morphology analysis from low-dose CT scans;” IEEE Trans, Med. Imaging, vol. 24, No. 12; pp, 11529-1539, Dec. 2005. |
Tschirren, J., “Segmentation, anatomical labeling, branchpoint matching, and quantitative analysis of human airway trees in volumetric CT images,” Ph.D. Thesis, The University of Iowa, 231 pages, Aug. 2003. |
Tschirren, J., “Segmentation, anatomical labeling, branchpoint matching, and quantitative analysis of human airway trees in volumetric CT images,” Slides from Ph.D. defense, University of Iowa, 130 pages, Aug. 2003. |
Unger, M. et al. “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science, vol. 288, pp. 113-116, Apr. 7, 2000, accessed at http://web.mit.edu/thorsen/www/113.pdf. |
Xia. Y. et al, “Soft Lithography,” Annu. Rev. Mater. Sci., vol. 28, pp. 153-184, 1998, accessed at http://www.bwfoundry.com/xia.pdf. |
Number | Date | Country | |
---|---|---|---|
20090312753 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
60464935 | Apr 2003 | US | |
60254487 | Dec 2000 | US | |
60416622 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10830372 | Apr 2004 | US |
Child | 12465927 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10017582 | Dec 2001 | US |
Child | 10830372 | US | |
Parent | 10681625 | Oct 2003 | US |
Child | 10017582 | US |