The invention relates to a high impact resistant tool that may be used in machinery such as crushers, picks, grinding mills, roller cone bits, rotary fixed cutter bits, earth boring bits, percussion bits or impact bits, and drag bits. More particularly, the invention relates to inserts comprised of a carbide substrate with a non-planar interface and an abrasion resistant layer of superhard material affixed thereto using a high pressure high temperature press apparatus.
Cutting elements and inserts for use in machinery such as crushers, picks, grinding mills, roller cone bits, rotary fixed cutter bits, earth boring bits, percussion bits or impact bits, and drag bits typically comprise a superhard material layer or layers formed under high temperature and pressure conditions, usually in a press apparatus designed to create such conditions, cemented to a carbide substrate containing a metal binder or catalyst such as cobalt. The substrate is often softer than the superhard material to which it is bound. Some examples of superhard materials that high pressure-high temperature (HPHT) presses may produce and sinter include cemented ceramics, diamond, polycrystalline diamond, and cubic boron nitride. A cutting element or insert is normally fabricated by placing a cemented carbide substrate into a container or cartridge with a layer of diamond crystals or grains loaded into the cartridge adjacent one face of the substrate. A number of such cartridges are typically loaded into a reaction cell and placed in the high pressure high temperature press apparatus. The substrates and adjacent diamond crystal layers are then compressed under HPHT conditions, which promote a sintering of the diamond grains to form a polycrystalline diamond structure. As a result, the diamond grains become mutually bonded to form a diamond layer over the substrate interface. The diamond layer is also bonded to the substrate interface.
Such inserts are often subjected to intense forces, torques, vibration, high temperatures and temperature differentials during operation. As a result, stresses within the structure may begin to form. Drill bits, for example, may exhibit stresses aggravated by drilling anomalies during well boring operations, such as bit whirl or bounce. These stresses often result in spalling, delamination, or fracture of the superhard abrasive layer or the substrate, thereby reducing or eliminating the cutting elements' efficacy and the life of the drill bit. The superhard material layer of an insert sometimes delaminates from the carbide substrate after the sintering process as well as during percussive and abrasive use. Damage typically found in percussive and drag drill bits may be a result of shear failure, although non-shear modes of failure are not uncommon. The interface between the superhard material layer and substrate is particularly susceptible to non-shear failure modes due to inherent residual stresses.
U.S. Pat. No. 5,544,713 by Dennis, which is herein incorporated by reference for all that it contains, discloses a cutting element which has a metal carbide stud having a conic tip formed with a reduced diameter hemispherical outer tip end portion of said metal carbide stud. The tip is shaped as a cone and is rounded at the tip portion. This rounded portion has a diameter which is 35-60% of the diameter of the insert.
U.S. Pat. No. 6,408,959 by Bertagnolli et al., which is herein incorporated by reference for all that it contains, discloses a cutting element, insert or compact which is provided for use with drills used in the drilling and boring of subterranean formations.
U.S. Pat. No. 6,484,826 by Anderson et al., which is herein incorporated by reference for all that it contains, discloses enhanced inserts formed having a cylindrical grip and a protrusion extending from the grip.
U.S. Pat. No. 5,848,657 by Flood et al., which is herein incorporated by reference for all that it contains, discloses domed polycrystalline diamond cutting element wherein a hemispherical diamond layer is bonded to a tungsten carbide substrate, commonly referred to as a tungsten carbide stud. Broadly, the inventive cutting element includes a metal carbide stud having a proximal end adapted to be placed into a drill bit and a distal end portion. A layer of cutting polycrystalline abrasive material is disposed over said distal end portion such that an annulus of metal carbide adjacent and above said drill bit is not covered by said abrasive material layer.
U.S. Pat. No. 4,109,737 by Bovenkerk which is herein incorporated by reference for all that it contains, discloses a rotary drill bit for rock drilling comprising a plurality of cutting elements held by and interference-fit within recesses in the crown of the drill bit. Each cutting element comprises an elongated pin with a thin layer of polycrystalline diamond bonded to the free end of the pin.
US Patent Application Serial No. 2001/0004946 by Jensen, although now abandoned, is herein incorporated by reference for all that it discloses. Jensen teaches a cutting element or insert with improved wear characteristics while maximizing the manufacturability and cost effectiveness of the insert. This insert employs a superabrasive diamond layer of increased depth and by making use of a diamond layer surface that is generally convex.
In one aspect of the invention, a high impact resistant tool has a superhard material bonded to a cemented metal carbide substrate at a non-planar interface. At the interface, the substrate has a tapered surface starting from a cylindrical rim of the substrate and ending at an elevated flatted central region formed in the substrate. The superhard material has a pointed geometry with a sharp apex having 0.050 to 0.125 inch radius of curvature. The superhard material also has a 0.100 to 0.500 inch thickness from the apex to the flatted central region of the substrate. In other embodiments, the substrate may have a non-planar interface. The interface may comprise a slight convex geometry or a portion of the substrate may be slightly concave at the interface.
The substantially pointed geometry may comprise a side which forms a 35 to 55 degree angle with a central axis of the tool. The angle may be substantially 45 degrees. The substantially pointed geometry may comprise a convex and/or a concave side. In some embodiments, the radius may be 0.090 to 0.110 inches. Also in some embodiments, the thickness from the apex to the non-planar interface may be 0.125 to 0.275 inches.
The substrate may be bonded to an end of a carbide segment. The carbide segment may be brazed or press fit to a steel body. The substrate may comprise a 1 to 40 percent concentration of cobalt by weight. A tapered surface of the substrate may be concave and/or convex. The taper may incorporate nodules, grooves, dimples, protrusions, reverse dimples, or combinations thereof. In some embodiments, the substrate has a central flatted region with a diameter of 0.125 to 0.250 inches.
The superhard material and the substrate may comprise a total thickness of 0.200 to 0.700 inches from the apex to a base of the substrate. In some embodiments, the total thickness may be up to 2 inches. The superhard material may comprise diamond, polycrystalline diamond, natural diamond, synthetic diamond, vapor deposited diamond, silicon bonded diamond, cobalt bonded diamond, thermally stable diamond, polycrystalline diamond with a binder concentration of 1 to 40 percent by weight, infiltrated diamond, layered diamond, monolithic diamond, polished diamond, course diamond, fine diamond, cubic boron nitride, diamond impregnated matrix, diamond impregnated carbide, metal catalyzed diamond, or combinations thereof. A volume of the superhard material may be 75 to 150 percent of a volume of the carbide substrate. In some embodiments, the volume of diamond may be up to twice as much as the volume of the carbide substrate. The superhard material may be polished. The superhard material may be a polycrystalline superhard material with an average grain size of 1 to 100 microns. The superhard material may comprise a concentration of binding agents of 1 to 40 percent by weight. The tool of the present invention comprises the characteristic of withstanding impacts greater than 80 joules.
The high impact tool may be incorporated in drill bits, percussion drill bits, roller cone bits, shear bits, milling machines, indenters, mining picks, asphalt picks, cone crushers, vertical impact mills, hammer mills, jaw crushers, asphalt bits, chisels, trenching machines, or combinations thereof.
The shank 101a may be adapted to be attached to a driving mechanism. A protective spring sleeve 105a may be disposed around the shank 101a both for protection and to allow the high impact resistant tool 100 to be press fit into a holder while still being able to rotate. A washer 106a may also be disposed around the shank 101a such that when the high impact resistant tool 100a is inserted into a holder the washer 106a protects an upper surface of the holder and also facilitates rotation of the tool 100. The washer 106a and sleeve 105a may be advantageous since they may protect the holder which may be costly to replace.
The high impact resistant tool 100a also comprises a tip 107a bonded to an end 108a of the frustoconical second segment 104a of the body 102a. The tip 107a comprises a superhard material 109a bonded to a cemented metal carbide substrate 110a at a non-planar interface, as discussed below. The tip 107a may be bonded to the cemented metal carbide substrate 110a through a high pressure-high temperature process.
The superhard material 109a may be a polycrystalline structure with an average grain size of 10 to 100 microns. The superhard material 109a may comprise diamond, polycrystalline diamond, natural diamond, synthetic diamond, vapor deposited diamond, silicon bonded diamond, cobalt bonded diamond, thermally stable diamond, polycrystalline diamond with a binder concentration of 1 to 40 percent by weight, infiltrated diamond, layered diamond, monolithic diamond, polished diamond, course diamond, fine diamond, cubic boron nitride, diamond impregnated matrix, diamond impregnated carbide, non-metal catalyzed diamond, or combinations thereof.
The superhard material 109a may also comprise a 1 to 5 percent concentration of tantalum by weight as a binding agent. Other binding agents that may be used with the present invention include iron, cobalt, nickel, silicon, hydroxide, hydride, hydrate, phosphorus-oxide, phosphoric acid, carbonate, lanthanide, actinide, phosphate hydrate, hydrogen phosphate, phosphorus carbonate, alkali metals, ruthenium, rhodium, niobium, palladium, chromium, molybdenum, manganese, tantalum or combinations thereof. In some embodiments, the binding agent is added directly to a mixture that forms the superhard material 109a mixture before the HPHT processing and do not rely on the binding agent migrating from the cemented metal carbide substrate 110 into the mixture during the HPHT processing.
The cemented metal carbide substrate 110a may comprise a concentration of cobalt of 1 to 40 percent by weight and, more preferably, 5 to 10 percent by weight. During HPHT processing, some of the cobalt may infiltrate into the superhard material 109a such that the cemented metal carbide substrate 110a comprises a slightly lower cobalt concentration than before the HPHT process. The superhard material 109a may preferably comprise a 1 to 5 percent cobalt concentration by weight after the cobalt or other binding agent infiltrates the superhard material 109a during HPHT processing.
Now referring to
The superhard material 109b comprises a substantially pointed geometry 210a with a sharp apex 202a comprising a radius of curvature of 0.050 to 0.125 inches. In some embodiments, the radius of curvature is 0.090 to 0.110 inches. It is believed that the apex 202a is adapted to distribute impact forces across the central region 201a, which may help prevent the superhard material 109b from chipping or breaking.
The superhard material 109b may comprise a thickness 203 of 0.100 to 0.500 inches from the apex 202a to the central region 201a and, more preferably, from 0.125 to 0.275 inches. The superhard material 109b and the cemented metal carbide substrate 110b may comprise a total thickness 204 of 0.200 to 0.700 inches from the apex 202 to a base 205 of the cemented metal carbide substrate 110b. The apex 202a may allow the high impact resistant tool 100 illustrated in
The pointed geometry 210a of the superhard material 109b may comprise a side 214 which forms an angle 150 of 35 to 55 degrees with a central axis 215 of the tip 107b, though the angle 150 may preferably be substantially 45 degrees. The included angle 152 may be a 90 degree angle, although in some embodiments, the included angle 152 is 85 to 95 degrees.
The pointed geometry 210a may also comprise a convex side or a concave side. The tapered surface 200 of the cemented metal carbide substrate 110b may incorporate nodules 207 at a non-planar interface 209a between the superhard material 109b and the cemented metal carbide substrate 110b, which may provide a greater surface area on the cemented metal carbide substrate 110b, thereby providing a stronger interface. The tapered surface 200 may also incorporate grooves, dimples, protrusions, reverse dimples, or combinations thereof. The tapered surface 200 may be convex, as in the current embodiment of the tip 107b, although the tapered surface may be concave in other embodiments.
Advantages of having a pointed apex 202a of superhard material 109 as illustrated in
The performance of the geometries 210a and 210b were compared a drop test performed at Novatek International, Inc. located in Provo, Utah. Using an Instron Dynatup 9250G drop test machine, the tips 107b and 107c were secured to a base of the machine and weights comprising tungsten carbide targets were dropped onto the tips 107b and 107c.
It was shown that the geometry 210a of the tip 107b penetrated deeper into the tungsten carbide target, thereby allowing more surface area of the superhard material 109b to absorb the energy from the falling target. The greater surface area of the superhard material 109b better buttressed the portion of the superhard material 109b that penetrated the target, thereby effectively converting bending and shear loading of the superhard material 109b into a more beneficial quasi-hydrostatic type compressive forces. As a result, the load carrying capabilities of the superhard material 109b drastically increased.
On the other hand, the geometry 210b of the tip 107c is blunter and as a result the apex 202b of the superhard material 109c hardly penetrated into the tungsten carbide target. As a result, there was comparatively less surface area of the superhard material 109c over which to spread the energy, providing little support to buttress the superhard material 109c. Consequently, this caused the superhard material 109c to fail in shear/bending at a much lower load despite the fact that the superhard material 109c comprised a larger surface area than that of superhard material 109b and used the same grade of diamond and carbide as the superhard material 109b.
In the event, the pointed geometry 210a having an apex 202a of the superhard material 109b surprisingly required about 5 times more energy (measured in joules) to break than the blunter geometry 210b having an apex 202b of the superhard material 109c of
Surprisingly, in the embodiment of
In addition, a third embodiment of a tip 107c illustrated in
As can be seen, embodiments of tips that include a superhard material having the feature of being thicker than 0.100 inches, such as tip 107c, or having the feature of a radius of curvature of 0.075 to 0.125 inch, such as tip 107d, is not enough to achieve the impact resistance of the tip 107b. Rather, it is unexpectedly synergistic to combine these two features.
The performance of the present invention is not presently found in commercially available products or in the prior art. In the prior art, it was believed that an apex of a superhard material, such as diamond, having a sharp radius of curvature of 0.075 to 0.125 inches would break because the radius of curvature was too sharp. To avoid this, rounded and semispherical geometries are commercially used today. These inserts were drop-tested and withstood impacts having energies between 5 and 20 joules, results that were acceptable in most commercial applications, albeit unsuitable for drilling very hard rock formations.
After the surprising results of the above test, a Finite Element Analysis (FEA) was conducted upon the tips 107b and 107c, the results of which are shown in
As discussed, the tips 107b and 107c broke when subjected to the same stress during the test. Nonetheless, the difference in the geometries 210a and 210b of the superhard material 109b and 109c, respectively, caused a significant difference in the load required to reach the Von Mises stress level at which each of the tips 107b and 107c broke. This is because the geometry 210a with the pointed apex 202a distributed the loads more efficiently across the superhard material 109b than the blunter apex 202b distributed the load across the superhard material 109c.
In
In the FEA 107c′, it can be seen that both the higher and lower stresses are concentrated in the superhard material 109c, as the FEA 109c′ indicates. These combined stresses, it is believed, causes transverse rupture to actually occur in the superhard material 109c, which is generally more brittle than the softer carbide substrate.
In the FEA 107b′, however, the FEA 109b′ indicates that the majority of high stress remains within the superhard material 109b while the lower stresses are actually within the carbide substrate 110b that is more capable of handling the transverse rupture, as indicated in FEA 110b′. Thus, it is believed that the thickness of the superhard material is critical to the ability of the superhard material to withstand greater impact forces; if the superhard material is too thick it increases the likelihood that transverse rupture of the superhard material will occur, but if the superhard material is too thin it decreases the ability of the superhard material to support itself and withstand higher impact forces.
Now referring to
The high impact resistant tool may be an insert in a drill bit, as in the embodiments of
Milling machines may also incorporate the present invention. The milling machines may be used to reduce the size of material such as rocks, grain, trash, natural resources, chalk, wood, tires, metal, cars, tables, couches, coal, minerals, chemicals, or other natural resources.
Other applications not shown, but that may also incorporate the present invention, include rolling mills; cleats; studded tires; ice climbing equipment; mulchers; jackbits; farming and snow plows; teeth in track hoes, back hoes, excavators, shovels; tracks, armor piercing ammunition; missiles; torpedoes; swinging picks; axes; jack hammers; cement drill bits; milling bits; drag bits; reamers; nose cones; and rockets.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This application is a continuation of U.S. patent application Ser. No. 11/673,634 filed on Feb. 12, 2007 and entitled A Tool with a Large Volume of a Superhard Material, which in turn is a continuation-in-part of U.S. patent application Ser. No. 11/668,254 filed on Jan. 29, 2007 and entitled A Tool with a Large Volume of a Superhard Material, which issued as U.S. Pat. No. 7,353,893. U.S. patent application Ser. No. 11/668,254 is a continuation-in-part of U.S. patent application Ser. No. 11/553,338 filed on Oct. 26, 2006 and was entitled Superhard Insert with an Interface, which issued as U.S. Pat. No. 7,665,552. Both of these applications are herein incorporated by reference for all that they contain and are currently pending.
Number | Name | Date | Kind |
---|---|---|---|
2004315 | Fean | Jun 1935 | A |
2124438 | Struk et al. | Jul 1938 | A |
3254392 | Novkov | Jun 1966 | A |
3626775 | Gentry | Dec 1971 | A |
3746396 | Radd | Jul 1973 | A |
3807804 | Kniff | Apr 1974 | A |
3830321 | McKenry et al. | Aug 1974 | A |
3932952 | Helton | Jan 1976 | A |
3945681 | White | Mar 1976 | A |
4005914 | Newman | Feb 1977 | A |
4006936 | Crabiel | Feb 1977 | A |
4098362 | Bonnice | Jul 1978 | A |
4109737 | Bovenkerk | Aug 1978 | A |
4156329 | Daniels et al. | May 1979 | A |
4199035 | Thompson | Apr 1980 | A |
4201421 | Den Besten | May 1980 | A |
4277106 | Sahley | Jul 1981 | A |
4333902 | Hara | Jun 1982 | A |
4333986 | Tsuji et al. | Jun 1982 | A |
4412980 | Tsuji et al. | Nov 1983 | A |
4425315 | Tsuji et al. | Jan 1984 | A |
4439250 | Acharya et al. | Mar 1984 | A |
4465221 | Schmidt | Aug 1984 | A |
4484644 | Cook et al. | Nov 1984 | A |
4489986 | Dziak | Dec 1984 | A |
4636253 | Nakai et al. | Jan 1987 | A |
4647111 | Bronder et al. | Mar 1987 | A |
4678237 | Collin | Jul 1987 | A |
4682987 | Brady et al. | Jul 1987 | A |
4688856 | Elfgen | Aug 1987 | A |
4725098 | Beach | Feb 1988 | A |
4729603 | Elfgen | Mar 1988 | A |
4765686 | Adams | Aug 1988 | A |
4765687 | Parrott | Aug 1988 | A |
4776862 | Wiand | Oct 1988 | A |
4880154 | Tank | Nov 1989 | A |
4932723 | Mills | Jun 1990 | A |
4940288 | Stiffler et al. | Jul 1990 | A |
4944559 | Sionnet et al. | Jul 1990 | A |
4951762 | Lundell | Aug 1990 | A |
4956238 | Griffin | Sep 1990 | A |
5011515 | Frushour | Apr 1991 | A |
5112165 | Hedlund et al. | May 1992 | A |
5141289 | Stiffler | Aug 1992 | A |
5154245 | Waldenstrom | Oct 1992 | A |
5186892 | Pope | Feb 1993 | A |
5251964 | Ojanen | Oct 1993 | A |
5332348 | Lemelson | Jul 1994 | A |
5348108 | Scott et al. | Sep 1994 | A |
5417475 | Graham et al. | May 1995 | A |
5447208 | Lund | Sep 1995 | A |
5535839 | Brady | Jul 1996 | A |
5542993 | Rabinkin | Aug 1996 | A |
5544713 | Dennis | Aug 1996 | A |
5653300 | Lund | Aug 1997 | A |
5662720 | O'Tighearnaigh | Sep 1997 | A |
5738698 | Kapoor et al. | Apr 1998 | A |
5823632 | Burkett | Oct 1998 | A |
5837071 | Andersson et al. | Nov 1998 | A |
5845547 | Sollami | Dec 1998 | A |
5848657 | Flood et al. | Dec 1998 | A |
5875862 | Jurewicz | Mar 1999 | A |
5890552 | Scott et al. | Apr 1999 | A |
5934542 | Nakamura et al. | Aug 1999 | A |
5935718 | Demo et al. | Aug 1999 | A |
5944129 | Jensen | Aug 1999 | A |
5967250 | Lund | Oct 1999 | A |
5992405 | Sollami | Nov 1999 | A |
6000483 | Jurewicz et al. | Dec 1999 | A |
6003623 | Miess | Dec 1999 | A |
6006846 | Tibbitts et al. | Dec 1999 | A |
6019434 | Emmerich | Feb 2000 | A |
6044920 | Massa et al. | Apr 2000 | A |
6050354 | Pessier et al. | Apr 2000 | A |
6051079 | Andersson et al. | Apr 2000 | A |
6056911 | Griffin | May 2000 | A |
6065552 | Scott et al. | May 2000 | A |
6068913 | Cho et al. | May 2000 | A |
6098730 | Scott et al. | Aug 2000 | A |
6113195 | Mercier et al. | Sep 2000 | A |
6170917 | Heinrich et al. | Jan 2001 | B1 |
6193770 | Sung | Feb 2001 | B1 |
6196636 | Mills | Mar 2001 | B1 |
6196910 | Johnson | Mar 2001 | B1 |
6199956 | Kammerer | Mar 2001 | B1 |
6216805 | Lays et al. | Apr 2001 | B1 |
6220375 | Butcher et al. | Apr 2001 | B1 |
6257673 | Markham et al. | Jul 2001 | B1 |
6270165 | Peay | Aug 2001 | B1 |
6302225 | Yoshida et al. | Oct 2001 | B1 |
6341823 | Sollami | Jan 2002 | B1 |
6354771 | Bauschulte et al. | Mar 2002 | B1 |
6364420 | Sollami | Apr 2002 | B1 |
6371567 | Sollami | Apr 2002 | B1 |
6375272 | Ojanen | Apr 2002 | B1 |
6408959 | Bertagnolli et al. | Jun 2002 | B2 |
6419278 | Cunningham | Jul 2002 | B1 |
6460637 | Siracki et al. | Oct 2002 | B1 |
6478383 | Ojanen et al. | Nov 2002 | B1 |
6484826 | Anderson et al. | Nov 2002 | B1 |
6499547 | Scott et al. | Dec 2002 | B2 |
6508318 | Linden et al. | Jan 2003 | B1 |
6517902 | Drake et al. | Feb 2003 | B2 |
6585326 | Sollami | Jul 2003 | B2 |
6596225 | Pope et al. | Jul 2003 | B1 |
6601662 | Matthias et al. | Aug 2003 | B2 |
6672406 | Beuershausen | Jan 2004 | B2 |
6685273 | Sollami | Feb 2004 | B1 |
6692083 | Latham | Feb 2004 | B2 |
6709065 | Peay et al. | Mar 2004 | B2 |
6719074 | Tsuda et al. | Apr 2004 | B2 |
6733087 | Hall et al. | May 2004 | B2 |
6739327 | Sollami | May 2004 | B2 |
6758530 | Sollami | Jul 2004 | B2 |
6786557 | Montgomery, Jr. | Sep 2004 | B2 |
6824225 | Stiffler | Nov 2004 | B2 |
6851758 | Beach | Feb 2005 | B2 |
6854810 | Montgomery, Jr. | Feb 2005 | B2 |
6861137 | Griffin et al. | Mar 2005 | B2 |
6889890 | Yamazaki et al. | May 2005 | B2 |
6933049 | Wan et al. | Aug 2005 | B2 |
6966611 | Sollami | Nov 2005 | B1 |
6994404 | Sollami | Feb 2006 | B1 |
7048081 | Smith et al. | May 2006 | B2 |
7204560 | Mercier et al. | Apr 2007 | B2 |
7350601 | Belnap et al. | Apr 2008 | B2 |
7592077 | Gates, Jr. et al. | Sep 2009 | B2 |
7703559 | Shen et al. | Apr 2010 | B2 |
8109349 | Hall et al. | Feb 2012 | B2 |
20010004946 | Jensen | Jun 2001 | A1 |
20020175555 | Mercier | Nov 2002 | A1 |
20030141350 | Noro et al. | Jul 2003 | A1 |
20030209366 | McAlvain | Nov 2003 | A1 |
20030217869 | Snyder et al. | Nov 2003 | A1 |
20030234280 | Cadden et al. | Dec 2003 | A1 |
20040026132 | Hall | Feb 2004 | A1 |
20040026983 | McAlvain | Feb 2004 | A1 |
20040065484 | McAlvain | Apr 2004 | A1 |
20040256442 | Gates, Jr. | Dec 2004 | A1 |
20050023043 | Tufts | Feb 2005 | A1 |
20050044800 | Hall et al. | Mar 2005 | A1 |
20050159840 | Lin et al. | Jul 2005 | A1 |
20050173966 | Mouthaan | Aug 2005 | A1 |
20060157285 | Cannon et al. | Jul 2006 | A1 |
20060162969 | Belnap et al. | Jul 2006 | A1 |
20060237236 | Sreshta et al. | Oct 2006 | A1 |
20070193782 | Fang | Aug 2007 | A1 |
20070278017 | Shen et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
3 500 261 | Jul 1986 | DE |
3 818 213 | Nov 1989 | DE |
4 039 217 | Jun 1992 | DE |
19 821 147 | Nov 1999 | DE |
10 163 717 | May 2003 | DE |
0 295 151 | Jun 1988 | EP |
0 412 287 | Feb 1991 | EP |
2 004 315 | Mar 1979 | GB |
2 037 223 | Jul 1980 | GB |
5 280 273 | Oct 1993 | JP |
3123193 | Jan 2001 | JP |
Entry |
---|
International search report for PCT/US2007/075670, dated Nov. 17, 2008. |
Search Report issued in related European Application No. 07873780.6, mailed Jun. 3, 2014 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20120261977 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11673634 | Feb 2007 | US |
Child | 13342523 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11668254 | Jan 2007 | US |
Child | 11673634 | US | |
Parent | 11553338 | Oct 2006 | US |
Child | 11668254 | US |