This disclosure generally relates to techniques for reducing drag on fluid flowing over a surface, and deals more particularly with a film composite having drag-reducing riblets, and a method of making the composite.
The use of aerodynamic features on the outer skin and components of aerospace vehicles is known to increase efficiency by reducing drag caused from surface friction. For example, the introduction of riblets into an aircraft's outer skin may reduce drag a modest amount by reducing skin friction exerted by a turbulent boundary layer at the surface of the skin. The riblets tend to inhibit lateral turbulent motions near the bottom of the boundary layer, which primarily comprise the motions associated with the near-wall stream-wise vortices, thereby reducing the overall rate of turbulence in the boundary layer by a modest percentage. These relatively small reductions in drag may improve operating efficiency sufficiently to generate significant savings in fuel cost.
The riblets mentioned above typically comprise a pattern of very small, alternating ridges and grooves aligned longitudinally, approximately in the direction of airflow over aerodynamic surfaces, such as, on an aircraft, such as the leading edges of wings and stabilizers. In the past, riblets have been placed on aerodynamic surfaces by forming V-shaped ridges in a flexible film which is bonded onto aerodynamic surfaces using an adhesive or other means. Such films containing riblets may have disadvantages in some applications including, without limitation, limited durability, limited hardness, stability under ultraviolet radiation, resistance to moisture and/or loss of geometric detail required to provide adequate drag reduction. Finally, existing techniques for manufacturing riblet structures involve the use of monolithic materials or blends of materials which may not be readily tailored to the particular application during fabrication.
Accordingly, there is a need for a method of fabricating riblet structures which may avoid the need for expensive tooling and machining, and which use materials that exhibit improved durability and flexibility in riblet formation while producing riblet features having greater dimensional accuracy.
The disclosed embodiments provide a method of producing a structure having controlled geometric surface features such as riblets that may reduce the drag on the flow of a fluid over a surface, such as an aircraft skin or the hull of a ship. The structure comprises a hybrid organic-inorganic nanocomposite that is fabricated layer by layer to form surface features that are both durable and dimensionally accurate. Layer-by-layer fabrication may be based on sequential adsorption of nanometer-thick monolayers of oppositely charged compounds such as charged nanoparticles to form a multi-layer structure with nanometer-level control over the architecture.
The method may be used to produce a riblet structure that is used as an appliqué over a surface, or to produce a tool that is used to fabricate an appliqué. In other embodiments, the riblet structure may be formed directly on the end-use surface, such as on an aircraft skin. Formation of the riblet structure layer by layer allows differing materials to be used in the various layers, thereby providing processing flexibility and riblet structures that may be tailored for particular applications. In still other embodiments, the skin of an aircraft may be coated with a film formed layer by layer. The surface of the film may be then embossed with an embossing tool, such as a roller with suitable pattern to define the structure. Chemical, thermal or photochemical curing steps may be added after embossing.
According to one embodiment, a method is provided of producing a structure for reducing drag on the flow of fluid over a surface. The method comprises forming riblets on a substrate, including assembling a multi-layer structure on the substrate by sequential adsorption on the substrate in solutions of differing compounds. In one embodiment, the solutions comprise oppositely charged compounds. The method provides a layer-by-layer fabrication of riblets formed by an inorganic filler held in a synthetic polymer binder. In one embodiment, the synthetic polymer includes polyvinyl alcohol and the inorganic filler includes Montmorillonite clay. The resulting composite structure may also exhibit transparency which may allow it to be used as a coating applied over painted aircraft surfaces.
According to another embodiment, a method is provided of forming geometric features on the surface of an aircraft skin. The method comprises forming a multi-layer, thin-film composite layer by layer on a substrate, and attaching the substrate to the skin. The substrate may be attached to the skin either by adhesive bonding or by curing the substrate on the skin.
According to a further embodiment, a method is provided of making a thin-film composite structure for reducing drag on the flow of fluid over a surface. The method comprises providing a substrate, and forming geometric features on the substrate layer by layer, including sequentially assembling layers of a binder and an inorganic filler.
According to still another embodiment, a composite appliqué is adapted to be applied to a surface for reducing drag on a fluid flowing over the surface. The appliqué comprises multiple, alternating layers of a binder and an inorganic compound assembled to form a plurality of generally parallel riblets. The binder may comprise polyvinyl alcohol, and the inorganic compound may be in the form of nanosheets. In one embodiment, the nanosheets may comprise an aluminosilicate. The nanosheets may comprise as much as approximately 90% by weight of the structure.
According to a further embodiment, a composite structure is provided for reducing drag on a fluid flowing over a surface. The composite structure comprises a plurality of nanosheets held in a polymer matrix and arranged to form a plurality of generally parallel riblets.
Referring first to
It should be noted here that while the disclosed embodiments will be described in connection with aerodynamic air flow over the surface of an aircraft, the embodiments may have other applications where it is desirable to reduce drag on a fluid flowing over a surface, For example, the appliqué 20 may be applied to the hull of a ship (not shown) to improve hydrodynamic flow of water over the ship's hull, or to the blades of a propeller (not shown) to increase the efficiency of the propeller.
Attention is now directed to
As best seen in
The substrate 42 has a thickness T (
As will be discussed below in more detail, the disclosed embodiments provide a method for producing micron-scale, multi-layered structures such as the riblet structure 40, using layer-by-layer (LBL) deposition of single layers of nano-sized materials. The disclosed layer-by-layer process may be used to produce an appliqué or to produce tools (not shown) that are employed to form appliqués 20 and other structures using molding or other processes. The disclosed process permits the use of differing materials in the deposited layers 50 which allows a combination of materials to be tailored to better satisfy the requirements of a particular application.
Attention is now directed to
In one practical example, one of the compounds dispersed in the aqueous solution 52 may comprise an inorganic compound such as a particular form of clay commonly known as Montmorillonite (MTM), and the second compound dispersed in the second aqueous solution 56 may comprise a soluble synthetic polymer such as polyvinyl alcohol (PVA). Montmorillonite is a layered aluminum and silicate mineral that occurs in two-dimensional particles called platelets, each having a size of approximately 1.0-1.5 nanometers with aspect ratios of between approximately 500:1 to over 1000:1, resulting in a relatively high surface area per unit volume. The platelets physically occur in nanometer-scale stacks or “deck of cards”. These platelets are also sometimes referred to as nanosheets. Other compounds may be employed in the LBL assembly to form the riblets, including but not limited to SiO2, nanoparticles, graphene sheets, cellulose nanofibers, carbon nanotubes, dispersable aluminosilicates, carbon fibers, metal nano/micro particles, boron nitride nanotubes and others.
The PVA may be uncharged, unlike many other polymeric materials that may be used in LBL. Nevertheless, PVA may produce a stronger composite than would other polymers that undergo electrostatic attraction to the MTM clay nanosheets. The PVA/MTM pairing may exhibit desirable properties, including high efficiency of hydrogen bonding, and efficient load transfer. A substantial part of the efficient load transfer between the polymer and the inorganic building block may be attributed to cyclic cross linking to Al substitution present on the surface of MTM nanosheets and to Al atoms located along the edges of the MTM nanosheets.
Continuing with reference to
The LBL assembly of the clay/polymer nano-composite results in a homogeneous structure formed by the planar orientation of the aluminosilicate nanosheets. The relatively high level of ordering of the nanosheets, combined with dense covalent and hydrogen bonding and stiffening of the polymer chains, may lead to highly effective load transfer between the nanosheets and the polymer binder. The process described above is particularly may be attractive because of the relatively low cost of the raw materials as well as the low cost of capital equipment required to carry out the process.
Attention is now directed to
In one practical example of the embodiments, Montmorillonite clay was dispersed under sonication for a period of 30 minutes in deionized water (18 MOhm) and sediment for 24 hours. The resulting supernatant was decanted and sonicated again for one hour to further reduce agglomeration of the Montmorillonite platelets. The resulting dispersion was nearly transparent and exhibited a state of dispersion required in the LBL method to obtain relatively high mechanical properties. PVA was dissolved in deionized water at 80° C. in the concentration of 0.2-0.5% by weight. The resulting fluid was completely transparent. A substrate was immersed into the solution of PVA for five minutes, then rinsed with water for ten seconds and immersed in the dispersion of clay for five minutes following which it was rinsed with water for ten seconds. Magnetic stirring was applied to the solution during deposition. The time of the deposition cycles may further be reduced with more vigorous agitation of the solution. The preceding sequence constituted one deposition cycle in which a bilayer consisting of a layer of clay and a PVA layer was deposited on the substrate. Following the deposition cycle, the substrate was analyzed and then heated to further improve the mechanical properties to 80° C. The heating cycle may be increased to approximately 120-130° C. in order to further improve mechanical properties of the resulting riblet structure.
It should be noted here that although only two solutions were employed to assemble the thin film layers in examples provided above, more than two solutions may be employed provided that they are chemically compatible with each other. The use of more than two solutions may result in tailoring of the resultant riblet structure 40 so as to exhibit qualities that are desirable in particular applications. Additionally, while in the examples provided above, compounds having opposite charges were dispersed in the two solutions, it may possible to build the riblet structure 40 layer by layer using compounds of non-charged molecules or particles, provided that sequential immersion in the non-charged solutions results in the formation of a gradually growing film.
For example, attention is now drawn to
As previously mentioned, the disclosed method embodiments may be employed to produce a riblet appliqué or, a tool that may be used to reproduce a riblet structure suitable for use as an appliqué, or by direct deposition on the surface of a structure followed by embossing. Referring now to
Embodiments of the disclosure may find use in a variety of potential applications, particularly in the transportation industry, including for example, aerospace, marine and automotive applications. Thus, referring now to
Each of the processes of method 120 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include without limitation any number of aircraft manufacturers and major-system subcontractors; a third party may include without limitation any number of vendors, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.
As shown in
The apparatus and methods embodied herein may be employed during any one or more of the stages of the production and service method 120. For example, components or subassemblies corresponding to production process 128 may be fabricated or manufactured in a manner similar to components or subassemblies produced while the aircraft 122 is in service. Also, one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized during the production stages 128 and 130, for example, by substantially expediting assembly of or reducing the cost of an aircraft 122. Similarly, one or more of apparatus embodiments, method embodiments, or a combination thereof may be utilized while the aircraft 122 is in service, for example and without limitation, to maintenance and service 136.
Although the embodiments of this disclosure have been described with respect to certain exemplary embodiments, it is to be understood that the specific embodiments are for purposes of illustration and not limitation, as other variations will occur to those of skill in the art.
This application is related to co-pending U.S. patent application Ser. No. 11/954,330 filed Dec. 12, 2007, which is incorporated by reference herein in its entirety.