This invention relates generally to electrolytes, and more particularly to ceramic electrolytes.
The present invention relates to proton conducting electrolytes which are prepared for use in intermediate temperature range fuel cells and other electrochemical devices that operate in the temperature range of between 200° C. to 600° C.
Proton conducting electrolytes are a core component of any electrochemical device based on proton conduction such as, for example, fuel cells, hydrogen separation and pumping devices, etc. It is well known that presently there are no proton conducting material with proton conductivity high enough to successfully operate in the intermediate temperature range (200-600° C.) when prepared by current material preparation techniques that result in an electrolyte layer at least 10 μm thick. The polymer based electrolytes, such as Nafion or PBI, are know to operate in a temperature of below 200° C., as a temperature above such destroys the polymer electrolyte. Perovskite ceramic electrolytes such as zirconates and cerates must operate at very high temperatures as their conductivities are not high enough until the temperature reaches approximately 600° C. Hence, no suitable electrolyte is found for the intermediate temperature range of between 200° C. and 600° C.
However, it is desirous to develop an electrolyte which may operate within the intermediate temperature range as it solves many outstanding problems of lower temperature systems, especially fuel cells, while avoiding high operating temperature induced mechanical and thermal mismatch problems. It thus is seen that a need remains for an intermediate temperature electrolyte and a method of producing such which overcomes problems associated with those of the prior art. Accordingly, it is to the provision of such that the present invention is primarily directed.
In a preferred form of the invention, a thin film proton conducting electrolyte comprises a nanoporous supporting substrate, and a ceramic layer positioned upon the porous supporting substrate stack, the ceramic layer having a thickness less than or equal to 2 microns.
In another preferred form of the invention, a method of manufacturing a proton conducting electrolyte comprises the steps of (a) providing a nanoporous supporting substrate, (b) filling the nanopores of the nanoporous supporting substrate with a filler material, and (c) depositing a ceramic layer upon the filled nanoporous supporting substrate.
With reference next to the drawings, there is shown in a method of producing a ceramic proton conducting electrolyte assembly 10 for use in intermediate temperature range devices, such as fuel cells, hydrogen separation and pumping devices, and other electrochemical devices.
The electrolyte assembly 10 includes a nanoporous supporting substrate 11, a temporary substrate pore filler material 12, and a ceramic electrolyte layer 13 positioned upon the substrate 11. The nanoporous substrate 11 may be made of a copper layer produced in accordance with the teachings of U.S. Patent Application Ser. No. 10/918,250, now U.S. Pat. No. 6,986,838, which is commonly owned and specifically incorporated herein by reference. The substrate pore filler material 12 may be a photoresist or polymer material, such as AZ P4620 made by Clariant or Microposit S 1813 made by Shipley. The ceramic electrolyte layer 13 is preferable a yttrium doped strontium zerconate (Y:SrZrO3), but may also be barium zerconate, strontium cerate, barium cerate, or other proton conductive perovskite ceramic materials.
The electrolyte assembly 10 is preferable manufactured in the following manner. An approximately 10 micron layer of porous copper substrate 11 is produced or otherwise provided having a pore size of approximately 200 nm, as shown in
Once the nanoporous substrate 11 is produced, the pores 14 are filled with a pore filler material 12 to provide the substrate 11 with a smooth and uniform top surface 15, as shown in
Once the electrolyte layer 13 is deposited the pore filler material 12 is removed by an appropriate solvent, such as acetone or an alcohol, as shown in
It should be understood that other dopants may be used as an alternative to the yttrium, such as indium, neodymium, scandium, or other similar material. It should also be understood that other material may be utilized to produce the substrate 11 as an alternative to the copper disclosed in the preferred embodiment. It should be understood that it is believed that the pore filler material 12 should be removed from the pores 14. However, should an very high proton conducting material is utilized or discovered it may be conceivable that the filler material need not be removed.
It thus is seen that a proton conducting electrolyte for use with intermediate temperature fuel cells or other electrochemical devices is now provided which overcomes problems associated with those of the prior art. It should of course be understood that many modifications may be made to the specific preferred embodiment described herein without departure from the spirit and scope of the invention as set forth in the following claims.
This claims benefit of provisional of U.S. Patent Application Ser. No. 60/565,305 filed Apr. 26, 2004.
Number | Name | Date | Kind |
---|---|---|---|
4040410 | Libowitz | Aug 1977 | A |
4049877 | Saillant et al. | Sep 1977 | A |
4098958 | Bettman | Jul 1978 | A |
4422500 | Nishizaki et al. | Dec 1983 | A |
4523635 | Nishizaki et al. | Jun 1985 | A |
4562511 | Nishino et al. | Dec 1985 | A |
4677038 | Salomon | Jun 1987 | A |
4692390 | Roy | Sep 1987 | A |
4781029 | SerVaas | Nov 1988 | A |
4818638 | Roy | Apr 1989 | A |
5139895 | Roy et al. | Aug 1992 | A |
5306577 | Sprouse | Apr 1994 | A |
5336573 | Zuckerbrod et al. | Aug 1994 | A |
5436091 | Shackle et al. | Jul 1995 | A |
5498489 | Dasgupta et al. | Mar 1996 | A |
5532074 | Golben | Jul 1996 | A |
5540741 | Gozdz et al. | Jul 1996 | A |
5547782 | Dasgupta et al. | Aug 1996 | A |
5571634 | Gozdz et al. | Nov 1996 | A |
5584893 | Mitchell | Dec 1996 | A |
5588971 | Fauteux et al. | Dec 1996 | A |
5591544 | Fauteux et al. | Jan 1997 | A |
5597659 | Morigaki et al. | Jan 1997 | A |
5778515 | Menon | Jul 1998 | A |
5928436 | Borkowski et al. | Jul 1999 | A |
6033796 | Baji | Mar 2000 | A |
6368383 | Virkar et al. | Apr 2002 | B1 |
6899967 | Johnson | May 2005 | B2 |
7033637 | Hunt et al. | Apr 2006 | B1 |
20020012824 | Johnson | Jan 2002 | A1 |
20020020298 | Drost et al. | Feb 2002 | A1 |
20020064692 | Johnson | May 2002 | A1 |
20050013933 | Chen et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
0 055 855 | Jul 1982 | EP |
0 071 271 | Feb 1983 | EP |
0 168 062 | Jan 1986 | EP |
1357347 | Jun 1974 | GB |
58-147575 | Sep 1983 | JP |
Number | Date | Country | |
---|---|---|---|
20050238895 A1 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
60565305 | Apr 2004 | US |