Claims
- 1. An antenna array for microwave power conversion comprising a metal sheet cladding a layer of dielectric material, said layer of dielectric material being disposed over a metal backing sheet, and a plurality of circularly polarized antenna elements fabricated on said metal cladding sheet by etching said metal cladding sheet in a pattern which includes conductive strips connecting said antenna elements to a common load terminal and between said antenna elements and said load terminal, at least one microstrip low-pass filter connected to low impedance matching stubs and lodging a rectifying diode in said dielectric material with one terminal connected between said filter and matching stubs, and the other terminal connected to said metal backing sheet.
- 2. An antenna array for microwave power conversion as defined in claim 1 wherein each conductive strip connected to an antenna element as a feed line to a filter is inset to a point inside the periphery of the antenna element of proper impedance to match the impedance of the filter.
- 3. An antenna array as defined in claim 2 for low microwave power conversion wherein all antenna elements are connected in parallel to said load through a single microstrip low-pass filter connected to matching stubs, and a single rectifying diode lodged in said dielectric material with one terminal connected to said conductive strip between said filter and said low impedance matching stubs, and the other terminal connected to a metal backing sheet.
- 4. An antenna array as defined in claim 2 wherein all of said antenna elements are connected in series-parallel with a plurality of groups of said antenna elements connected in cascade with each feeding into a separate microstrip filter connected to separate matching stubs, and with a separate diode connected between the microstrip filter and the matching stubs, and wherein the last of each group of antenna elements so cascaded is connected to a common load through a last microstrip filter connected to matching stubs, and with a separate diode connected between said last microstrip filter and connected matching stubs.
- 5. An antenna array as defined in claim 4 for high power conversion wherein each of said antenna elements is connected to a plurality of microstrip filters, matching stubs and rectifying diodes.
- 6. An antenna array for microwave power conversion comprising a plurality of circularly polarized antenna elements fabricated on a metal front sheet cladding a layer of dielectric material over a metal backing sheet by etching said metal front sheet in a pattern which includes conductive strips connecting the said antenna elements to a common load terminal, each antenna element having at least one microstrip low-pass filter connected to low impedance matching stubs, and at least one rectifying diode lodged in said dielectric material with one terminal connected to said conductive strip between said filter and low impedance matching stubs, and the other terminal connected to said metal backing sheet, each conductive strip feeding from an antenna element into a filter being inset within the periphery of the antenna element to a point of proper impedance to match the input impedance of the filter.
- 7. An antenna array as defined in claim 6 wherein each antenna element is symmetrical about orthogonal major and minor axes, and the place for the connecting conductive strip is selected to be between the major and minor axes for maximum response to circularly polarized radiation incident upon the array and the precise impedance of the selected feedpoint is then selected to match the input impedance of the filter by insetting the connecting strip to a point inside the periphery of the array to a point that is of proper impedance.
ORIGIN OF THE INVENTION
The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 435; 42 USC 2457).
US Referenced Citations (4)