Thickener combinations for building products

Information

  • Patent Grant
  • 5470383
  • Patent Number
    5,470,383
  • Date Filed
    Tuesday, June 21, 1994
    30 years ago
  • Date Issued
    Tuesday, November 28, 1995
    28 years ago
Abstract
The invention relates to thickener combinations for building products of nonionic cellulose ethers soluble in water or aqueous surfactant solutions and selected surfactants or naphthalenesulfonic acid condensation products.
Description

Synergistic thickening effects of mixtures of water-soluble ionogenic and non-ionogenic polymers, for example hydroxyethylcelluloses and sodium carboxymethylcelluloses, are known. The thickening effect depends on the molecular weight of the cellulose ether, type of substituent, the respective degree of substitution and the amount used.
It is likewise known that macrosurfactants having altered theological behavior can be prepared by appropriate modification of a cellulose ether (Nonionic Polymer Surfactants, L. M. Landoll, Journal of Polymer Science: Polymer Chemistry Edition, Vol. 20, 443-455(1982), John Wiley & Sons, Inc. N.Y.).
Furthermore, there has been described an interaction between sodium dodecyl sulfate (SDS) and ethylhydroxyethylcellulose (EHEC) (I. Nahringbauer, Progr. Colloid Poly. Sci. 84, 200-205(1991)) or methylhydroxyethylcellulose (J.-E -Lofroth, L. Johansson, A.-C. Normann and K. Wettstrom, Prog. Colloid Poly. Sci. 84, 73-77(1992)).
It is furthermore known that partially hydrophobicized cellulose ethers can interact with conventional surfactants of relatively low molecular weight. They lead either to an increase or decrease in the viscosity. Specifically, interactions of partially hydrophobicized hydroxyethylcellulose (HM-HEC) with surfactants are published in the literature:
Increase in the viscosity on addition of anionic sodium oleate (R. A. Gelman and H.-G. Barth, Polymer. Mater. Sci., Eng. 51, 556-560, 1987)
Decrease in the viscosity on addition of nonionic octylphenol ethoxylate having 67% of EO (R. A. Gelman, Int. Dissolving Pulps Conf., Geneva 1987)
Increase in the viscosity on addition of anionic sodium dodecyl sulfate (SDS).
The influence of SDS is different from that found by Gelman with sodium oleate. With SDS, the effect reaches its maximum at the critical micelle formation concentration of the surfactant. At higher concentrations, it becomes increasingly weak. Sodium dodecyl sulfate (SDS) has no interaction with non-modified hydroxyethylcellulose (HEC) (R. Tanaka, J. Meadows, G. O. Phillips and P. A. Williams, Carbohydrate Polymers, 12, 443-459(1990)).
Furthermore, interactions of partially hydrophobicized hydroxyethylcellulose (HM-HEC) with anionic surfactants such as sodium hexanoate, sodium octanoate, sodium decanoate, sodium dodecanoate, sodium decyl sulfate and with nonionic surfactants of the alkyl poly(oxyethylene) ether type having a C.sub.11, C.sub.13 chain length and 8 EO units have been described (R. Tanaka, J. Meadows, P. A. Williams and G. O. Phillips, Macromolecules 1992, 25, 1304-1310). This new class of the non-ionogenic "hydrophobically modified" water-soluble cellulose derivatives having a low degree of hydrophobicization has likewise become of scientific interest with regard to qualitative modeling of the principle of action (E. D. Goddard, J. Coll. Int. Sci., Vol. 152, No. 2(1992), 578-581).
Likewise, the profuse patent literature mirrors the activities in the sector of partially hydrophobicized cellulose derivatives (DE.-A-3 004 161, EP-A-0 426 086, EP-A-0 384 167, EP-A-390 240).
There is a desire to effectively use, by a low-cost and simple method, improvements achievable by thickener combinations, for example in the processing rheology of building materials, and thereby to extend the conventional property profile of the original base thickener, i.e. the non-modified cellulose derivatives. Overall, the interactions of partially hydrophobicized hydroxyethylcellulose (HM-HEC) with surfactants are known, these being able to lead, as described above, to an increase or a decrease in the viscosity. The type of rheological effect depends, inter alia, on the concentration and the chemical structure of the surfactant added. Inter alia, influencing parameters of the building product also have to be taken into account. These influences cannot be theoretically predicted.
It has now surprisingly been found that thickener combinations of water-soluble, nonionic cellulose ethers and selected surfactants or naphthalenesulfonic acid condensation products enable the achievement of improvements relevant to the application in the processing properties of building products.
The invention provides thickener combinations for building products comprising at least one nonionic cellulose ether soluble in water or aqueous surfactant solutions (component I) and, as component II,
a) at least one nonionic surfactant of the formula
R--A.sub.n --OH
in which
R is C.sub.8 -C.sub.22 -alkyl, preferably C.sub.11 -C.sub.18 -alkyl, C.sub.8 -C.sub.22 alkenyl, preferably C.sub.11 -C.sub.22 -alkenyl, or C.sub.8 -C.sub.12 -alkaryl,
A is the group OCH.sub.2 CH.sub.2 or OCH(CH.sub.3)CH.sub.2, and
n is a number from 1 to 8, preferably from 2 to 5, or
b) at least one anionic surfactant comprising:
b.sub.1) at least one ethersulfate, ethersulfonate, ethercarboxylate and/or isethionate of the formula ##STR1## in which R is C.sub.8 -C.sub.22 -alkyl, preferably C.sub.11 -C.sub.18 -alkyl, or C.sub.8 -C.sub.22 -alkenyl, preferably C.sub.11 -C.sub.22 -alkenyl, or C.sub.8 -C.sub.12 -alkaryl,
Z is a group of the formula OSO.sub.3 .crclbar., SO.sub.3 .crclbar. or OCO.sub.2 .crclbar.,
M is an alkali metal ion or triethanolammonium ion,
P is either 0 or 1, and
q is a number from 1 to 5, preferably from 2 to 3, or
b.sub.2) at least one olefinsulfonate sodium salt, a primary or secondary alkanesulfonate or a primary or secondary alkylarylsulfonate, or
b.sub.3) at least one tauride and/or methyltauride of the formula ##STR2## in which R.sub.l is C.sub.8 -C.sub.18 -alkyl, preferably C.sub.11 -C.sub.18 -alkyl, or C.sub.8 -C.sub.18 alkenyl, preferably C.sub.11 -C.sub.18 -alkenyl,
R.sub.2 is hydrogen or methyl, and
M is an alkali metal ion or triethanolammonium ion, or
c) at least one cationic surfactant of the formula ##STR3## in which R.sub.3 is C.sub.8 -C.sub.20 -alkyl
R.sub.4 is hydrogen, methyl, benzyl or C.sub.8 -C.sub.20 -alkyl
X.sub.1 is a halide ion, acetate ion, lactate ion or methylsulfate ion or
d) at least one naphthalenesulfonic acid/formaldehyde condensation product.
The cellulose ethers used as component I are usually nonionic cellulose ethers soluble to at least 1% by weight in water or aqueous surfactant solutions at 20.degree. C. Such cellulose ethers preferably possess a methyl, hydroxyethyl, hydroxypropyl or ethylhydroxyethyl substitution, particularly preferably a hydroxyethyl or ethylhydroxyethyl substitution (cellulose ether substrate) and a further substitution by at least one hydrocarbon radical having from 8 to 36, preferably from 10 to 24, carbon atoms in an amount between 0.2% by weight and 5% by weight, based on the cellulose ether substrate. The cellulose ethers used as component I preferably possess an average molecular weight (Mhd w) of from 10,000 to 500,000.
Any nonionic, water-soluble methyl-, hydroxyethyl-, hydroxypropyl- or ethylhydroxyethylcellulose ether can be used as cellulose ether substrate for forming the cellulose ethers used according to the invention. Thus, for example, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, ethylhydroxyethylcellulose, methylhydroxyethylcellulose and methylhydroxypropylcellulose can be modified. The amount of the abovementioned substituents seems to be non-critical, as long as enough is present to ensure that the cellulose ether is soluble in water or aqueous surfactant solutions.
The preferred cellulose ether substrate is hydroxyethylcellulose (HEC) or ethylhydroxyethylcellulose (EHEC). The abovementioned cellulose ether substrates are substituted by one or more hydrocarbon radicals having from 8 to 36 carbon atoms, preferably from 10 to 24 carbon atoms. This partial hydrophobicization is carried out to only that extent which gives continued solubility of the cellulose ethers used according to the invention in water or aqueous surfactant solutions. The hydrophobic substituents are usually used in an amount of between 0.2% by weight and 5% by weight, based on the cellulose ether substrate. Various reagents are suitable for the partial hydrophobicization. These include C.sub.8 -C.sub.36 -alkyl halides, C.sub.8 -C.sub.36 -alkylaryl halides, C.sub.8 -C.sub.36 -alkyl epoxides, C.sub.8 -C.sub.36 -alkylaryl glycidyl ethers and also C.sub.8 -C.sub.36 -alkyl glycidyl ethers.
Of the alkyl epoxides, preference is given to using compounds having a chain length of from 10 to 24 carbon atoms, particularly preferably compounds having the following carbon chain length: C.sub.10, C.sub.12, C.sub.14 and C.sub.20-24. The cellulose ethers partially hydrophobicized by alkyl epoxides include, in particular, the corresponding hydroxyethylcellulose ethers (HEC) as are described in DE-A-30 04 161. The alkylaryl glycidyl ethers used have the following formula: ##STR4## in which R' and R'.sub.h are, independently of one another, hydrocarbon radicals having from 2 to 25 carbon atoms, with the proviso that the total number of carbon atoms in the glycidyl ether is between 8 and 36, preferably between 10 and 24,
k is zero or one,
A is a group of the formula CH.sub.2 CH.sub.2, or CH(CH.sub.3)CH.sub.2, and
1 is a number from zero to 6, preferably from 1 to 4.
The cellulose ethers partially hydrophobicized by alkylaryl glycidyl ethers include, in particular, hydroxyethylcellulose ethers (HEC) and ethylhydroxyethylcellulose ethers (EHEC) as are described in EP-A-0 384 167, EP-A-0 390 240 and EP-A-0 426 086. Of the alkylaryl glycidyl ethers described therein, preference is given to using C.sub.10 -C.sub.24 -alkylaryl glycidyl ethers, particularly preferably nonylphenyl glycidyl ether, dinonylphenyl glycidyl ether, dodecylphenyl glycidyl ether and also the corresponding ethoxylated or propoxylated compounds thereof.
In the partially hydrophobicized hydroxyethylcellulose ethers (HEC), the molar degrees of substitution MS(EO) are preferably from 1.5 to 3.3 and the average degrees of substitution AS(EO) are preferably from 0.8 to 2.2. In the partially hydrophobicized ethylhydroxyethylcellulose ethers (EHEC), the molar degrees of substitution AS(ethyl) are preferably from 0.5 to 1.5, the molar degrees of substitution MS (EO) are preferably from 0.5 to 2.8 and the average degrees of substitution AS(EO) are preferably from 0.5 to 2.0.
Processes for preparing the cellulose ethers used according to the invention are known to those skilled in the art. The cellulose ethers used according to the invention can be prepared by practically the same methods. The preferred procedure for preparing these cellulose ethers comprises the slurrying of the cellulose ether substrate in an inert organic diluent, for example a lower aliphatic alcohol, ketone or hydrocarbon, and the addition of a solution of an alkali metal hydroxide to the slurry obtained at room temperature. When the cellulose ether substrate is thoroughly wetted and swollen by the alkali, the partial hydrophobicization is carried out by addition of the hydrocarbon radical in the form of a halide, epoxide or glycidyl ether and the reaction is continued to completion. Remaining alkali is then neutralized and the product is isolated, washed with inert diluents and dried.
The components II used are' nonionic surfactants (component IIa), anionic surfactants (component IIb), cationic surfactants (component IIc) or naphthalenesulfonic acid/formaldehyde condensation products (component IId).
The nonionic surfactants possess the formula
R--A.sub.n --OH
in which
R is C.sub.8 -C.sub.22 -alkyl, preferably C.sub.11 -C.sub.18 -alkyl, or C.sub.8 -C.sub.22 -alkenyl, preferably C.sub.11 -C.sub.22 -alkenyl, or C.sub.8 -C.sub.12 -alkaryl,
A is the group OCH.sub.2 CH.sub.2 or OCH(CH.sub.3)CH.sub.2, and
n is a number from 1 to 8, preferably from 2 to 5.
Examples of such surfactants which may be mentioned are the components II 1 to II 5 from the group a, which are shown below on page 15.
The anionic surfactants used as component IIb comprise:
b.sub.1) an ethersulfate, ethersulfonate, ethercarboxylate and/or isethionate of the formula ##STR5## in which R is C.sub.8 -C.sub.22 -alkyl, preferably C.sub.11 -C.sub.18 -alkyl, or C.sub.8 -C.sub.22 -alkenyl, preferably C.sub.11 -C.sub.22 -alkenyl, or C.sub.8 -C.sub.22 -alkaryl,
Z is a group of the formula OSO.sub.3 .crclbar., SO.sub.3 .crclbar. or OCO.sub.2 .crclbar.,
M is an alkali metal ion or triethanolammonium ion,
p is either 0 or 1, and
q is a number from 1 to 5, preferably from 2 to 3;
examples of such surfactants of which mention may be made are the components II 7, II 11 and II 13 from group b.sub.1, which are shown below on page 15; or
b.sub.2) an olefinsulfonate sodium salt, a primary or secondary alkanesulfonate or a primary or secondary alkylarylsulfonate; examples of surfactants of the group b.sub.2 of which mention may be made are the components II 11 and II 14, which are shown below on page 15; or
b.sub.3) a tauride and/or methyltauride of the formula ##STR6## in which R.sub.1 is C.sub.8 -C.sub.18 -alkyl, preferably C.sub.11 -C.sub.18 -alkyl, C.sub.8 -C.sub.18 -alkenyl, preferably C.sub.11 -C.sub.18 -alkenyl,
R.sub.2 is hydrogen or methyl, and
M is an alkali metal ion or triethanolammonium ion.
An example of surfactants of the group b.sub.3 of which mention may be made is the component II 6, which is shown below on page 15.
The cationic surfactants (component c) possess the formula ##STR7## in which R.sub.3 is C.sub.8 -C.sub.20 -alkyl
R.sub.4 is hydrogen, methyl, benzyl or C.sub.8 -C.sub.20 -alkyl
X.sub.1.sup.- is a halogen ion, acetate ion, lactate ion or methylsulfate ion.
Examples of such surfactants which may be mentioned are the components II 8 and II 9 from group c, which are shown below on page 15.
Furthermore, suitable components II are naphthalenesulfonic acid condensation products (component d). These are generally water-soluble polycondensation products of naphthalenesulfonic acid and formaldehyde in the form of their alkali metal, alkaline earth metal and ammonium salts.
The characteristics of these water-soluble condensation products are shown in the following table.
______________________________________Properties typical dataForm supplied liquid/pulverulentActive content (%) 20-40/70-96Sodium sulfate content (%) 0-25Molar mass 4,000-40,000pH 6.5-11Viscosity (23.degree. C.) of the 10-150 mPa.sliquid products______________________________________
The thickener combinations of the invention comprise at least one nonionic cellulose ether (component I) and one or more compounds selected from among the components IIa, IIb.sub.1, IIb.sub.2, IIb.sub.3, IIc or IId.
Preferred thickener combinations comprise mixtures of ethylhydroxyethylcellulose ethers end/or hydroxyethylcellulose ethers (component I) with nonionic surfactants (component IIa) or anionic surfactants (component IIb). Examples of these are shown in the table on pages 16 and 17.
The proportion of the component II in the thickener combinations of the invention is from 0.01 to 99.9% by weight, preferably from 0.05 to 80% by weight, particularly preferably from 0.05 to 60% by weight, based on the total weight of the components I and II. These data are based on the active content of the respective compound of the component II. The sometimes pulverulent or granular compounds of the component II are, depending on the application, either physically dry-mixed or brought directly into solution with the pulverulent cellulose ethers of the component I and subsequently mixed with the respective building product. They can also be directly mixed into the respective building product, in which case the components I and II are either individually mixed in or the components I and II are first mixed with one another and this mixture is then added to the building products. The incorporation of these components I and II into the building products is carried out by conventional stirring and mixing processes.
The sum of the active ingredients of the components I and II of the thickener combination in the building products is from 0.01 to 5% by weight, preferably from 0.02 to 1% by weight, based on the dry mass of the building products.
In the following, the term "building products" means knifing fillers such as plaster knifing fillers, adhesives such as cement tile adhesives, polymer rendering, jointing compositions, machine rendering such as plaster/lime machine rendering and other products of this type. The thickener combinations of the invention are preferably used in building products based on plaster, plaster/lime, lime/cement or cement. A further group of preferred building products are the dispersion paints. To increase the viscosity, these building products can comprise a mixture of the abovementioned thickener combinations comprising methylhydroxyalkyl-, sodium carboxymethyl-, hydroxyethyl-, sodium carboxymethyl-hydroxyethyl- and/or ethylhydroxyethylcellulose ethers.
The thickener combinations of the invention in aqueous medium show a strong thickening effect which was determined in a rotation viscometer at a dissipated energy (shear stress) of 10.sub.2 and 10.sub.4 Pa/s at 20.degree. C. By this method, there is observed, depending on the respective composition of the thickener combination, a pronounced pseudoplastic behavior which is likewise transmitted to the liquid paste-like building products.
The improvements in the structural properties in building products are evaluated semiquantitatively in use. They are the increased thickening action, improved processability by utilization of the hydrophilic base properties of the cellulose ethers used according to the invention. The tendency to stick to tools, which is often observed when using high molecular weight cellulose ethers, is reduced. Further advantages are the better and easier divisibility of the building composition. In the experiments, good dissolution of nodules was found in fast mixing processes. The high low-shear thickening effect correlates with high water retention, even at elevated processing temperatures.
Finally, the thickener combinations of cellulose ethers of the component I end compounds of the component IIe proved to be advantageous in dispersion paints, since high thickening performance, reduced settling of the fillers by high low-shear viscosities and thus reduction in the syneresis phenomena/increased storage stability result. In addition, there results a reduced spattering tendency, i.e. the thickener combination gives more favorable use properties than, for example, an HEC thickener alone.
These are, inter alia, that synergistic thickening effects in aqueous medium are retained, for example, in the low shear range and that nevertheless the viscoelastic properties, mainly, arising from the molecular weight of the cellulose ether of the component I in question, can be positively utilized in the high shear range, i.e., for example, the processing phase of a dispersion paint or a knifing filler. Also included are additional effects arising from the organic surfactant component.





EXAMPLES
The following products were used as water-soluble, nonionic cellulose ethers (component I) :
______________________________________ Viscosity (mPa.s) of the 1% strength Average molarSam- aqueous degree of degree ofple solution at substitu- substitu-desig- Cellulose 20.degree. C. and tion/ tion/MSnation ether 100 Pa/s AS(OCH.sub.3) (EO)______________________________________A "MHEC 410 1.5 0.11 10.sup.4 "*B "HEC 340 -- 2.3 10.sup.4 "* hydro- phobicizationC macro- 370 hydrophobically surfactant modified by C**) alkyl groups HEC according to DE-A-3 004 161D macro- 380 hydrophobically surfactant modified D***) according to EHEC EP-A-030 240E macro- 1240 hydrophobically surfactant modified by E****) alkylaryl HEC glycidyl ether according to EP-A-0 384 167______________________________________ The samples A and B are comparative samples. *Note: The designator 10.sup.4 indicates that the 2% strength aqueous solution of the cellulose ether in question possesses a viscosity of 10,000 [mPa.s], measured with the Hoppler falling sphere viscometer. The samples C, D and E are cellulose ethers used according to the invention. **).RTM. Natrosol Plus C (Aqualon Company) ***).RTM. Bermoocoll EH M 100 (Berol Nobel Stanungsund AB) ****).RTM. Callosize Spatterguard 100 (Union Carbide Chemicals and Plastics Company, Inc.)
Characteristics of the components II used (see also examples)
______________________________________Component II Group Description______________________________________1 a i-C.sub.13 -alcohol + 3 mol of EO2 a i-C.sub.13 -alcohol + 6 mol of EO3 a nonylphenol + 6 mol of EO4 a tributylphenol + 6 mol of EO5 a C.sub.14/15 -oxoalcohol + 4 mol of EO6 b.sub.3 oleyl methyltauride7 b.sub.1 alkyl ether carboxylate8 c (C.sub.10 H.sub.22).sub.2 (CH.sub.3).sub.2 NCl9 c (C.sub.18 H.sub.37).sub.2 (CH.sub.3).sub.2 NCl10 a C.sub.11 -oxoalcohol + 3 mol of EO11 b.sub.2 secondary alkanesulfonate sodium salt12 b.sub.1 C.sub.12 /C.sub.14 alkyl diglycol ether-sulfate sodium salt13 b.sub.1 C.sub.12 /C.sub.14 alkyl triglycol ether-sulfate sodium salt14 b.sub.2 C.sub.14 /C.sub.16 -.alpha.-olefinsulfonate sodium salt15 d naphthalenesulfonic acid/formaldehyde condensation product16 d naphthalenesulfonic acid/formaldehyde condensation product______________________________________
Examples of thickener combinations
______________________________________Example Component I Component II Viscosity (mPa.s)______________________________________ 1 Sample C -- 370 2 Sample C 1 1110 3 Sample C 2 745 4 Sample C 3 650 5 Sample C 4 625 6 Sample C 5 1840 7 Sample C 6 1430 8 Sample C 7 580 9 Sample C 8 68010 Sample C 9 79011 Sample C 10 115012 Sample C 11 130013 Sample C 12 300014 Sample C 13 174015 Sample C 14 210016 Sample C 15 187017 Sample C 16 >10,00018 Sample D -- 41019 Sample D 1 54020 Sample D 6 87021 Sample D 12 398022 Sample D 13 84023 Sample D 14 54024 Sample D 15 89025 Sample D 16 155026 Sample E -- 123027 Sample E 1 136028 Sample E 3 126029 Sample E 5 199030 Sample E 9 1550______________________________________
The viscosity is measured at 10.sub.2 Pa/s, 20.degree. C. in 1% strength aqueous solution. The weight ratio of component I: component II is 10:1.
The preparation of the dispersion paints is carried out according to the recipes 1 and 2 below. To follow the active effect as regards the spattering tendency, smaller amounts of thickener combination were deliberately used here. The spattering and splashing behavior was examined using a mechanized laboratory testing machine in which the paint roller loaded with a defined amount of paint is passed horizontally over a paint wiping mesh at a defined speed and contact pressure and the paint spatters are collected on a black piece of cardboard located further below.
Number and size of spatter particles are assessed semiquantitatively.
______________________________________Recipe 1 Dispersion paints (data in parts by weight) Example 1 2 3 4______________________________________Water 170.5 170.5 170.5 170.5Preservative 1 1 1 1Dispersant 10 10 10 10Sample C 1.7 1.7 1.7 1.7Comp. II -- 16 15 60.17 part by weightTiO.sub.2 37.5 37.5 37.5 37.5Fillers 237.5 237.5 237.5 237.5NaOH/10% strength 0.5 0.5 0.5 0.5Styrene-acrylate dispersion***.sup.) 45 45 45 45Film former 2 2 2 2Viscosity 4500 3000 3500 3000(mPa.s)*.sup.) (1100) (1100) (900) (800)Evaluation**.sup.) 7 5 5 6______________________________________ *.sup.) Brookfield viscometer, spindle 6 at 10 and 100 rpm (figure in brackets) **.sup.) relative classification: no ("1") . . . ("10") strong spattering/splashing ***.sup.) Mowilith DM 611 (Hoechst AG)
Recipe 2 Dispersion paints (data in parts by weight) Example 5 6 7 8 9______________________________________Water 170.5 170.5 170.5 170.5 170.5Preservative 1 1 1 1 1Dispersant 10 10 10 10 10Sample C 1.7 1.7 1.7 1.7 1.7Comp. II -- 16 15 14 60.17 parts by weightTiO.sub.2 37.5 37.5 37.5 37.5 37.5Fillers 237.5 237.5 237.5 237.5 237.5NaOH/10% strength 0.5 0.5 0.5 0.5 0.5Ethylene- 45 45 45 45 45vinyl acetatecopolymer***.sup.)Viscosity 2000 2500 3000 3000 2500(mPa.s)*.sup.) (600) (850) (950) (850) (700)Evaluation**.sup.) 3 2 2 3 2______________________________________ *.sup.) Brookfield viscometer, spindle 6 at 10 and 100 rpm (figure in brackets). Dispersion paint conditioned for 1 day at 23.degree. C. **.sup.) relative classification: no ("1") . . . ("10") strong spattering/splashing ***.sup.) Mowilith DM 1290 (Hoechst AG)
Examples of a synergistic mode of action of the thickener combination in a knifing filler building product
______________________________________Recipe 3: Thickener combinationin knifing fillers (data in parts by weight) Example 10 11 12 13 14______________________________________Modeling 200.0 200.0 200.0 200.0 200.0plaster*.sup.)Retardant**.sup.) 0.2 0.2 0.2 0.2 0.2Sample C 1.0 0.9 0.9 0.9 0.9Comp. II addition as -- 6 14 15 160.1 part by weightWater 94 94 94 94 94______________________________________Assess-ment weak, weak, weak very weak very similar similar similarThick- without strong to Ex- to Ex- to Ex-ening thickening pro- periment periment perimenteffect peak nounced No. 10 No. 10 No. 10______________________________________Lump little none none none noneforma-tion.sup.+)Struc- 2 1+ 3 4 4ture.sup.++.sup.)______________________________________ *.sup.) hemihydrate plaster, finely ground **.sup.) Zeliquid GA (Hoechst AG) .sup.+) mixing time 1 minute, manual .sup.++) marking system: 1 = very good, 6 = unsatisfactory
The plaster knifing filler prepared according to Example 11 shows a strong (desired) thickening effect, rapid dissolution of lumps within short mixing times and very good structural consistency/plasticity.
Examples of a synergistic mode of action of the thickener combination in a plaster/lime machine rendering as building product
__________________________________________________________________________Recipe 4: Thickener combination in plaster/limemachine rendering (data in parts by weight) Example 15 16 17 18 19 20__________________________________________________________________________P/L MR base mixture*.sup.) 200 200 200 200 200 200Sample C 0.4 0.36 0.36 0.36 0.36 0.36Comp. II, -- 6 14 15 16 1addition as 0.04 part by weightWater 72 72 72 72 72 72AssessmentThickening weak in weak in weak in strong strong intermed.effect about 8 sec. 8-01 sec. 8-10 sec. 8 sec. 8-10 sec. 8-10 sec.Lump formation.sup.+) some some some few few fewStructure.sup.++) 3 1 2 1 2 2-__________________________________________________________________________ *.sup.) about 40 parts by weight of plaster 7 parts by weight of slaked lime remainder: lime/sand brick .sup.+) stirring time only 20 seconds, manual .sup.++) marking system: 1 = very good; 6 = unsatisfactory
The plaster/lime machine renderings of Examples 16 and 18 have a favorable structure. Examples 18 and 19 show strong thickening effects with a short stirring time.
Examples of a synergistic mode of action of the thickener combination in a building product (cement tile adhesive)
______________________________________Recipe 5: Thickener combination in the cement tileadhesive (data in parts by weight) Example 21 22 23 24 25______________________________________Tile 300 300 300 300 300adhesive basemixture*.sup.)Sample C 1.5 1.35 1.35 1.35 1.35Comp. II -- 6 14 15 16addition0.15 part byweightWater 66 66 66 66 66AssessmentThickening somewhat similar to very veryeffect stronger than Exp. strong strong Exp. No. 21 No. 21 thick- thick- ening ening effect effectStructure.sup.++) 4 4 3 1 1______________________________________ *.sup.) 40 parts by weight of cement PZ 45 F *.sup.) 60 parts by weight of sand of diverse grain size **.sup.) marking system: 1 = very good, 6 = unsatisfactory
The thickener combinations of Examples 24 and 25 have very strong thickening effects.
Examples of a synergistic mode of action of the thickener combination in a building product (plaster/lime machine rendering)
Assessment of the temperature-dependent water retention in plaster/lime machine rendering in accordance with DIN 18 555 at 20.degree. C. and 40.degree. C. (data in parts by weight)
______________________________________ Examples 26 27 28 29______________________________________Plaster/lime base 1000 1000 1000 1000mixtureSample C 2 2 2 2Comp. II (No. 6) -- 0.2 -- 0.2Water 360 260 260 360AssessmentWater retention at 20.degree. C. at 20.degree. C. at 40.degree. C. at 40.degree. C.in (%) 97.95 98.30 97.31 97.64______________________________________
High water retentions are achieved with the cellulose ether and the thickener combination, with reduced proportion of cellulose ether, because of the low water factor and the favorable structure. They are comparable in the temperature range investigated, i.e. independent of the processing temperature.
Claims
  • 1. A thickener composition for building products comprising:
  • a component I), comprising at least one nonionic cellulose ether soluble in water or aqueous surfactant solutions, wherein the cellulose ether is substituted by at least one hydrocarbon radical having from 8 to 36 carbon atoms, and
  • a component II), comprising from 0.05 to 10% by weight, based on the total weight of component I and component II, of one of the following surfactant components
  • a) at least one nonionic surfactant of the formula
  • R--A.sub.n --OH
  • in which
  • R is C.sub.8 -C.sub.22 -alkyenyl, C.sub.8 -C.sub.22 -alkaryl or C.sub.2 -C.sub.12 -alkaryl,
  • A is the group OCH.sub.2 CH.sub.2 or OCH(CH.sub.3)CH.sub.2, and
  • N is a number from 1 to 8,
  • b) at least one ethersulfate, ethersulfonate, ethercarboxylate, iseothionate, or mixtures thereof of the formula ##STR8## in which R is C.sub.8 -C.sub.22 -alkyl, C.sub.8 -C.sub.22 -alkenyl or C.sub.2 -C.sub.12 -alkaryl,
  • Z is a group of the formula OSO.sub.3.sup..crclbar., SO.sub.3.sup..crclbar., or OCO.sub.2.sup..crclbar.,
  • M is an alkali metal ion or triethanolammonium ion,
  • p is either 0 or 1, and
  • q is a number from 1 to 5,
  • c) at least one olefinsulfonate sodium salt, a primary or secondary alkanesulfonate, or a primary or secondary alkarylsulfonate,
  • d) at least one tauride, methyltauride, or mixtures thereof of the formula ##STR9## in which R.sub.1 is C.sub.8 -C.sub.18 -alkyl or C.sub.8 -C.sub.18 -alkenyl,
  • R.sub.2 is hydrogen or methyl, and
  • M is an alkali metal ion or triethanolammonium ion,
  • d) at least one cationic surfactant of the formula ##STR10## in which R.sub.3 is C.sub.8 -C.sub.20 -alkyl,
  • R.sub.4 is hydrogen, methyl, benzyl, or C.sub.8 -C.sub.20 -alkyl, and
  • X.sub.1.sup.- is a halide ion, acetate ion, lactate ion, or methylsulfate ion, or
  • e) at least one naphthalenesulfonic acid/formaldehyde condensation product.
  • 2. A thickener composition as claimed in claim 1, wherein in the nonionic surfactant of the formula
  • R --A.sub.n --0H
  • R is C.sub.11 -C.sub.18 -alkyl, C.sub.11 -C.sub.22 -alkenyl and
  • n is a number from 2 to 5,
  • in the ethersulfate, ethersulfonate, ethercarboxylate and/or isethionate of the formula ##STR11## R is C.sub.11 -C.sub.18 -alkyl or C.sub.11 -C.sub.22 -alkenyl, and q is a number from 2 to 3,
  • in the tauride and/or methyltauride of the formula ##STR12## R.sub.1 is C.sub.11 -C.sub.18 -alkyl or C.sub.11 -C.sub.18 -alkenyl.
  • 3. A thickener composition as claimed in claim 1, wherein the component I cellulose ethers used are nonionic cellulose ethers soluble to at least 1% by weight in water at 20.degree. C.
  • 4. A thickener composition as claimed in claim 1, wherein the cellulose ether possesses a methyl, hydroxyethyl, hydroxypropyl or hydroxyethyl substitution and a further substitution by at least one hydrocarbon radical having from 8 to 36 carbon atoms in an amount between 0.2% by weight and 5% by weight, based on the cellulose ether.
  • 5. A thickener composition as claimed in claim 4, wherein the cellulose ether possesses a hydroxyethyl or ethylhydroxyethyl substitution.
  • 6. A thickener composition as claimed in claim 1, wherein the further substituents of the cellulose ether are C.sub.8 -C.sub.36 -alkyl halides, C.sub.8 -C.sub.36 -alkylaryl halides, C.sub.8 -C.sub.36 -alkyl epoxides, C.sub.8 -C.sub.36 -alkylaryl glycidyl ethers or C.sub.8 -C.sub.36 -alkyl glycidyl ethers.
  • 7. A thickener composition as claimed in claim 1, wherein the cellulose ethers used are hydroxyethylcellulose ethers having a molar degree of substitution MS(EO) of from 1.5 to 3.3 and an average degree of substitution AS(E-O) of from 0.8 to 2.2.
  • 8. A thickener composition as claimed in claim 1, wherein the cellulose ethers used are ethylhydroxyethylcellulose ethers having a molar degree of substitution AS(ethyl) of from 0.5 to 1.5, a molar degree of substitution MS(EO) of from 0.5 to 2.8 and an average degree of substitution AS(EO) of from 0.5 to 2.0.
  • 9. A thickener composition as claimed in claim 1, wherein the cellulose ethers of component I possess an average molecular weight (M.sub.w) of from 10,000 to 500,000.
  • 10. A thickener composition as claimed in claim 1, which comprises a mixture of hydroxyethylcellulose ethers and/or ethylhydroxyethylcellulose ethers as component I with nonionic surfactants as component IIa or anionic surfactants as component IIb.
  • 11. A thickener composition consisting essentially of:
  • a component I), consisting essentially of at least one nonionic cellulose ether soluble in water or aqueous surfactant solutions, wherein the cellulose ether is substituted by at least one hydrocarbon radical having from 8 to 36 carbon atoms, and
  • a component II), consisting essentially of from 0.05 to by weight, based on the total weight of component I and component II, of one of the following surfactant components
  • a) at least one nonionic surfactant of the formula
  • R--A.sub.n --OH
  • in which
  • R is C.sub.8 -C.sub.22 -alkyl, C.sub.8 -C.sub.22 -alkenyl or C.sub.2 -C.sub.12 -alkaryl,
  • A is the group OCH.sub.2 CH.sub.2 or OCH(CH.sub.3)CH.sub.2, and
  • N is a number from 1 to 8,
  • b) at least one ethersulfate, ethersulfonate, ethercarboxylate, iseothionate, or mixtures thereof of the formula ##STR13## in which R is C.sub.8 -C.sub.22 -alkyl, C.sub.8 -C.sub.22 -alkenyl or C.sub.2 -C.sub.12 -alkaryl,
  • Z is a group of the formula OSO.sub.3.sup..crclbar., SO.sub.3.sup..crclbar., or OCO.sub.2.sup..crclbar.,
  • M is an alkali metal ion or triethanolammonium ion,
  • p is either 0 or 1, and
  • q is a number from 1 to 5,
  • c) at least one olefinsulfonate sodium salt, a primary or secondary alkanesulfonate, or a primary or secondary alkarylsulfonate,
  • d) at least one tauride, methyltauride, or mixtures thereof of the formula ##STR14## in which R.sub.1 is C.sub.8 -C.sub.18 -alkyl or C.sub.8 -C.sub.18 -alkenyl,
  • R.sub.2 is hydrogen or methyl, and
  • M is an alkali metal ion or triethanolammonium ion,
  • d) at least one cationic surfactant of the formula ##STR15## in which R.sub.3 is C.sub.8 -C.sub.20 -alkyl,
  • R.sub.4 is hydrogen, methyl, benzyl, or C.sub.8 -C.sub.20 -alkyl, and
  • X.sub.8.sup.- is a halide ion, acetate ion, lactate ion, or methylsulfate ion, or
  • e) at least one naphthalenesulfonic acid/formaldehyde condensation product.
Priority Claims (1)
Number Date Country Kind
43 20 508.9 Jun 1993 DEX
US Referenced Citations (4)
Number Name Date Kind
4784693 Kirkland et al. Nov 1988
4892589 Kirkland et al. Jan 1990
5140099 Bostrom et al. Aug 1992
5279313 Clausen et al. Jan 1984
Foreign Referenced Citations (6)
Number Date Country
1306792 Sep 1992 AUX
0314118 May 1989 EPX
0390240 Oct 1990 EPX
0504870 Sep 1992 EPX
3920025 Jan 1991 DEX
9203120 Mar 1992 WOX
Non-Patent Literature Citations (3)
Entry
Chemical Abstracts, vol. 88, No. 26, Jun. 26, 1978.
Chemical Abstracts, vol. 107, No. 18, Nov. 2, 1987.
Database WPI, Week 7937, 79-67105B Jan. 1978.