The evolutionary development of new engine materials and designs has allowed turbines to be operated at much higher temperature and thus, achieve higher efficiencies. In order to evaluate engine performance, it is necessary to monitor the temperature of all the static and dynamic components in the turbine environment. Several techniques have been used to monitor the surface temperature of blades and vanes, including wire thermocouples, infrared photography, pyrometry and thermal paints. One technique employs imbedded thermocouple wires in the blade wall however this may cause serious structural and aerodynamic problems, disturbing the flow of cooling air. Infrared photography has been used for this purpose but is a non-contact method where the thermal radiation patterns of an object are converted into a visible image. These techniques are not easily transferable to the gas turbine engine environment for temperature monitoring where smoke or other particulates may scatter the light. The extreme temperatures and velocities within a turbine gas engine make it difficult to produce reliable infrared images. Pyrometry can be used at a reasonably large distance from the object as long as the object can be focused, however, it is required that the areas of engine are line of sight accessible. It is important to note that adsorption by dust, windows, flames, gases and other optical interferences can produce errors. Another method to measure surface temperature is the use of thermal paints. They are convenient to use and give a visual display or thermal map of component, but these paints do not exhibit the adhesion necessary to survive the harsh environment in gas turbine engine.
As operating temperatures in gas turbine engines are pushed to higher levels, engine designs must rely on complex cooling systems and ceramic coatings to maintain the structural integrity of the metallic blades and vanes. Embedded wire thermocouples are frequently used for temperature measurement in the gas turbine engine environment but as the blades get thinner, structural integrity can be compromised. A thin film ceramic thermocouple based on indium-tin-oxide (ITO) alloys may be used to measure the surface temperature of both static and rotating engine components employed in propulsion systems that operate at temperatures in excess of 1300° C. By fabricating two different ITO elements, each having substantially different charge carrier concentrations, it is possible to construct a robust ceramic thermocouple. A thermoelectric power of 6.0 μV/° C., over the temperature range 25-1250° C. has been measured for an unoptimized thin film ceramic thermocouple.
Testing in a computer controlled burner rig showed that ITO thermocouples exhibited a linear voltage-temperature response over the temperature range 25-1250° C. Not only was the thermoelectric power a critical measure of performance of thermocouples in these applications but the electrical and chemical stability was equally important in these harsh conditions, since these temperature sensors must survive tens of hours of testing at elevated temperatures. To enhance the carrier concentration difference in the different legs of thermocouple, ITO thin films were deposited by r.f. sputtering in different oxygen, nitrogen, and argon plasmas. ITO thin films prepared in nitrogen rich plasmas have survived temperatures in excess of 1575° C. for tens of hours. SEM micrographs revealed that the surfaces of the ITO thin films after high temperature exposure exhibited a partially sintered microstucture with a contiguous network of ITO nanoparticles. In these films, nitrogen was metastably retained in the individual ITO grains during deposition. Nitrogen diffused out of the bulk grains at elevated temperature and eventually became trapped at grain boundaries and triple junctions. Not only are these ceramic thermocouples being considered for propulsion applications, other applications such as glass melting and steel making are also being considered. Thermal cycling of ITO thin films in various oxygen partial pressures showed that the temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure, with TCR's ranging from 1320 ppm/° C. to 1804 ppm/° C. at temperatures above 800° C., and eventually became independent of oxygen partial pressure after repeated thermal cycling below 800° C.
It is an object of the present invention to provide a versatile ceramic sensor system having an RTD heat flux sensor which can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array.
It is another object of the invention to provide a ceramic sensor array prepared under different plasma conditions, i.e. different oxygen and nitrogen partial pressures in the argon plasma and having very high temperature stability.
It is another object of the invention to provide a transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.
It is still another object of the invention to provide an ITO ceramic sensor which can be used in aerospace applications, glass melting and steel making applications.
Generally shown in
Currently used platinum based thermocouples are expensive, have a limited temperature range, are prone to yield errors due to catalytic effects and can give results that can deviate by as much as 50 degree C. from the actual temperature. Platinum and rhodium thermocouples are prone to creep and other metallurgical effects at elevated termperature. The sensitivity and response of thermocouples are based on the development of an electromotive force (emf), which is dependent on the electrical properties of the individual thermoelements, namely the density of free carriers. By controlling ITO deposition conditions, a robust ceramic thermocouple can be produced using two different ITO elements with substantially different charge carrier concentrations and resistivities.
High purity aluminum oxide substrates were used for all high temperature electrical tests, since they provide excellent electrical isolation and stability at high temperature. These substrates were cleaned by rinsing in acetone, methanol and deionized water, followed by a dry nitrogen blow dry. Shadow masking techniques were used to fabricate all thin film thermocouples. The ITO films were deposited by rf sputtering whereas the platinum/rhodium (10%) films were deposited by rf sputtering. A high density ITO target (12.7 cm in diameter) with a nominal composition of 90 wt % In2O3 and 10 wt % SnO2 was used to deposit ITO thermoelements and high purity (99.9999%) platinum and platinum/rhodium targets (10.7 cm in diameter) were used for all platinum depositions. The sputtering chamber was evacuated to a background pressure <1×10−6 torr prior to sputtering and semiconductor grade argon, oxygen and nitrogen were leaked into the chamber to establish a total gas pressure of 9 mtorr. The oxygen, argon and nitrogen partial pressures were maintained in the deposition chamber using MKS mass flow controllers and rf power density of 2.4 W/cm2 was used for all ITO sputtering runs. Platinum films (3 μm thick) were used to form ohmic contacts to the active ITO thermoelements and thin film leads to make electrical connection. A computer controlled burner rig and a Deltech tube furnace with a 7-inch hot zone was used for high temperature experiments (
Electrical and chemical stability of the sputtered ITO is critical to the performance of these temperature sensors, since these ceramic sensors must survive tens of hours of testing at elevated temperature. Towards this end, high temperature stability of ITO thin films was evaluated at temperatures up to 1250° C. under different oxygen partial pressures. The properties of the ITO elements were measured continuously during thermal cycling to establish the temperature coefficient of resistance (TCR). This was used as an indirect measure of thermocouple stability from the viewpoint of charge carrier concentration. The desired partial pressures were established by mixing argon and oxygen in different ratios followed by thermal cycling between 25° C. and 1500° C. Results of testing under low oxygen partial pressures (
A ceramic thermocouple was fabricated by depositing two different ITO films (
The different electrical conductivity in each thermoelement is controlled by the amount of nitrogen in the plasma. It has been determined that by utilizing nitrogen in the plasma, the thermoelements are unexpectedly able to withstand much higher temperatures. The plasma should include at least some and up to 10 mtorr of nitrogen, 0-10 mtorr of oxygen and 0-10 mtorr of argon. One preferred combination of plasma components includes 6 mtorr of argon, 3 mtorr of nitrogen and 1 mtorr of oxygen.
A temperature coefficient of resistance (TCR) of 1320 ppm/° C. was observed in low oxygen partial pressure and 1748 ppm/° C. was observed in pure oxygen environments. Nitrogen-doped ITO films exhibited greater stability at high temperatures with an almost linear response.
ITO temperature sensors were examined by SEM after high temperature exposure. SEM micrographs indicated that a marked change in microstructure had occurred in the ITO films after the first thermal cycle. The SEM micrograph of an ITO sensor subjected to a post-deposition heat treatment in air (
In the case of the nitrogen doped ITO films, it appears that more nitrogen was metastably retained in the individual ITO grains during sputtering which later diffused out of the bulk grains at elevated temperature, eventually becoming trapped at grain boundaries and triple junctions. Under these conditions, sintering and densification of the ITO particles containing nitrogen rich grain boundaries was retarded and a contiguous network of nanometer-sized ITO particles was established. In both cases, the controlled microstructure developed in these sensors was achieved by controlling the partial pressure of nitrogen in the interconnected porosity during processing, such that a balance between the rate of decomposition and the rate of sintering rate was maintained. Since the decomposition of ITO alloys in pure nitrogen atmospheres can occur at temperatures as low as 1100° C., higher equilibrium (decomposition) pressures at these higher temperatures occurs in the nitrogen sputtered films and must be accommodated in the isolated pores to maintain equilibrium. Continued sintering in these nitrogen sputtered films will require even higher temperatures until a new equilibrium is reached. Preliminary experiments indicate that a stable nitride may have also formed on the surfaces of these particles, which can also lead to the stabilization of the ITO nanoparticles.
To determine the resistivity and carrier concentration difference in ITO elements comprising the thermocouples, a series of ITO films was sputtered in different argon/oxygen/nitrogen partial pressures. The reactively sputtered ITO films were determined to be n-type and exhibited typical semiconductor-like resistivities. The resistivity of the as-deposited ITO films was dependent on the nitrogen partial pressure established in the plasma, as shown in
where q is the charge of electron, μ is the mobility and Ne is the charge carrier concentration. Generally, increasing the nitrogen partial pressure in the plasma during sputtering resulted in lower resistivity. Increased resistivity of ITO films as a function of oxygen partial pressure is due to the decrease in the oxygen vacancy concentration in the films, via compensation by molecular oxygen. However, when too much nitrogen was incorporated in plasma, indium nitride may have formed. In this case, ITO films will become degenerate when nitrogen partial pressures exceed 2.35×10−a torr (
The ITO thermocouples were tested from room temperature to 1250° C., and a linear relationship between emf and temperature was observed. As shown in
Other transparent conducting oxides include aluminum doped zinc oxide, tin oxide, antimony oxide and antimony tin oxide.
To simulate the real engine operation environment, a oxy-propane open flame burner rig was used to test the performance of ITO ceramic thermal sensor (
Although the present invention has been shown and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.
This application claims priority to U.S. Provisional Application No. 60/561,393 filed on Apr. 12, 2004.
Number | Date | Country | |
---|---|---|---|
60561393 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US05/12004 | Apr 2005 | US |
Child | 11529127 | Sep 2006 | US |