This application is related to U.S. Pat. Nos. 7,755,829; 7,768,693; 7,977,621; and 8,169,685 and to U.S. patent application Ser. No. 12/429,092 filed on 23 Apr. 2009; Ser. No. 12/545,051 filed on 20 Aug. 2009, Ser. No. 12/758,573 filed on 12 Apr. 2010; and Ser. No. 12/903,856 filed on 13 Oct. 2010, each of which is hereby incorporated by reference herein in its entirety.
1. Technical Field
The subject matter described herein relates to a thermotropic optical shutter device that incorporates one or more coatable polarizers. Implementations of such devices have application in passive or active light-regulating and temperature-regulating films, materials and devices, including construction materials.
2. Description of the Related Art
The problem of controlling the flow of radiant energy, e.g., light and heat, in particular in applications such as regulating solar heat gain in buildings and in other applications has previously been addressed using many optical and infrared methodologies. Photodarkening materials have been used for decades, for example, in sunglass lenses, to selectively attenuate incoming light when stimulated by ultraviolet (UV) radiation. When incorporated into windows, such materials can be used to regulate the internal temperature of a structure by darkening to attenuate bright sunlight, and by becoming transparent again to allow artificial light or diffuse daylight to pass through unimpeded. Such systems are passive and self-regulating, requiring no external signal other than ambient UV light in order to operate. However, because they are controlled by UV light rather than by temperature, such systems are of limited utility in temperature-regulating applications. For example, they may block wanted sunlight in cold weather as well as unwanted sunlight in hot weather. They also may not function if placed behind a UV-blocking material such as the transparent, spectrally-selective and low-emissivity coatings that are commonly employed in the window industry.
U.S. Pat. No. 7,755,829 to Powers et al. discloses an optical filter composed of a thermotropic, low clearing point, twisted nematic liquid crystal sandwiched between two reflective polarizers that can be used as a window film or other light- and heat-regulating building material. Similarly, in U.S. Pat. No. 8,169,685 to Powers et al., a thermodarkening filter composed of a low clearing point liquid crystal sandwiched between two absorptive polarizers is disclosed as a component of building materials, e.g., as a window film. In addition, U.S. Patent Application Publication No. 2009/0268273 to Powers et al. discloses a thermotropic optical filter incorporating both absorptive and reflective polarizers and U.S. Patent Application Publication Nos. 2010/0045924 and 2010/0259698 to Powers et al. disclose thermotropic, light-regulating liquid crystal devices that do not require polarizing substrates at all.
There are also numerous types of linear polarizers, including absorptive, diffusive, and reflective types made from stretched polymers. There are further linear, reflective wire grid polarizers, which are less commonly used but are nevertheless familiar structures. Finally, circular polarizers made from a coatable film of cholesteric liquid crystals, or CLCs, are also known. Thermotropic devices incorporating all of these polarizer types have been disclosed in U.S. Pat. No. 7,755,829 and related patents and patent applications to Powers and McCarthy.
Coatable linear polarizers are described, for example, in a scientific paper entitled “A novel thin film polarizer from photocurable non-aqueous lyotropicchromonic liquid crystal solutions” (Yun-Ju Bae, Hye-Jin Yang, Seung-Han Shin, Kwang-Un Jeong and Myong-Hoon Lee, J. Mater. Chem., 2011, 21, 2074). Korean researchers Bae et al. disclose a composition of matter which, when shear-coated and UV cured onto a glass surface, forms a thin-film polarizer. Shear may be induced by a number of different coating processes, including doctor blade coating, Mayer rod coating, roll coating, and gravure coating. Such processes are well described including, for example, in U.S. Patent 2002/0160296 to Wolk et al.
These shear-coated linear polarizers typically consist of lyotropic, chromonic liquid crystals (LCLCs), which are essentially dye molecules that have been functionalized so they behave as liquid crystals. These materials may be prepared using common synthetic organic chemistry techniques. In the base solution disclosed in Bae et al., the LCLC was mixed with a prepolymer material and then cured to form a polymer matrix with LCLC interspersed, providing increased mechanical stability to the system. These coatings are typically applied to either glass or thin film polymer substrates. Coatable polarizers made from chromonic liquid crystal polymers are also known.
Polymer-stabilized liquid crystal formulations and guest-host liquid crystal formulations may have both chemical and physical similarities to chromonic liquid crystal films, as both may be curable liquids that form highly ordered optical materials. It is also possible to incorporate polymerizable groups such as vinyl, acrylate, epoxide, isocyanate, etc. directly onto the LCLC itself to produce an integrated system containing a polymerizable LCLC. This strategy has proven effective in other systems incorporating lyotropic liquid crystals and the order of the liquid crystal is retained in the polymer structure.
The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded as subject matter by which the scope of the present invention as claimed is to be bound.
A thermochromic optical filter may be made by incorporating coatable polarizers rather than standard polarizers. The selection of the physical, chemical, and optical properties of the coatable polarizer layer may greatly simplify or enhance the design of thermochromic (e.g., thermoabsorptive, thermoreflective, or thermodiffusive) filters by, for example, allowing a polarizing layer to contact a liquid crystal layer directly, without the need for a chemical barrier layer, optical index matching layer, heat seal layer, or other layer between them, or by permitting polarizer production and thermochromic filter production to take place as part of the same manufacturing line. Coatable polarizers (whether absorptive, reflective, diffusive, or any combination thereof) provide a mechanism for adjusting the polarizer properties (i.e., absorption, reflection, or diffusion) simply by changing the thickness of the coating. For example, a thicker film may have a higher relative polarizing efficiency while a thinner film may have a lower relative polarizing efficiency. Thus, using the same base materials and manufacturing process, the contrast ratio and other properties of a thermotropic or thermochromic shutter device (e.g., a liquid crystal-based smart window film) may be adjusted in real time on the manufacturing line.
In one implementation a thermotropic shutter device has a transparent substrate, one or more thin film polarizer coatings applied to the transparent substrate in layers, and a thermotropic depolarizer supported by the transparent substrate. In a cold state the device exhibits a high transmission within a given wavelength band. In a hot state the device exhibits a low transmission within a given wavelength band.
In another implementation a method for altering one or more of absorption, reflection, diffusion, polarizing efficiency, contrast ratio, or visible light transmission properties of a thermotropic shutter device is provided. The thermotropic shutter device has a transparent substrate, one or more thin film polarizer coatings applied to the transparent substrate in layers, and a thermotropic depolarizer supported by the transparent substrate. The method includes adjusting a thickness of at least one of the thin film polarizer coatings.
In a further implementation method for altering one or more of absorption, reflection, diffusion, polarizing efficiency, contrast ratio, visible light transmission, bandwidth, center wavelength, UV resistance, chemical resistance, adhesion, or temperature stability properties of a thermotropic shutter device is provided. The thermotropic shutter device has a transparent substrate, one or more thin film polarizer coatings applied to the transparent substrate in layers, and a thermotropic depolarizer supported by the transparent substrate. The method includes adjusting a composition of at least one of the thin film polarizer coatings before applying at least one of the thin film polarizer coatings onto the transparent substrate.
In yet another implementation a method on a manufacturing line for adjusting properties of a thermotropic optical filter is provided. The thermotropic optical filter incorporates a thermotropic liquid crystal depolarizer supported on a transparent substrate. A coating station that deposits a thin film polarizing coating on the transparent substrate is incorporated into the manufacturing ling. One or more of a thickness, composition, or coating condition of the thin film polarizer coating is adjusted. The thermotropic liquid crystal depolarizer is applied on the thin film polarizer coating. The thermotropic optical filter is sealed.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. A more extensive presentation of features, details, utilities, and advantages of the present invention as defined in the claims is provided in the following written description of various embodiments of the invention and illustrated in the accompanying drawings.
Thermotropic optical shutters incorporating polarizing films are useful as energy-regulating building materials, including “smart” window films that tint when heated.
However, as disclosed, for example, in U.S. Patent Application Publication No. 2011/0102878 by McCarthy et al., it may be desirable to vary the absorptivity, reflectivity, diffusivity, polarizing efficiency, contrast ratio, visible light transmission, or bandwidth of one or more polarizers incorporated into such devices. Changes in the aforementioned properties of the thermochromic window filter may lead to performance enhancements including increased light transmission, larger “throw” (variance in Solar Heat Gain Coefficient) to allow more solar heat to be blocked or transmitted, and changes in the way the filter blocks said radiation by either absorbing, reflecting, or diffusing the light, thus altering its properties and appearance. In the case of the standard, commercially available, stretched-polymer polarizer types listed above, changes to these parameters may require significant changes to the manufacturing process, including stretch ratios, polymer gauges, dye concentrations, and more.
However, coatable polarizers (whether absorptive, reflective, diffusive, or any combination thereof) provide a mechanism for adjusting these parameters simply by changing the thickness of the coating. A thicker film may have a higher relative polarizing efficiency while a thinner film may have a lower relative polarizing efficiency. Thus, using the same base materials and manufacturing process, the contrast ratio (i.e., the ratio of the transmission through a pair of identical aligned polarizers to the transmission through the same pair of crossed polarizers) and other properties of a thermotropic or thermochromic shutter device (e.g., a liquid crystal-based smart window film) may be adjusted in real time on the manufacturing line.
In addition, while polarizing effects may be inherent in the molecular structure of the coating (as with commercially available intrinsic polarizers), the reflectivity, absorptivity, and diffusivity of the resulting coating may also be adjusted through changes in composition and/or the addition of dopants. For example, absorptive polarization may be affected by the addition of dichroic dyes (whether organic or inorganic), or absorptive molecules or particles that are aligned by the shear coating process, analogous to the iodine and dyestuff additives in a commercial PVA polarizer, and also somewhat analogous to the guest-host systems employed in liquid crystal device designs. Selective reflection along certain optical axes (e.g., reflective polarization) may be affected by shear-induced changes in the index of refraction of the coating, or through the addition of reflective dyes or particles that are aligned by the shear coating process. Selective diffusion along certain optical axes (e.g., diffusive polarization) may be affected by the addition of diffusive or index-mismatched particles (e.g., microscopic polymer rods) that are aligned by the shear-coating process, somewhat analogous to the diffusive reflective polarizing films (DRPFs) produced by 3M.
Depending on the exact composition of the coatable polarizer material and structure of the final coating, the coated layer may also serve other functions, including serving as a liquid crystal alignment layer, a chemical barrier layer, an anti-scratch layer, an antireflective coating, a LC cell gap spacer, a retardation layer, a planarizing layer, a heat-sealable layer, or an attachment point for polymer networks dispersed within the liquid crystal.
Chemical modifications may be necessary to obtain good adhesion to polar surfaces such as glass versus non-polar surfaces found with many polymeric materials. These chemical modifications include changes in formulation including, but not limited to, incorporation of different anions or cations on the LCLC, use of polymer blends, solvents, or additives including, but not limited to, particles, photocurable monomers, or dyes. There are a number of other dyes that absorb in the UV, visible, and infrared regions that may be useful for this application and may behave similarly when functionalized in the same or a similar manner. Altering the cation and/or anion of a lyotropic liquid crystal, ionic liquid, or ionic polymer is known to have dramatic effects on its solubility and polarity.
Certain halide anions such as chloride and bromide may result in water soluble compounds. Conversely, the use of anion materials such as bis(trifluoromethanesulfonimide), triflate, or tetrafluoroborate, may switch the polarity of the compound, rendering it insoluble in water and soluble in organic solvents such as alcohols, acetone, ethyl acetate, etc. The ion exchange process is straightforward.
The selection of the physical, chemical, and optical properties of the coatable polarizer layer may greatly simplify or enhance the design of thermochromic (e.g., thermoabsorptive, thermoreflective, or thermodiffusive) filters by, for example, allowing a polarizing layer to contact a liquid crystal layer directly, without the need for a chemical barrier layer, optical index matching layer, heat seal layer, or other layer between them, or by permitting polarizer production and thermochromic filter production to take place as part of the same manufacturing line.
Guest-host liquid crystal formulations may have much in common with chromonic liquid crystal films, as both may be highly ordered systems that provide a director (i.e., an orientation force) to dichroic or pleochroic pigments, including elongated microparticles such as metal and polymer rods.
In addition, because the polarizer material is a liquid before coating (and, in some cases, curing), it is relatively straightforward to adjust its composition by adding dopants, fillers, or other components before the coating step. This provides another mechanism for adjusting the absorptivity, reflectivity, diffusivity, polarizing efficiency, contrast ratio, and/or visible light transmission of the polarizer, as well as other properties such as bandwidth, center wavelength, UV resistance, abrasion resistance, chemical resistance, adhesion, and temperature stability. Examples of such dopants may include, but are not limited to, particles, dyes, polymers, wire segments, and other types of liquid crystals.
Further, changes in the polarization axis of the film can be made by adjusting the coating direction, which may or may not be parallel to the draw direction of the film being coated. Such changes may be easier to implement than comparable changes in the stretching direction of traditional dye-polymer polarizers. Other methods may also exist for forming polarizing coatings, including extrusion, gravity shear coating (“dip and drip”), spray coating, spin coating, and other similar processes.
Thus, adjustment of the thickness or formulation of a coatable polarizer greatly facilitates the production of custom optical shutters. A single production line can produce polarizers with custom levels of light transmission (absorption, reflection, and diffusion), contrast ratio, and polarizing efficiency that can be easily adjusted during the manufacturing process, through straightforward changes in the coating thickness, and thus adjust the properties of the thermochromic filters made incorporating the coatable polarizer. Additionally, properties of the optical shutter film such as hardness, refractive index, adhesion, and chemical resistance can be adjusted through straightforward changes in composition of the coatable polarizer that may not require any change in the coating process. Further, the absorptivity, reflectivity, and diffusivity of the polarizing coating, and thus of the thermochromic filters made incorporating it, can also be adjusted through the addition of selected dopants. This represents a significant improvement over the use of other types of polarizers which are made from stretched and dyed PVA laminated between two sheets of a substrate material such as triacetyl cellulose. Further, custom polarizers must be manufactured in discrete batches that require shutting down and retooling a manufacturing line. Thus, costs may be reduced and product variety and performance are greatly increased through the use of coatable polarizers.
The above specification, examples and data provide a description of the structure and use of some exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. Other embodiments are therefore contemplated. All directional references e.g., proximal, distal, upper, lower, inner, outer, upward, downward, left, right, lateral, front, back, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Connection references, e.g., attached, coupled, connected, and joined are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily imply that two elements are directly connected and in fixed relation to each other. Stated percentages of light transmission, absorption, and reflection shall be interpreted as illustrative only and shall not be taken to be limiting. Changes in detail or structure may be made without departing from the basic elements of the invention as defined in the following claims.
This application claims the benefit of priority pursuant to 35 U.S.C. §119(e) of U.S. provisional application no. 61/530,270 filed 1 Sep. 2011 entitled “Thermotropic optical shutter with coatable polarizer,” which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3089142 | Wickersham | May 1963 | A |
3436143 | Garrett | Apr 1969 | A |
3754271 | Epis | Aug 1973 | A |
3886558 | Cary et al. | May 1975 | A |
3990784 | Gelber | Nov 1976 | A |
4006730 | Clapham | Feb 1977 | A |
4155895 | Rohowetz | May 1979 | A |
4268126 | Mumford | May 1981 | A |
4387377 | Kandler | Jun 1983 | A |
4456335 | Mumford | Jun 1984 | A |
4475031 | Mockovciak, Jr. | Oct 1984 | A |
4479128 | Brunner et al. | Oct 1984 | A |
4491390 | Tong-Shen | Jan 1985 | A |
4512638 | Sriram et al. | Apr 1985 | A |
4579638 | Scherber | Apr 1986 | A |
4640583 | Hoshikawa et al. | Feb 1987 | A |
4641922 | Jacob | Feb 1987 | A |
4688900 | Doane et al. | Aug 1987 | A |
4688901 | Albert | Aug 1987 | A |
4712881 | Shurtz et al. | Dec 1987 | A |
4755673 | Pollack et al. | Jul 1988 | A |
4756758 | Lent | Jul 1988 | A |
4783150 | Tabony | Nov 1988 | A |
4786914 | Wu et al. | Nov 1988 | A |
4789500 | Morimoto et al. | Dec 1988 | A |
4804254 | Doll et al. | Feb 1989 | A |
4848875 | Baughman et al. | Jul 1989 | A |
4859994 | Zola | Aug 1989 | A |
4871220 | Kohin | Oct 1989 | A |
4877675 | Falicoff et al. | Oct 1989 | A |
4893902 | Baughman et al. | Jan 1990 | A |
4899503 | Baughman et al. | Feb 1990 | A |
4964251 | Baughman et al. | Oct 1990 | A |
5009044 | Baughman et al. | Apr 1991 | A |
5013918 | Choi | May 1991 | A |
5025602 | Baughman et al. | Jun 1991 | A |
5111629 | Baughman et al. | May 1992 | A |
5132147 | Takiguchi | Jul 1992 | A |
5152111 | Baughman et al. | Oct 1992 | A |
5193900 | Yano et al. | Mar 1993 | A |
5196705 | Ryan | Mar 1993 | A |
5197242 | Baughman et al. | Mar 1993 | A |
5212584 | Chung | May 1993 | A |
5227115 | Harnischfeger | Jul 1993 | A |
5274246 | Hopkins | Dec 1993 | A |
5304323 | Arai et al. | Apr 1994 | A |
5308706 | Kawaguchi et al. | May 1994 | A |
5319478 | Funfschilling et al. | Jun 1994 | A |
5347140 | Hirai | Sep 1994 | A |
5377042 | Chahroudt | Dec 1994 | A |
5434587 | Hannan | Jul 1995 | A |
5481400 | Borden | Jan 1996 | A |
5525430 | Chahroudi | Jun 1996 | A |
5530263 | DiVincenzo | Jun 1996 | A |
5574286 | Huston et al. | Nov 1996 | A |
5585035 | Nerad et al. | Dec 1996 | A |
5585640 | Huston | Dec 1996 | A |
5757828 | Ouchi | May 1998 | A |
5763307 | Wang | Jun 1998 | A |
5881200 | Burt | Mar 1999 | A |
5889288 | Futatsugi | Mar 1999 | A |
5897727 | Staral et al. | Apr 1999 | A |
5897957 | Goodman | Apr 1999 | A |
5937295 | Chen | Aug 1999 | A |
5940150 | Faris et al. | Aug 1999 | A |
5948486 | Sage et al. | Sep 1999 | A |
5968411 | Hall et al. | Oct 1999 | A |
6010641 | Sage et al. | Jan 2000 | A |
6030668 | Hall et al. | Feb 2000 | A |
6040859 | Takahashi | Mar 2000 | A |
6055089 | Schulz et al. | Apr 2000 | A |
6099752 | Hall et al. | Aug 2000 | A |
6099758 | Verrall et al. | Aug 2000 | A |
6122103 | Perkins et al. | Sep 2000 | A |
6124918 | Park et al. | Sep 2000 | A |
6208463 | Hansen | Mar 2001 | B1 |
6218018 | McKown et al. | Apr 2001 | B1 |
6226067 | Nishiguchi | May 2001 | B1 |
6240114 | Anselm | May 2001 | B1 |
6260414 | Brown | Jul 2001 | B1 |
6277451 | Mehl et al. | Aug 2001 | B1 |
6281519 | Sugiyama et al. | Aug 2001 | B1 |
6288840 | Perkins et al. | Sep 2001 | B1 |
6294794 | Yoshimura et al. | Sep 2001 | B1 |
6304784 | Allee | Oct 2001 | B1 |
6312770 | Sage et al. | Nov 2001 | B1 |
6320220 | Watanabe | Nov 2001 | B1 |
6329668 | Razeghi | Dec 2001 | B1 |
6333516 | Katoh | Dec 2001 | B1 |
6381068 | Harada | Apr 2002 | B1 |
6437361 | Matsuda | Aug 2002 | B1 |
6446402 | Byker | Sep 2002 | B1 |
6486997 | Bruzzone et al. | Nov 2002 | B1 |
6487112 | Wasshuber | Nov 2002 | B1 |
6493482 | Al-hemyari et al. | Dec 2002 | B1 |
6498354 | Jefferson | Dec 2002 | B1 |
6504588 | Kaneko | Jan 2003 | B1 |
6512242 | Fan et al. | Jan 2003 | B1 |
6559903 | Faris et al. | May 2003 | B2 |
6583827 | Faris et al. | Jun 2003 | B2 |
6600169 | Stintz | Jul 2003 | B2 |
6611640 | LoCasclo | Aug 2003 | B2 |
6635898 | Williams | Oct 2003 | B2 |
6661022 | Morie | Dec 2003 | B2 |
6671008 | Li et al. | Dec 2003 | B1 |
6710823 | Faris et al. | Mar 2004 | B2 |
6718086 | Ford | Apr 2004 | B1 |
6730909 | Butler | May 2004 | B2 |
6753273 | Holonyak, Jr. | Jun 2004 | B2 |
6770916 | Ohshima | Aug 2004 | B2 |
6777718 | Takagi | Aug 2004 | B2 |
6816525 | Stintz | Nov 2004 | B2 |
6847662 | Bouda | Jan 2005 | B2 |
6859114 | Eleftheriades | Feb 2005 | B2 |
6912018 | Faris et al. | Jun 2005 | B2 |
6926952 | Weber et al. | Aug 2005 | B1 |
6933812 | Sarabandi | Aug 2005 | B2 |
6946697 | Pietambaram | Sep 2005 | B2 |
6963435 | Mallya | Nov 2005 | B2 |
6965420 | Li et al. | Nov 2005 | B2 |
6978070 | McCarthy et al. | Dec 2005 | B1 |
6985291 | Watson | Jan 2006 | B2 |
6992822 | Ma | Jan 2006 | B2 |
7026641 | Mohseni | Apr 2006 | B2 |
7038745 | Weber et al. | May 2006 | B2 |
7042615 | Richardson | May 2006 | B2 |
7046441 | Huang | May 2006 | B2 |
7068234 | Sievenpiper | Jun 2006 | B2 |
7099062 | Azens et al. | Aug 2006 | B2 |
7113335 | Sales | Sep 2006 | B2 |
7133335 | Nishimura et al. | Nov 2006 | B2 |
7154451 | Sievenpiper | Dec 2006 | B1 |
7161737 | Umeya | Jan 2007 | B2 |
7166797 | Dziendziel et al. | Jan 2007 | B1 |
7221827 | Domash et al. | May 2007 | B2 |
7245431 | Watson | Jul 2007 | B2 |
7276432 | McCarthy et al. | Oct 2007 | B2 |
7300167 | Fernando et al. | Nov 2007 | B2 |
7306833 | Martin et al. | Dec 2007 | B2 |
7318651 | Chua | Jan 2008 | B2 |
7351346 | Little | Apr 2008 | B2 |
7385659 | Kotchick | Jun 2008 | B2 |
7470925 | Tamura | Dec 2008 | B2 |
7522124 | Smith | Apr 2009 | B2 |
7532397 | Tanaka | May 2009 | B2 |
7538946 | Smith | May 2009 | B2 |
7561332 | Little | Jul 2009 | B2 |
7601946 | Powers | Oct 2009 | B2 |
7619816 | Deng | Nov 2009 | B2 |
7655942 | McCarthy | Feb 2010 | B2 |
7692180 | Snyder | Apr 2010 | B2 |
7755829 | Powers et al. | Jul 2010 | B2 |
7768693 | McCarthy et al. | Aug 2010 | B2 |
7911563 | Hung | Mar 2011 | B2 |
7936500 | Powers | May 2011 | B2 |
7977621 | McCarthy | Jul 2011 | B2 |
8072672 | Powers | Dec 2011 | B2 |
8076661 | McCarthy | Dec 2011 | B2 |
8169685 | Powers | May 2012 | B2 |
8271241 | Akyurtlu | Sep 2012 | B2 |
8284336 | Powers | Oct 2012 | B2 |
20020079485 | Stintz et al. | Jun 2002 | A1 |
20020080842 | An | Jun 2002 | A1 |
20020085151 | Faris et al. | Jul 2002 | A1 |
20020114367 | Stintz et al. | Aug 2002 | A1 |
20020118328 | Faris | Aug 2002 | A1 |
20020141029 | Carlson | Oct 2002 | A1 |
20020152191 | Hollenberg | Oct 2002 | A1 |
20020180916 | Schadt et al. | Dec 2002 | A1 |
20020190249 | Williams | Dec 2002 | A1 |
20030035885 | Zang et al. | Feb 2003 | A1 |
20030052317 | Ohshima | Mar 2003 | A1 |
20030059998 | Holonyak, Jr. | Mar 2003 | A1 |
20030066998 | Lee | Apr 2003 | A1 |
20030107813 | Clabburn | Jun 2003 | A1 |
20030107927 | Yerushalmi | Jun 2003 | A1 |
20030129247 | Ju et al. | Jul 2003 | A1 |
20030138209 | Chan | Jul 2003 | A1 |
20030214632 | Aastuen | Nov 2003 | A1 |
20030218712 | Kumar et al. | Nov 2003 | A1 |
20030227663 | Agrawal | Dec 2003 | A1 |
20040005451 | Kretman | Jan 2004 | A1 |
20040012749 | Freeman | Jan 2004 | A1 |
20040027530 | Noiri et al. | Feb 2004 | A1 |
20040036993 | Tin | Feb 2004 | A1 |
20040113123 | Iftime et al. | Jun 2004 | A1 |
20040115366 | Iftime et al. | Jun 2004 | A1 |
20040150766 | Choo et al. | Aug 2004 | A1 |
20040256612 | Mohseni | Dec 2004 | A1 |
20050068629 | Fernando et al. | Mar 2005 | A1 |
20050099574 | Ueyama | May 2005 | A1 |
20050185125 | Miyachi | Aug 2005 | A1 |
20050221128 | Kochergin | Oct 2005 | A1 |
20050248715 | Byun et al. | Nov 2005 | A1 |
20050271092 | Ledentsov | Dec 2005 | A1 |
20060147810 | Koch | Jul 2006 | A1 |
20060151775 | Hollenberg | Jul 2006 | A1 |
20060238867 | Takeda | Oct 2006 | A1 |
20060257090 | Podolskiy | Nov 2006 | A1 |
20060262398 | Sangu et al. | Nov 2006 | A1 |
20060268216 | Song | Nov 2006 | A1 |
20060274218 | Xue | Dec 2006 | A1 |
20070070276 | Tan | Mar 2007 | A1 |
20070121034 | Ouderkirk | May 2007 | A1 |
20070215843 | Soukoulis et al. | Sep 2007 | A1 |
20070279727 | Ghandhi | Dec 2007 | A1 |
20080008857 | Kalkanoglu et al. | Jan 2008 | A1 |
20080013174 | Allen | Jan 2008 | A1 |
20080061222 | Powers et al. | Mar 2008 | A1 |
20080117500 | Narendran et al. | May 2008 | A1 |
20080138543 | Hoshino | Jun 2008 | A1 |
20080160321 | Padiyath et al. | Jul 2008 | A1 |
20080204383 | McCarthy et al. | Aug 2008 | A1 |
20080210893 | McCarthy et al. | Sep 2008 | A1 |
20080246388 | Cheon | Oct 2008 | A1 |
20080259254 | Kikuchi et al. | Oct 2008 | A1 |
20090015902 | Powers et al. | Jan 2009 | A1 |
20090040132 | Sridhar | Feb 2009 | A1 |
20090059406 | Powers et al. | Mar 2009 | A1 |
20090128893 | McCarthy et al. | May 2009 | A1 |
20090128907 | Takahashi | May 2009 | A1 |
20090167971 | Powers et al. | Jul 2009 | A1 |
20090219603 | Xue | Sep 2009 | A1 |
20090266394 | Tsubone | Oct 2009 | A1 |
20090268273 | Powers et al. | Oct 2009 | A1 |
20090296190 | Anderson | Dec 2009 | A1 |
20100001008 | McCarthy et al. | Jan 2010 | A1 |
20100015363 | Chiang et al. | Jan 2010 | A1 |
20100027099 | McCarthy | Feb 2010 | A1 |
20100045924 | Powers et al. | Feb 2010 | A1 |
20100051898 | Kim II | Mar 2010 | A1 |
20100060844 | Sawatari et al. | Mar 2010 | A1 |
20100118380 | Xue | May 2010 | A1 |
20100232017 | McCarthy et al. | Sep 2010 | A1 |
20100259698 | Powers et al. | Oct 2010 | A1 |
20100271686 | Powers et al. | Oct 2010 | A1 |
20100288947 | McCarthy et al. | Nov 2010 | A1 |
20110025934 | McCarthy et al. | Feb 2011 | A1 |
20110044061 | Santoro | Feb 2011 | A1 |
20110102878 | McCarthy et al. | May 2011 | A1 |
20110205650 | Powers et al. | Aug 2011 | A1 |
20110216254 | McCarthy et al. | Sep 2011 | A1 |
20110234944 | Powers et al. | Sep 2011 | A1 |
20110292488 | McCarthy et al. | Dec 2011 | A1 |
20120140311 | Powers et al. | Jun 2012 | A1 |
20120262773 | Powers et al. | Oct 2012 | A1 |
20130033738 | Powers et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
2620005 | Jul 2008 | CA |
1189224 | Jul 1998 | CN |
1350648 | May 2002 | CN |
1494091 | May 2004 | CN |
1162496 | Dec 2001 | EP |
2261989 | Jun 1993 | GB |
49-94145 | Jun 1974 | JP |
58-010717 | Jan 1983 | JP |
59-231516 | Dec 1984 | JP |
61-223719 | Oct 1986 | JP |
01-178517 | Jul 1989 | JP |
02-089426 | Mar 1990 | JP |
05-147983 | Jun 1993 | JP |
06-158956 | Jun 1994 | JP |
07-043526 | Feb 1995 | JP |
08-015663 | Jan 1996 | JP |
09-124348 | May 1997 | JP |
63-127594 | Aug 1998 | JP |
10-287449 | Oct 1998 | JP |
10-311189 | Nov 1998 | JP |
2002-520677 | Jul 2002 | JP |
2002-357815 | Dec 2002 | JP |
2003-248204 | Sep 2003 | JP |
2004-004795 | Jan 2004 | JP |
2004-012818 | Jan 2004 | JP |
2004-291345 | Oct 2004 | JP |
2005-250119 | Sep 2005 | JP |
2006-243485 | Sep 2006 | JP |
2006-285242 | Oct 2006 | JP |
2007-515661 | Jun 2007 | JP |
2007-272016 | Oct 2007 | JP |
2008-530766 | Aug 2008 | JP |
2002-0013986 | Feb 2002 | KR |
2002-0044153 | Jun 2002 | KR |
2003-0072578 | Sep 2003 | KR |
10-2004-0048916 | Jun 2004 | KR |
10-2004-0108816 | Dec 2004 | KR |
10-2006-0000059 | Jan 2006 | KR |
10-2007-0091314 | Sep 2007 | KR |
10-2010-0039401 | Apr 2010 | KR |
9402313 | Feb 1994 | WO |
9701789 | Jan 1997 | WO |
9853504 | Nov 1998 | WO |
0123173 | Apr 2001 | WO |
02064937 | Aug 2002 | WO |
03029885 | Apr 2003 | WO |
03096105 | Nov 2003 | WO |
2005031437 | Apr 2005 | WO |
2006023195 | Mar 2006 | WO |
2006088369 | Aug 2006 | WO |
2008092038 | Jul 2008 | WO |
2008106596 | Sep 2008 | WO |
2008144217 | Nov 2008 | WO |
Entry |
---|
Author Unknown, “Liquid Crystal Research”, http://chirality.swarthmore.edu, printed Aug. 21, 2009. |
Eleftheriades, G.V., et al. (Editors); Iyers, “Negative-Refraction Metamaterials,” Chapter 1 (Wiley 2005), pp. 4-5, 16-30, 321-330. |
Fan, et al., “Thin-film conducting microgrids as transparent heat mirrors”, Appl. Phys. Lett., vol. 28, No. 8, Apr. 5, 1976, 440-442. |
Fedotov, V. A., et al., “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” The American Physical Society, PRL 97, Oct. 20, 2006, pp. 167401-1-167401-4. |
Ginley, D. S., et al., “Transparent Conducting Oxides,” MRS Bulletin, Aug. 2000, pp. 15-18. |
Goldhaber-Gordon, David, et al., “Overview of Nanoelectronic Devices,” Proceedings of the IEEE, vol. 85, No. 4, (Apr. 1997), pp. 521-533. |
Hao, J. et al., “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Physical Review Letters, 2007, vol. 99, No. 063908. |
Harrison, “Quantum Wells, Wires, and Dots: Theoretical & Computational Physics of Semiconductor Nanostructures” 2nd Edition, John Wiley & Sons, LTD (2005), 3 pages. |
Lan, S., et al., “Survey on Roller-type Nanoimprint Lithography (RNIL) Process,” International Conference on Smart Manufacturing Application, Apr. 9-11, 2008, in KINTEX, Gyeonggi-do, Korea, pp. 371-376. |
Leatherdale, C.A., et al., “Photoconductivity in CdSe Quantum Dot Solids,” Physical Review B, vol. 62, No. 4, (Jul. 15, 2000) pp. 2669-2680. |
Manea, E., et al., “Optical Characterization of SnO2 thin Films Prepared by Sol Gel Method, for ‘Honeycomb’ Textured Silicon Solar Cells,” International Semiconductor Conference, 2006, vol. 1, Issue, Sep. 2006, pp. 179-182. |
Manea, E., et al., “SnO2 Thin Films Prepared by Sol Gel Method for ‘Honeycomb’ Textured Silicon Solar Cells,” Romanian Journal of Information Science and Technology, vol. 10, No. 1, 2007, pp. 25-33. |
Padilla, W.J., et al., “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Physical Review B 75, 041102(R) (2007). |
Rogacheva, A.V., et al., “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Physical Review Letters 97, 177401 (Oct. 27, 2006). |
Sarychev, et al., “Negative refraction metamaterials,” Chapter 8 (Wiley 2005). |
Siegel, J. D., “The MSVD Low E ‘Premium Performance’ Myth,” International Glass Review, Issue 1, 2002, pp. 55-58. |
Sung, J. et al., “Dynamics of photochemical phase transition of guest/host liquid crystals with an Azobenzene derivative as a photoresponsive chromophore,” Chemistry of Materials, vol. 14, No. 1, pp. 385-391, Jan. 21, 2002. |
West, J. L. et al., “Characterization of polymer dispersed liquid-crystal shutters by ultraviolet/visible and infrared absorption spectroscopy,” Journal of Applied Physics, vol. 70, No. 7, pp. 3785-3790, Oct. 1, 1991. |
Yamazaki, et al., “Polarisation-insensitive parametric wavelength conversion without tunable filters for converted light extraction”, Eletronic Letters, IEE Stevenage, GB, vol. 42, No. 6, Mar. 16, 2006, 365-367. |
Korean Intellectual Property Office as International Searching Authority, International Search Report for International Application No. PCT/US2012/053469, Feb. 26, 2013, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20130141774 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61530270 | Sep 2011 | US |