The present disclosure relates to magnetic recording heads and methods of making the same. More particularly, the present disclosure relates to thin film planar arbitrary gap pattern magnetic recording heads and methods of making the same.
Prior art magnetic heads are disclosed in U.S. Pat. No. 6,947,256 (“'256 Patent”), titled “Embedded Wire Planar Write Head System and Method,” issued to Biskeborn, Doscher, and Eaton, U.S. Pat. No. 7,322,096 (“'096 Patent”), which is a divisional of the '256 Patent, also titled “Embedded Wire Planar Write Head System and Method,” and issued to Biskeborn, Doscher, and Eaton, and U.S. Pat. No. 7,119,976 (“'976 Patent”), titled “Planar Servo Format Verifier Head,” issued to Biskeborn, Kirschenbaum, and Taylor. A characteristic of these prior art heads is beginning fabrication of the head with a trenched substrate, the trench being made into a nonmagnetic substrate, and the fabrication of the head proceeding thereupon with thin film processing. The trenched substrate is subsequently filled in so that the final plane of the recording head is substantially close to the plane of the originating substrate with the trench being filled in with much of the head structure.
In
In
The '096 Patent further discloses and teaches the same subject matter as the above described planar head built from a trenched substrate. The '976 Patent discloses a second trench for accommodation of the lead for a servo read head element and a formatting system for using such a head. This prior art embodiment is illustrated in
The prior art only teaches planar heads built from a trenched substrate. Trenched substrate based heads lead to a natural result of air skiving edged, flat contour sliders that are velocity independent. However, the limited multichannel embodiments of the prior art have fabrication limitations and interconnect issues that are not fully addressed. In the independently written multi-channel embodiments, each channel is a full width trench head that is merely displaced in the down-track direction from one another. As such, seventeen such channels, for example, would require seventeen trenched heads displaced sixteen times in the down-track direction from one another. The resulting head-to-media interface would have an extremely wide media scrub zone that would mitigate the elegance of the air skiving single trench head.
Thus, there exists a need in the art for an easily manufactured planar magnetic head, particularly for tape servo format writing and verification, and more particularly for multi-channel embodiments with a narrow scrub path single bump interface. There is a need in the art for a method of making a planar magnetic head using a built-up approach on planar substrate, as opposed to deposition and lithography in a trenched substrate, to achieve a true planar head. There is a further need in the art for a method of making a planar magnetic head using thru-hole via technology to connect the leads to a conductive coil layer. There is a further need in the art for an easily manufactured planar magnetic head having independent channels without each gap set having to be displaced or staggered in the down-track direction.
The present disclosure, in one embodiment, relates to a magnetic head for magnetic tape. The magnetic head may include a substrate having a substantially continuous surface generally parallel with a tape bearing surface of the magnetic head. A first magnetic layer may be deposited on the substantially continuous surface of the substrate. An electrically conductive coil layer is deposited on the first magnetic layer. A second magnetic layer may be deposited on the electrically conductive coil layer. The second magnetic layer may include one or more magnetic gap patterns. In further embodiments, the first and second magnetic layers may be separated from the electrically conductive coil layer by insulating layers. Additionally, the first and second magnetic layers may be connected through vias in the insulating layers to form a closed magnetic flux path.
The present disclosure, in another embodiment, relates to a method of making a magnetic head. The method may include providing a substrate having a substantially continuous surface generally parallel with a tape bearing surface of the magnetic head, providing a first magnetic layer on the substantially continuous surface of the substrate, providing an electrically conductive coil layer on the first magnetic layer, and providing a second magnetic layer on the electrically conductive coil layer. In other embodiments, a full single turn may be used or multiple turns may be used. The second magnetic layer may include one or more magnetic gap patterns. Electrically conductive vias may be provided that extend through the substrate and contact the conductive coil layer. In other embodiments, the leads may be brought to the edge of the slider body. In further embodiments, a first insulation layer may be provided between the first magnetic layer and the electrically conductive coil layer, and a second insulation layer may be provided between the electrically conductive coil layer and the second magnetic layer. Vias, connecting the first and second magnetic layers, may further be provided in the insulating layers to form a closed magnetic flux path.
The present disclosure, in a further embodiment, relates to magnetic media and/or formatted magnetic tape cartridges, which contain a media format particular to a planar magnetic head in accordance with the present disclosure, and particularly to a planar magnetic head having independent addressable channels. The present disclosure further relates to a method of formatting and or verifying magnetic media and/or magnetic tape cartridges using a write/read magnetic head in accordance with the present disclosure.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter that is regarded as forming the present invention, it is believed that the invention will be better understood from the following description taken in conjunction with the accompanying Figures, in which:
The present disclosure relates to novel and advantageous magnetic recording heads and methods of making the same. Particularly, the present disclosure relates to novel and advantageous planar magnetic heads and methods of making planar magnetic heads using a built-up approach to achieve a true planar head. Furthermore, the present disclosure, in one of its embodiments, relates to a novel and advantageous method of making a planar magnetic head using thru-hole via technology to connect the leads to a conductive coil layer. In one embodiment, a magnetic head may comprise a substrate having conductive thru-hole vias extending through the substrate, a first magnetic layer deposited and patterned on the substrate, a first insulation layer deposited and patterned on the first magnetic layer, a conductive coil layer deposited and patterned on the first insulation layer, a second insulation layer deposited and patterned on the conductive coil layer, vias patterned or etched into the insulation layers extending to the first magnetic layer, a second magnetic layer deposited in the vias, and a third magnetic layer deposited and patterned on the second insulation layer and second magnetic layer. The third magnetic layer may be connected to the first magnetic layer through the second magnetic layer deposited in the vias of the insulation layers.
In regards to descriptions of magnetic and nonmagnetic materials, terms such as “nonmagnetic materials” and “magnetically impermeable materials” are meant to mean materials with a substantially or very low magnetic permeability approaching that of free space, which is of unit permeability. As magnetic fields permeate free space and all materials with the exception of superconductors and perfect diamagnetic materials, the practical concept of using high permeability or magnetically soft materials for the active recording head elements is juxtaposed to the use of nonmagnetic or magnetically impermeable materials for other parts of the device and the meaning should be made clear from the discussion and context provided herein.
In the figures that follow, some may be considered wafer level illustrations and other may be considered row bar or device level illustrations. In regards to the process illustrations which are predominately wafer level illustrations, the figures may also reveal the row bar level or device level sections and borders, so as to provide clarity.
In another embodiment, as illustrated in
An embodiment of this head placed into an external slider body 50 is illustrated in
In step 605, and as illustrated in
Various techniques of connecting through the substrate may be considered fully within the scope of the disclosure. In regards to using KOH as a selective etch, if SiN is used as the first insulating layer of the planar device formation, this may also be used as an etch stop for KOH wet etching. In the latter embodiment, it is envisioned that the KOH thru-hole via etch could be used in a back-end process step.
In another embodiment, an insulating material may be used as the substrate. One such choice would be sapphire or other insulating technical ceramic, such as but not limited to zirconium oxide, alumina, calcium titanate, barium titanate, etc., each of which is commercially available in bulk or wafer form.
In yet another embodiment, the vias can be machined with high speed drilling techniques. This is a serial process and can be more expensive. However, with a non-conductive substrate, the subsequent oxidizing or insulating step is not required, mitigating the machining expense of a technical ceramic insulating substrate. Also, such materials are far harder than silicon and hence are mechanically more stable as a head slider body. Thus, a substrate, such as single crystal alumina, is entirely within the spirit and scope of the present disclosure and may offer many mechanical and electrical advantages.
As further shown in detail in
In step 610, and as illustrated in
In step 620, and as illustrated in
In step 630, and as illustrated in
In alternative embodiments, the coil layer may be made into two layers with one layer going beneath the first magnetic layer 92 and then coming back on top of the first magnetic layer 92 to form a complete single-turn head. In such an embodiment, the thru-hole vias 82 may be prepared generally adjacent to each other. The resulting leads 86 would likewise be adjacent to one another. Such an alternative embodiment will allow for one layer below and one layer above the bottom magnetic yoke 92. Prior to depositing a first magnetic layer 92, a first conductor layer may be deposited and patterned or etched on the substrate 72. An insulator may then be deposited and etched over the first conductor layer. The head may then be planarized, and vias will be opened such that the second coil layer will connect with the bottom coil layer thru one via and then to the other lead end thru another via. Whether a single coil layer is used, or whether a full single-turn style coil, e.g., under and over the bottom magnetic yoke, is used will depend on the efficiency of the head and the write driver used. In the latter construction, the natural extension to a multi-turn helical coil is evident and would be particularly advantageous for an inductive read verify head or data head, each of which are within the spirit and scope of the present disclosure. Multi-turn helical coils can be done with no more layer processing than the full single-turn system described and would be particularly advantageous in a servo pattern verify inductive read head design.
In step 640, and as illustrated in
In step 650, and as illustrated in
In step 660, and as illustrated in
In step 670, and as illustrated in
As illustrated in
As illustrated in
In other embodiments, vias 132 and the second magnetic layer 142 may not be used. In such embodiments, there may not be a magnetic connection between the first magnetic layer 92, or bottom magnetic yoke, and the third, or upper, magnetic layer 152. This may result in a less efficient head, but a cheaper and easier to build head.
In both cross-sectional illustrations of
In some embodiments, the magnetic head 40 may have a generally flat contour or surface or a non-flat contour or surface. Furthermore, the magnetic head 40 may include negative pressure features, such as but not limited to, skiving edges or air bleed slots. The magnetic head 40 may also include embedded tape edge guides, such as the guides disclosed in U.S. Prov. Appl. No. 61/022,872, filed Jan. 23, 2008, titled “Apparatus and Methods for Recording Heads with Embedded Tape Guides, Systems for Such Recording Heads, and Magnetic Media Made by Such Recording Heads,” which is hereby incorporated by reference herein in its entirety.
In further embodiments, the underside of the substrate 72 may be “bumped” with conductors that connect the magnetic head 40 through its underside, for example, to a physical electrical connector to a write driver or read back amplifier. For example, in one embodiment, a masking layer or photoresist layer may be deposited and patterned or etched on the underside of the substrate 72. The masking layer may be patterned such that the electrically conductive leads 86 are at least partially exposed on the underside of the substrate 72. An electrically conductive material, such as but not limited to indium, gold, gold-tin eutectic, etc., may be deposited or bumped onto the exposed electrically conductive leads 86, thereby creating conductive bumps or posts on the underside of the substrate 72, such that the head element may be bonded to a lead element. Similar bumping may be done on the edge connector embodiment shown, for example, in
The various embodiments of heads of the present disclosure and methods of making the same may be used to form a head having a two-dimensional array of channels or magnetic heads 190, 192, such as those illustrated in
In one embodiment, a head in accordance with the various embodiments of the present disclosure can be used for recording magnetic transitions on magnetic media, for example, by supplying a current through the coil conductor layer to create a magnetic field in the magnetic layers. For example, a head in accordance with the various embodiments of the present disclosure can be used to format or verify magnetic media, e.g., write/read servo tracks to/from the magnetic media. In other embodiments, as stated above, a head in accordance with the various embodiments of the present disclosure can be used to read/write data tracks. Additionally, as stated above, each of the channels of a head in accordance with the various embodiments of the present disclosure can be driven simultaneously or independently. Independently driven channels provide additional advantages to a head in accordance with the various embodiments of the present disclosure, some of which are described below, and others of which will be recognized by those skilled in the art. Other embodiments of heads may include compound systems of such heads, for example, with some heads being used as servo verify heads and some heads being uses as pre-erase heads. Further discussion on such compound heads may be found in U.S. Pat. No. 7,283,317, issued Oct. 16, 2007, titled “Apparatus and Methods for Pre-Erasing During Manufacture of Magnetic Tape,” which is hereby incorporated by reference herein in its entirety.
In further embodiments, a head in accordance with the various embodiments of the present disclosure allows for complex tape formatting techniques, such as un-staggered servo bands that can linearly encode for the data band that lies in between each pair of servo tracks. In a standard LTO format system, five bands are staggered such that each pair of servo bands has a unique stagger as compared to any other pair of servo bands. This format is illustrated in
As a result of the above factors, in one embodiment of the present disclosure, it may be desirable to make a non-staggered array of head elements for a given head bump line. It may further be desirable, in accordance with one embodiment of the present disclosure, regardless of the servo track or data band encoding scheme, to address the servo head elements or channels independently in order to encode the servo bands and thus, the data band identifications. In the exemplary embodiment of
Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For example, each layer of the magnetic head may be made by one of a variety of different manufacturing processes or techniques, including but not limited to, deposition techniques, wet plating techniques, etching techniques, etc. In some embodiments, planarization may be used after any step, thereby, among other things, eliminating or substantially eliminating height differential in the resulting tape path and allowing for the application of an air skiving flat contour. Other embodiments may include, for example, a complete single coil turn that goes under and above the first magnetic layer, multiple complete coil turns, each having a portion above and below the first magnetic layer (which could make for a particularly efficient inductive read head), and embedding magneto-resistive read elements in each read channel for data read or format verification. As stated previously, the magnetic head of the present disclosure may be a single channel or multichannel magnetic head. Furthermore, two-dimensional arrays of channels or magnetic heads, including compound magnetic heads, including writers and readers and erase heads and including data heads and format head writers and readers are within the scope of the present disclosure.
This application claims benefit of priority to U.S. Ser. No. 61/040,373 filed Mar. 28, 2008, the contents of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2938962 | Konins et al. | May 1960 | A |
3192608 | Rinia et al. | Jul 1965 | A |
3417386 | Schneider | Dec 1968 | A |
3699334 | Cohen et al. | Oct 1972 | A |
3750828 | Constable | Aug 1973 | A |
3853715 | Romankiw | Dec 1974 | A |
4007493 | Behr et al. | Feb 1977 | A |
4088490 | Duke et al. | May 1978 | A |
4268881 | Saito | May 1981 | A |
4298899 | Argumedo et al. | Nov 1981 | A |
4314290 | Ragle | Feb 1982 | A |
4318146 | Ike et al. | Mar 1982 | A |
4408240 | Pastore | Oct 1983 | A |
4457803 | Takigawa | Jul 1984 | A |
4488188 | Hansen et al. | Dec 1984 | A |
4490756 | Dost et al. | Dec 1984 | A |
4535376 | Nomura et al. | Aug 1985 | A |
4539615 | Arai et al. | Sep 1985 | A |
4586094 | Chambors et al. | Apr 1986 | A |
4598327 | Jen et al. | Jul 1986 | A |
4609959 | Rudi | Sep 1986 | A |
4642709 | Vinal | Feb 1987 | A |
4673999 | Suyama et al. | Jun 1987 | A |
4685012 | DeWit et al. | Aug 1987 | A |
4752850 | Yamada et al. | Jun 1988 | A |
4758304 | McNeil et al. | Jul 1988 | A |
4758907 | Okamoto et al. | Jul 1988 | A |
4837924 | Lazzari | Jun 1989 | A |
4897748 | Takahashi et al. | Jan 1990 | A |
4901178 | Kobayashi et al. | Feb 1990 | A |
4906552 | Ngo et al. | Mar 1990 | A |
4914805 | Kawase | Apr 1990 | A |
4927804 | Zieren et al. | May 1990 | A |
4945438 | Matsumoto et al. | Jul 1990 | A |
4971947 | Barnes et al. | Nov 1990 | A |
4992897 | Deroux-Dauphin | Feb 1991 | A |
5016342 | Pisharody et al. | May 1991 | A |
5017326 | Wash et al. | May 1991 | A |
5027244 | Hayakawa | Jun 1991 | A |
5035787 | Parker et al. | Jul 1991 | A |
5055951 | Behr | Oct 1991 | A |
5067230 | Meunier et al. | Nov 1991 | A |
5079663 | Ju et al. | Jan 1992 | A |
5086015 | Itoh et al. | Feb 1992 | A |
5090111 | Lazzari | Feb 1992 | A |
5093980 | Maurice et al. | Mar 1992 | A |
5124869 | Lehureau | Jun 1992 | A |
5126231 | Levy | Jun 1992 | A |
5132861 | Behr et al. | Jul 1992 | A |
5160078 | Spicer | Nov 1992 | A |
5189580 | Pisharody et al. | Feb 1993 | A |
5195006 | Morikawa | Mar 1993 | A |
5196969 | Iwamatsu et al. | Mar 1993 | A |
5211734 | Yagami et al. | May 1993 | A |
5224260 | Fedeli et al. | Jul 1993 | A |
5241442 | Akashi | Aug 1993 | A |
5262908 | Iwamatsu et al. | Nov 1993 | A |
5280402 | Anderson et al. | Jan 1994 | A |
5293281 | Behr et al. | Mar 1994 | A |
5301418 | Dirne et al. | Apr 1994 | A |
5307217 | Saliba | Apr 1994 | A |
5309299 | Crossland et al. | May 1994 | A |
5319502 | Feig | Jun 1994 | A |
5321570 | Behr et al. | Jun 1994 | A |
5371638 | Saliba | Dec 1994 | A |
5379170 | Schwarz | Jan 1995 | A |
5394285 | Dee et al. | Feb 1995 | A |
5398145 | Jeffers et al. | Mar 1995 | A |
5402295 | Suzuki et al. | Mar 1995 | A |
5405734 | Aita | Apr 1995 | A |
5423116 | Sundaram | Jun 1995 | A |
5432652 | Comeaux et al. | Jul 1995 | A |
5434732 | Schwarz et al. | Jul 1995 | A |
5447598 | Mihara et al. | Sep 1995 | A |
5450257 | Tran et al. | Sep 1995 | A |
5452152 | Rudi | Sep 1995 | A |
5452165 | Chen et al. | Sep 1995 | A |
5452166 | Aylwin et al. | Sep 1995 | A |
5488525 | Adams et al. | Jan 1996 | A |
5504339 | Masuda | Apr 1996 | A |
5506737 | Lin et al. | Apr 1996 | A |
5523185 | Goto | Jun 1996 | A |
5523904 | Saliba | Jun 1996 | A |
5552944 | Clemow | Sep 1996 | A |
5567333 | Hira et al. | Oct 1996 | A |
5572392 | Aboaf et al. | Nov 1996 | A |
5587307 | Alborn, Jr. et al. | Dec 1996 | A |
5593065 | Harrold | Jan 1997 | A |
5602703 | Moore et al. | Feb 1997 | A |
5606478 | Chen et al. | Feb 1997 | A |
5616921 | Talbot et al. | Apr 1997 | A |
5621188 | Lee et al. | Apr 1997 | A |
5629813 | Baca et al. | May 1997 | A |
5639509 | Schemmel | Jun 1997 | A |
5652015 | Aboaf et al. | Jul 1997 | A |
5655286 | Jones, Jr. | Aug 1997 | A |
5665251 | Robertson et al. | Sep 1997 | A |
5666249 | Ohmori et al. | Sep 1997 | A |
5675461 | Aylwin et al. | Oct 1997 | A |
5677011 | Hatakeyama et al. | Oct 1997 | A |
5680278 | Sawtelle, Jr. | Oct 1997 | A |
5689384 | Albrecht et al. | Nov 1997 | A |
5710673 | Varian | Jan 1998 | A |
5715597 | Aylwin et al. | Feb 1998 | A |
5719730 | Chang et al. | Feb 1998 | A |
5723234 | Yokoyama et al. | Mar 1998 | A |
5726841 | Tong et al. | Mar 1998 | A |
5737826 | Slade et al. | Apr 1998 | A |
5742452 | Simmons et al. | Apr 1998 | A |
5751526 | Schemmel | May 1998 | A |
5752309 | Partee et al. | May 1998 | A |
5757575 | Hallamasek et al. | May 1998 | A |
5768070 | Krounbi et al. | Jun 1998 | A |
5771142 | Maurice et al. | Jun 1998 | A |
5793577 | Katz et al. | Aug 1998 | A |
5822159 | Fukuyama et al. | Oct 1998 | A |
5831792 | Ananth | Nov 1998 | A |
5863450 | Dutertre et al. | Jan 1999 | A |
5867339 | Panish et al. | Feb 1999 | A |
5890278 | Van Kesteren | Apr 1999 | A |
5909346 | Malhotra et al. | Jun 1999 | A |
5920447 | Sakata et al. | Jul 1999 | A |
5923272 | Albrecht et al. | Jul 1999 | A |
5930065 | Albrecht et al. | Jul 1999 | A |
5940238 | Nayak et al. | Aug 1999 | A |
5966264 | Belser et al. | Oct 1999 | A |
5966632 | Chen et al. | Oct 1999 | A |
5973874 | Panish et al. | Oct 1999 | A |
5982711 | Knowles et al. | Nov 1999 | A |
5995315 | Fasen | Nov 1999 | A |
6005737 | Connolly et al. | Dec 1999 | A |
6018444 | Beck et al. | Jan 2000 | A |
6021013 | Albrecht et al. | Feb 2000 | A |
6025970 | Cheung | Feb 2000 | A |
6031673 | Fasen et al. | Feb 2000 | A |
6034835 | Serrano | Mar 2000 | A |
6075678 | Saliba | Jun 2000 | A |
6081401 | Varian | Jun 2000 | A |
6088184 | Hu | Jul 2000 | A |
6090507 | Grenon et al. | Jul 2000 | A |
6111719 | Fasen | Aug 2000 | A |
6118630 | Argumedo | Sep 2000 | A |
6130804 | Panish et al. | Oct 2000 | A |
6141174 | Judge et al. | Oct 2000 | A |
6156487 | Jennison et al. | Dec 2000 | A |
6163421 | Shinpuku et al. | Dec 2000 | A |
6163436 | Sasaki et al. | Dec 2000 | A |
6165649 | Grenon et al. | Dec 2000 | A |
6169640 | Fasen | Jan 2001 | B1 |
6190836 | Grenon et al. | Feb 2001 | B1 |
6222698 | Barndt et al. | Apr 2001 | B1 |
6229669 | Beck et al. | May 2001 | B1 |
6236525 | Cates et al. | May 2001 | B1 |
6236538 | Yamada et al. | May 2001 | B1 |
6269533 | Dugas | Aug 2001 | B2 |
6275350 | Barndt | Aug 2001 | B1 |
6282051 | Albrecht et al. | Aug 2001 | B1 |
6307718 | Kasetty | Oct 2001 | B1 |
6320719 | Albrecht et al. | Nov 2001 | B1 |
6433949 | Murphy et al. | Aug 2002 | B1 |
6445550 | Ishi | Sep 2002 | B1 |
6462904 | Albrecht et al. | Oct 2002 | B1 |
6469867 | Saliba | Oct 2002 | B2 |
6496328 | Dugas | Dec 2002 | B1 |
6542325 | Molstad et al. | Apr 2003 | B1 |
6545837 | Tran | Apr 2003 | B1 |
6574066 | Stubbs et al. | Jun 2003 | B1 |
6590729 | Akagi et al. | Jul 2003 | B1 |
6622490 | Ingistov | Sep 2003 | B2 |
6635404 | Choi et al. | Oct 2003 | B1 |
6650496 | Nozieres et al. | Nov 2003 | B2 |
6700729 | Beck et al. | Mar 2004 | B1 |
6712985 | Biskeborn | Mar 2004 | B2 |
6721126 | Bui et al. | Apr 2004 | B1 |
6744594 | Denison et al. | Jun 2004 | B2 |
6754026 | Koski | Jun 2004 | B1 |
6778359 | Iwama | Aug 2004 | B1 |
6781778 | Molstad et al. | Aug 2004 | B1 |
6795246 | Yano et al. | Sep 2004 | B2 |
6798608 | Chliwnyj et al. | Sep 2004 | B2 |
6801383 | Zweighaft et al. | Oct 2004 | B2 |
6801391 | Sugawara et al. | Oct 2004 | B2 |
6831805 | Chliwnyj et al. | Dec 2004 | B2 |
6842305 | Molstad et al. | Jan 2005 | B2 |
6865050 | Nakao et al. | Mar 2005 | B2 |
6873487 | Molstad | Mar 2005 | B2 |
6879457 | Eaton et al. | Apr 2005 | B2 |
6894869 | Dugas | May 2005 | B2 |
6943987 | Raymond et al. | Sep 2005 | B1 |
6947247 | Schwarz et al. | Sep 2005 | B2 |
6947256 | Biskeborn et al. | Sep 2005 | B2 |
6950277 | Nguy et al. | Sep 2005 | B1 |
6963467 | Bui et al. | Nov 2005 | B2 |
6970312 | Yip et al. | Nov 2005 | B2 |
6987648 | Dugas | Jan 2006 | B2 |
6989950 | Ohtsu | Jan 2006 | B2 |
6989960 | Dugas | Jan 2006 | B2 |
7009810 | Dugas | Mar 2006 | B2 |
7072133 | Yip et al. | Jul 2006 | B1 |
7106544 | Dugas et al. | Sep 2006 | B2 |
7119976 | Biskeborn et al. | Oct 2006 | B2 |
7130140 | Boyer | Oct 2006 | B1 |
7130152 | Raymond et al. | Oct 2006 | B1 |
7142388 | Tateishi et al. | Nov 2006 | B2 |
7170702 | Ohtsu | Jan 2007 | B2 |
7190551 | Suda | Mar 2007 | B2 |
7196870 | Dugas | Mar 2007 | B2 |
7206170 | Yip | Apr 2007 | B2 |
7218476 | Dugas | May 2007 | B2 |
7224544 | Takano et al. | May 2007 | B2 |
7283317 | Dugas et al. | Oct 2007 | B2 |
7301716 | Dugas et al. | Nov 2007 | B2 |
7322096 | Biskeborn et al. | Jan 2008 | B2 |
7426093 | Dugas | Sep 2008 | B2 |
7450341 | Dugas et al. | Nov 2008 | B2 |
7511908 | Winarski | Mar 2009 | B2 |
7515374 | Nakao | Apr 2009 | B2 |
7525761 | Dugas | Apr 2009 | B2 |
7639448 | Haustein | Dec 2009 | B2 |
7679858 | Winarski et al. | Mar 2010 | B2 |
7710675 | Dugas et al. | May 2010 | B2 |
7773340 | Dugas | Aug 2010 | B2 |
20010003862 | Dugas | Jun 2001 | A1 |
20010045005 | Dugas | Nov 2001 | A1 |
20020034042 | Hungerford et al. | Mar 2002 | A1 |
20020058204 | Khojasteh et al. | May 2002 | A1 |
20020061465 | Hasegawa et al. | May 2002 | A1 |
20020125289 | Huetter | Sep 2002 | A1 |
20020171974 | Dugas | Nov 2002 | A1 |
20020177066 | Song et al. | Nov 2002 | A1 |
20030011922 | Nozieres et al. | Jan 2003 | A1 |
20030016446 | Yano | Jan 2003 | A1 |
20030039063 | Dugas | Feb 2003 | A1 |
20030048563 | Magnusson | Mar 2003 | A1 |
20030093894 | Dugas | May 2003 | A1 |
20030099057 | Molstad | May 2003 | A1 |
20030099059 | Nakao | May 2003 | A1 |
20030137768 | Chliwnyj et al. | Jul 2003 | A1 |
20030151844 | Eaton et al. | Aug 2003 | A1 |
20040001275 | Chliwnyj et al. | Jan 2004 | A1 |
20040109261 | Dugas | Jun 2004 | A1 |
20040145827 | Biskeborn et al. | Jul 2004 | A1 |
20040174628 | Schwarz et al. | Sep 2004 | A1 |
20050007323 | Appelbaum et al. | Jan 2005 | A1 |
20050052779 | Nakao et al. | Mar 2005 | A1 |
20050052783 | Suda | Mar 2005 | A1 |
20050099713 | Molstad et al. | May 2005 | A1 |
20050099715 | Yip et al. | May 2005 | A1 |
20050152066 | Yip | Jul 2005 | A1 |
20050168869 | Dugas et al. | Aug 2005 | A1 |
20050180040 | Dugas et al. | Aug 2005 | A1 |
20050219734 | Rothermel et al. | Oct 2005 | A1 |
20050235483 | Biskeborn et al. | Oct 2005 | A1 |
20050254170 | Dugas et al. | Nov 2005 | A1 |
20050259364 | Yip | Nov 2005 | A1 |
20050275968 | Dugas | Dec 2005 | A1 |
20050286160 | Bui et al. | Dec 2005 | A1 |
20060061906 | Dugas | Mar 2006 | A1 |
20060126207 | Johnson et al. | Jun 2006 | A1 |
20080252357 | Biskeborn et al. | Oct 2008 | A1 |
20090097155 | Dugas | Apr 2009 | A1 |
20090262452 | Dugas | Oct 2009 | A1 |
20100002335 | Dugas | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
2912309 | Oct 1979 | DE |
0 407 244 | Jan 1991 | EP |
0 690 442 | Jan 1996 | EP |
0 328 104 | Aug 1998 | EP |
0 913 813 | May 1999 | EP |
53-007219 | Jan 1978 | JP |
58146011 | Aug 1983 | JP |
59-008833 | Jan 1984 | JP |
60-078347 | Apr 1985 | JP |
61-151667 | Jun 1986 | JP |
61-174630 | Aug 1986 | JP |
61-291074 | Dec 1986 | JP |
01-064104 | Mar 1989 | JP |
02-094019 | Apr 1990 | JP |
02-097659 | Apr 1990 | JP |
02-288530 | Oct 1990 | JP |
03-078104 | Apr 1991 | JP |
03-198210 | Aug 1991 | JP |
03-269804 | Dec 1991 | JP |
03-324223 | Dec 1991 | JP |
H04-090110 | Mar 1992 | JP |
04-091317 | Apr 1992 | JP |
4103009 | Apr 1992 | JP |
06-035569 | Mar 1994 | JP |
06-089412 | Mar 1994 | JP |
07-187016 | Jul 1994 | JP |
06-243429 | Sep 1994 | JP |
06-242827 | Oct 1994 | JP |
06-301926 | Oct 1994 | JP |
06-333210 | Dec 1994 | JP |
09-138912 | May 1997 | JP |
09-219006 | Aug 1997 | JP |
09-219010 | Aug 1997 | JP |
10-011714 | Jan 1998 | JP |
10-198918 | Jul 1998 | JP |
H10-269526 | Oct 1998 | JP |
11-039623 | Feb 1999 | JP |
11-045402 | Feb 1999 | JP |
11-242803 | Sep 1999 | JP |
10-334435 | Dec 1999 | JP |
11-353609 | Dec 1999 | JP |
2002-308945 | Oct 2002 | JP |
A-2003-168203 | Jun 2003 | JP |
2005-063623 | Mar 2005 | JP |
WO 9705603 | Feb 1997 | WO |
WO 9740493 | Oct 1997 | WO |
WO 9950834 | Oct 1999 | WO |
WO 9967777 | Dec 1999 | WO |
WO 0051109 | Aug 2000 | WO |
WO 0150463 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20100027153 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
61040373 | Mar 2008 | US |