The present disclosure relates to a thick-film printed heater for a variety of uses. The heater defines a ceramic substrate having a resistive trace for heating and, on a side opposite the trace, a metal layer thick-film printed on the substrate for spreading heat during use. Embodiments contemplate compositions of the metal and its size, shape, and coverage area. Other embodiments particularly contemplate the heater for use in hair-related appliances, such as such as flat irons, straightening irons, curling irons, crimping irons, etc.
Multiple applications exist for using resistive heaters produced by thick-film printing technology. Such applications include, but are not limited to, small appliance devices such as rice cookers and space heaters, large appliances such as ice makers, water heaters for dishwashers and washing machines, cabin heaters for hybrid and electric vehicles, and personal care products such as hair appliances.
Thick film printed ceramic heaters are typically produced by applying resistor patterns (producing heat when electrical current is applied), conductor patterns (used to connect resistor patterns to an electrical current source), and electrically insulative glass layers onto a ceramic substrate. The layers are applied by forcing an ink or paste through the openings of a mesh screen or stencil, via a squeegee under load. The ceramic substrate can be formed into multiple form factors of various shapes and sizes. Typical ways of forming such substrates include laser scribing via carbon dioxide laser or fiber laser. A great variety of shapes and sizes can be produced using these methods. Thick film printed ceramic heaters are also known as having relatively low thermal mass compared to conventional heaters such as “Calrods,” relatively high ‘withstand temperatures’ compared to film heaters, and relatively high-power density. Of these, relatively low thermal mass affords quick heating and cooling responsiveness in applications in which thick film printed heaters are selected.
However, these heaters are printed with fixed resistor lengths including a temperature measuring device, such as a thermistor, placed at a location near the center of the resistor lengths. During use, thermal gradients develop along the resistor lengths unless the thermal load on the heaters covers the entire length of the resistor. They develop because any resistor portion not receiving the thermal load reaches higher temperatures more quickly in comparison to resistor portions having a thermal load. In turn, a variety of solutions have been proposed to overcome this problem. In laser printers utilizing thick film printed ceramic heaters, for instance, multiple thermistors are positioned along the heater length that are coupled with algorithms that control printer speed to allow recovery from thermal gradient created by narrow media - media which does not cover the entire resistor length(s). In other devices, such as hair irons, power control algorithms have been used to create load-dependent dynamic power control that reduce thermal gradients by restricting power not applied to the task of hair styling. Still other solutions have used positive temperature coefficient (PTC) elements with external heat sinks adhered thereto. While previous solutions have been somewhat effective, the inventors recognize a need for more efficacious solutions. The inventors further note that any solutions in the technology of heaters should further contemplate the competing design constraints found in power consumption, safety features, warm-up characteristics, operating temperatures, heating speeds, thermal conductivity, materials, costs, electrical requirements, construction, materials to-be-heated, temperature control, installation/integration with other components, size, shape, and dimensions, and the like.
Methods and apparatus include a ceramic heater for varied uses that have one or more resistive traces that heat up upon being connected to a power source. On a side of the ceramic heater opposite the resistive traces, a layer of metal is formed to spread out heat generated from the resistive traces during use. The metal may be formed as a single or multiple layers. The composition of the metal can be pure or alloys of silver, copper, or aluminum with platinum or palladium, for example. The shape of the metal varies as does its coverage on a surface area of the ceramic heater.
The foregoing summary, as well as the following detailed description, is better understood when read in conjunction with the appended drawings. However, the invention is not limited to the specific methods and components disclosed herein. Like numerals represent like features in the drawings. In the views:
As noted above, the heater of the many embodiments herein finds utility in many and diverse applications. It will be described, however, most particularly in relation to a hair-related appliance, such as a hair iron, but should not be so limited unless specifically claimed.
Referring now to the drawings, and particularly to
Hair iron 100 further includes a pair of longitudinally extending arms 104, 106 that are movable between an open and closed position. Distal segments 108, 110 of arms 104, 106 are spaced apart from each other in the open position and are in contact, or close proximity with one another in the closed position. The arms clamshell or are pivotable relative to each other about a pivot axis 112 between the open position and the closed positions. Hair iron 100 may include a bias member (not shown), such as one or more springs, that biases one or both of arms 104, 106 toward the open position such that user actuation is required to overcome the bias applied to arms 104, 106 to bring arms 104, 106 together to the closed position. A lock 113 is provided to secure the arms in the closed position upon user manipulation.
Hair iron 100 includes a heater positioned on an inner side 114, 116 of one or both of arms 104, 106. Inner sides 114, 116 of arms 104, 106 include the portions of arms 104, 106 that face each other when arms 104, 106 are in the open and closed positions. In the example embodiment illustrated, each arm 104, 106 includes a respective heater 130, 132 opposed to one another on or within the arm 104, 106. Heaters 130, 132 supply heat to respective contact surfaces 118, 120 on arms 104, 106. Each contact surface 118, 120 is positioned on inner side 114, 116 of distal segment 108, 110 of the corresponding arm 104, 106. Contact surfaces 118, 120 may be formed directly by a surface of each heater 130, 132 or formed by a material covering each heater 130, 132, such as a shield or sleeve. Contact surfaces 118, 120 are positioned to directly contact and transfer heat to hair upon a user positioning hair between arms 104, 106 during use. Contact surfaces 118, 120 are positioned to mate against one another in a relatively flat orientation when arms 104, 106 are in the closed position in order to maximize the surface area available for contacting hair.
With reference to
With reference to
Appreciating that the heaters 130, 132 are two independent heating elements of equal resistance and each has a current temperature feedback mechanism by way of the thermistor 172 to the controller 135, during use, the controller activates the switch 127 to control AC power delivery to the heaters. Using the AC zero-crossing (ZC) feedback 129, the power delivery is synchronized precisely with the zero-crossings of the AC mains voltage waveform. This establishes the minimum unit of power delivery as a single half-cycle of the AC sinusoidal waveform. The controller modulates the current of each heater to achieve a desired temperature. This action is moderated by a temperature control loop (e.g., PID) running on the controller. That is, the control loop calculates a desired temperature response by way of a power level in units of percent, where 100% is equal to rated wattage of the heater. The fundamental period of heater power delivery in the following embodiments is based on half-cycles of AC sinusoidal power, such as eight half-cycles, but other numbers of half-cycles are possible to achieve other percentages of power levels.
In one embodiment, the controller causes the switch to connect heaters to the AC line voltage for an integer number of half-cycles within a given period. To achieve a power level percent (%) of 12.5 % (e.g., ⅛×100%), for example, one AC half-cycle of one-thru-eight total half-cycles of sinusoidal power is turned on to heat the heater. Similarly, to achieve a power level percent of 50%, four AC half-cycles 304 of one-thru-eight total half-cycles of sinusoidal power are turned on to the heat the heater (e.g., 4/8×100%). Similarly, too, all power level percentages of the heaters can be read from a table stored by the AC Manager Waveform, e.g., power level percentages 0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%, and 100%. Of course, other percentages are possible.
In
Heater 130/132 includes one or more layers of a ceramic substrate 160, such as aluminum oxide (e.g., commercially available 96% aluminum oxide ceramic). Where heater 130/132 includes a single layer of ceramic substrate 160, a thickness of ceramic substrate 160 may range from, for example, 0.5 mm to 1.5 mm, such as 1.0 mm. Where heater 130 includes multiple layers of ceramic substrate 160, each layer may have a thickness ranging from, for example, 0.5 mm to 1.0 mm, such as 0.635 mm. In some embodiments, a length of ceramic substrate along longitudinal dimension 156 may range from, for example, 80 mm to 120 mm. In some embodiments, a width of ceramic substrate 160 along lateral dimension 157 may range from, for example, 15 mm to 24 mm, such as 17 mm or 22.2 mm. Ceramic substrate 160 includes an outer face 162 that is oriented toward outer face 150 of heater 130/132 and an inner face 163 that is oriented toward inner face 151 of heater 130/132. Outer face 162 and inner face 163 of ceramic substrate 160 are positioned on exterior portions of ceramic substrate 160 such that if more than one layer of ceramic substrate 160 is used, outer face 162 and inner face 163 are positioned on opposed external faces of the ceramic substrate 160 rather than on interior or intermediate layers of ceramic substrate 160. The outer face 162 also includes one or more layers of a metal, such as silver 200 that acts to spread heat over the surface of the ceramic substrate during use. In the embodiment shown, the silver is either pure or alloyed compositions, such as with platinum or palladium, and is layered over the outer face in a thickness of about 10-30 µm, particularly 20-28 µm. It is layered in a coverage amount of the surface area of the ceramic substrate less than 100 % to prevent cracking during thick film printing, drying, and heating. As further seen, the layer of silver is separated by longitudinal and transverse streets 202/204 that separate sides 200-a, -b, -c, -d of the silver from the edges 152, 153, 154, 155 of the substrate. The pattern of the silver 200 may be of nearly an infinite variety, but in this embodiment is shown as four generally rectangular patches having sides generally paralleling the edges of the substrate. Further embodiments of the silver will be described below.
Also, in the example embodiment illustrated, outer face 150 (
In the example embodiment illustrated, heater 130/132 includes a pair of resistive traces 164a, 164b that extend substantially parallel to each other (and substantially parallel to edges 154, 155) along longitudinal dimension 156 of heater 130. Heater 130 also includes a pair of conductive traces 166a, 166b that each form a respective terminal 168a, 168b of heater 130. Cables or wires 170a, 170b are connected to terminals 168a, 168b in order to electrically connect resistive traces 164 and conductive traces 166 to, for example, control circuitry 122 and voltage source 126 in order to selectively close the circuit formed by resistive traces 164 and conductive traces 166 to generate heat. Conductive trace 166a directly contacts resistive trace 164a, and conductive trace 166b directly contacts resistive trace 164b. Conductive traces 166a, 166b are both positioned adjacent to edge 152 in the example embodiment illustrated, but conductive traces 166a, 166b may be positioned in other suitable locations on ceramic substrate 160 as desired. In this embodiment, heater 130/132 includes a third conductive trace 166c that electrically connects resistive trace 164a to resistive trace 164b. Portions of resistive traces 164a, 164b obscured beneath conductive traces 166a, 166b, 166c in
In some embodiments, heater 130/132 includes a thermistor 172 positioned in close proximity to a surface of heater 130/132 in order to provide feedback regarding the current temperature of heater 130/132 to control circuitry 122. In some embodiments, thermistor 172 is positioned on inner face 163 of ceramic substrate 160. In the example embodiment illustrated, thermistor 172 is welded directly to inner face 163 of ceramic substrate 160. In this embodiment, heater 130/132 also includes a pair of conductive traces 174a, 174b that are each electrically connected to a respective terminal of thermistor 172 and that each form a respective terminal 176a, 176b. Cables or wires 178a, 178b are connected to terminals 176a, 176b in order to electrically connect thermistor 172 to, for example, control circuitry 122 in order to provide closed loop control of heater 130. In the embodiment illustrated, thermistor 172 is positioned at a central location of inner face 163 of ceramic substrate 160, between resistive traces 164a, 164b and midway from edge 152 to edge 153. In this embodiment, conductive traces 174a, 174b are also positioned between resistive traces 164a, 164b with conductive trace 174a positioned toward edge 152 from thermistor 172 and conductive trace 174b positioned toward edge 153 from thermistor 172. However, thermistor 172 and its corresponding conductive traces 174a, 174b may be positioned in other suitable locations on ceramic substrate 160 so long as they do not interfere with the positioning of resistive traces 164 and conductive traces 166.
Heater 130/132 may be constructed by way of thick film printing. For example, thick film printing includes a series of steps whereby a ceramic substrate is step-wise patterned and layered to form a complete heater. Instances of the process include layering a leveled-paste through a pattern, settling the paste, drying it, and firing or heating thereafter. As shorthand from the industry, the steps are generally known as print, dry, and fire, or PDF.
In more detail,
Returning to
In various embodiments, the dimensions of the thickness of the resistive trace is about 10 - 13 µm on the base with a length of about 135 - 145 mm and a width of about 4.5 - 5.5 mm. Its resistance is about 10 - 12 ohms at 195° C. and formed from a resistor paste of about 80% silver and 20% palladium. The conductor in contrast has thicknesses of about 9 - 15 µm on the base substrate with a length of about 11 - 13 mm and a width of about 4.8 - 5.8 mm. Also, the conductor is formed from a conductive paste of silver and palladium or platinum. In one embodiment, pastes for conductor layers include content of about 93% silver and about 7% palladium or platinum. Other embodiments use about 99% silver and about 1% palladium or platinum.
The glasses 180 herein are noted as overlying an entirety of each resistive trace and at least a portion of the conductor, but not an entirety of the conductor as it needs to connect to the external power source. The glass may be singular, or multi-layered. The glass is any of a variety but may define a cross glass layer or cover glass layer. Viscosity of the glass is noted as representatively 100 Pa · s or less, more particularly at 90 Pa · s or less, especially 65 Pa · s or less. Its solid content representatively exists at 65% or more. The dimensions on the substrate include a thickness in a range of about 10 - 13 µm, a length in a range of about 135 - 145 mm, and a width in a range of about 4.5 - 5.5 mm.
Thick film printing resistive traces 164 and conductive traces 166 on fired ceramic substrate 160 provides more uniform resistive and conductive traces in comparison with conventional ceramic heaters, which include resistive and conductive traces printed on green state ceramic. The improved uniformity of resistive traces 164 and conductive traces 166 allows for more uniform heating across contact surface 118 as well as more predictable heating of heater 130.
Preferably, heaters 130/132 are produced in an array for cost efficiency. Heaters are separated into individual heaters 130/132 after the construction of all heaters is completed, including firing of all components and any applicable finishing operations. In some embodiments, individual heaters are separated from the array by way of fiber laser scribing. Fiber laser scribing tends to provide a more uniform singulation surface having fewer microcracks along the separated edge in comparison with conventional carbon dioxide laser scribing.
It will be appreciated that the example embodiments illustrated and discussed above are not exhaustive and that the heater of the present disclosure may include resistive and conductive traces in many different geometries, including resistive traces on the outer face and/or the inner face of the heater, as desired. Other components (e.g., a thermistor) may be positioned on either the outer face or the inner face of the heater as desired.
The present disclosure does, however, provide a ceramic heater having a low thermal mass in comparison with the heaters of conventional hair irons. In particular, thick film printed resistive traces on an exterior face (outer or inner) of the ceramic substrate provides reduced thermal mass in comparison with resistive traces positioned internally between multiple sheets of ceramic. The use of a thin film, thermally conductive sleeve, such as a polyimide sleeve) also provides reduced thermal mass in comparison with metal holders, guides, etc. The low thermal mass of the ceramic heater of the present disclosure allows the heater, in some embodiments, to heat to an effective temperature for use in a matter of seconds (e.g., less than five seconds), significantly faster than conventional hair irons. The low thermal mass of the ceramic heater of the present disclosure also allows the heater, in some embodiments, to cool to a safe temperature after use in a matter of seconds (e.g., less than five seconds), again, significantly faster than conventional hair irons.
Further, embodiments of the hair iron of the present disclosure operate at a more precise and more uniform temperature than conventional hair irons because of the closed loop temperature control provided by the thermistor in combination with the relatively uniform thick film printed resistive and conductive traces. The low thermal mass of the ceramic heater and improved temperature control permit greater energy efficiency in comparison with conventional hair irons. The rapid warmup and cooldown times of the ceramic heater of the present disclosure also provide increased safety by reducing the amount of time the hair iron is hot but unused. The improved temperature control and temperature uniformity further increase safety by reducing the occurrence of overheating. The improved temperature control and temperature uniformity also improve the performance of the hair iron of the present disclosure.
Observations of the inventors have noted that silver in thicknesses of 10-30 um work better under the conditions tested, and may be printed in singular or multiple steps. Thick-film printed silver as a heat-spreader is superior because of its intimate contact with the ceramic substrate, as compared to external heat spreaders having been adhesively attached. It is noted too that direct printing of the silver results in a higher thermal conductivity between the silver and the ceramic substrate. As silver has comparatively high thermal conductivity, compared to other metals (419 w/mK), silver makes a great selection, but other printed materials are also possible, such as pure or alloyed compositions of copper and aluminum.
Test Results. Heaters of the type described above were tested with two silver patterns and two thicknesses. Sample Type A: One rectangular pattern printed on the back side of the ceramic and covering over 90% of the entire ceramic substrate area of the heater. Type A was double printed with a total thickness of approximately 24 um. Sample Type B: Two rectangular patterns printed on the back side of the ceramic and covering the entire resistor length and width, with an addition of approximately 20% more area than the combined resistor area. Type B was single printed with a total thickness of approximately 12 um. Hair tresses were then positioned within the arms of the hair iron such that a small gap (about 2 mm) existed between the edges of the tress and each thermocouple. The test was designed to purposely create the highest thermal gradients possible under abnormal and non-recommended conditions of use. The highest setting of the hair iron was used (210° C.) and is higher than advised for either of the two hair types used in this trial. The speed of maneuvering the hair iron to straighten the hair tresses was also purposely slower than would be recommended. The unit was marked and great care was taken to repeat the trials in an abnormal way, such that the same width of hair repeatedly entered and exited the hair iron to purposely increase the temperature at the edges - where the thermocouples were monitoring temperatures. Under normal (and recommended) use conditions, these results are not expected. The results show a significant difference in maximum temperature between the hair irons having ceramic heaters with no silver thick-film printed and hair irons containing ceramic heaters with the thick film printed silver as described in the embodiments. As has been discovered, the latter hair irons have been observed to have maximum temperatures near the edges of the heaters that is lower by about 35° C. as compared to the former hair irons. It has also been observed that a particularly useful embodiment is that whereby the silver 200 has a thickness of about 24 µm.
In
The foregoing description illustrates various aspects of the present disclosure. It is not intended to be exhaustive. Rather, it is chosen to illustrate the principles of the present disclosure and its practical application to enable one of ordinary skill in the art to utilize the present disclosure, including its various modifications that naturally follow. All modifications and variations are contemplated within the scope of the present disclosure as determined by the appended claims. Relatively apparent modifications include combining one or more features of various embodiments with features of other embodiments.
This application claims priority to U.S. Provisional Pat. Application No. 63/316,606, filed Mar. 4, 2022.
Number | Date | Country | |
---|---|---|---|
63316606 | Mar 2022 | US |