1. Field of the Invention
The present invention generally relates to a semiconductor device and a method of forming the same. More particularly, the present invention relates to a thin film transistor and a method of forming the same.
2. Description of Related Art
A thin film transistor (TFT) typically includes a gate, a gate insulating layer, a channel layer, a source/drain, and is usually used as a switching device in displays such as liquid crystal displays (LCD). Usually, the TFT is formed by sequentially forming a gate, a gate insulating layer, an α-Si channel layer and a source/drain on a substrate. The gate is constituted of a single metal layer of aluminum (Al), chromium (Cr), tungsten (W), tantalum (Ta) or titanium (Ti), or constituted of multiple metal layers.
However, when a single-layered of the above-mentioned metal is used to form the gate, the surface of the layer is easily eroded and easily reacts with oxygen in the atmosphere to form a metal oxide that cannot be effectively etched in the subsequent etching process. On the other hand, when the gate is constituted of multiple metal layers, such as molybdenum (Mo)/Al/Mo, to prevent oxidation and erosion, the process for forming multiple metal layers is surely more complex because more than one sputtering targets and deposition chambers are required. Moreover, the above problems also occur in the process for forming the source/drain.
Accordingly, the present invention is directed to a thin film transistor having a gate and a source/drain having a lower contact resistance or wire resistance.
The present invention is directed to a method of forming a thin film transistor that uses a material resistant to oxidation and erosion to form a gate and/or a source/drain.
According to an embodiment of the present invention, a thin film transistor is provided. The thin film transistor includes a gate, a gate insulating layer, a semiconductor layer and a source/drain. The gate is disposed over a substrate, wherein the gate comprises at least one layer of aluminum-yttrium alloy nitride. The gate insulating layer is formed over the substrate to cover the gate. The semiconductor layer is disposed over the gate insulating layer above the gate. The source/drain is disposed over the semiconductor layer.
According to an embodiment of the present invention, a thin film transistor is provided. The thin film transistor includes a gate, a gate insulating layer, a semiconductor layer and a source/drain. The gate is disposed over a substrate. The gate insulating layer is formed over the substrate to cover the gate. The semiconductor layer is disposed over the gate insulating layer above the gate. The source/drain is disposed over the semiconductor layer, wherein the source/drain comprises at least one layer of aluminum-yttrium alloy nitride.
According to an embodiment of the present invention, the gate is constituted of an aluminum-yttrium alloy layer and an aluminum-yttrium alloy nitride layer.
According to an embodiment of the present invention, the gate is constituted of a first aluminum-yttrium alloy nitride layer, an aluminum-yttrium alloy layer and a second aluminum-yttrium alloy nitride layer.
According to an embodiment of the present invention, the source/drain is constituted of an aluminum-yttrium alloy layer and an aluminum-yttrium alloy nitride layer.
According to an embodiment of the present invention, the source/drain is constituted of a first aluminum-yttrium alloy nitride layer, an aluminum-yttrium alloy layer and a second aluminum-yttrium alloy nitride layer.
A method of forming a thin film transistor is provided according to an embodiment of the present invention. A gate is formed over a substrate, wherein the gate comprises at least one layer of aluminum-yttrium alloy nitride. A gate insulating layer is formed over the substrate to cover the gate. A semiconductor layer is formed over the gate insulating layer above the gate. A source/drain is formed over the semiconductor layer.
A method of forming a thin film transistor is provided according to another embodiment of the present invention. A gate is formed over a substrate. A gate insulating layer is formed over the substrate to cover the gate. A semiconductor layer is formed over the gate insulating layer above the gate. A source/drain is formed over the semiconductor layer, wherein the source/drain comprises at least one layer of aluminum-yttrium alloy nitride.
According to an embodiment of the present invention, the gate and/or the source/drain can be formed by the steps of forming an aluminum-yttrium alloy layer over the substrate; performing a nitridation step for the aluminum-yttrium alloy layer to form an aluminum-yttrium alloy nitride layer; and patterning the aluminum-yttrium alloy nitride layer to form the gate and/or the source/drain.
According to an embodiment of the present invention, the gate and/or the source/drain can be formed by the steps of forming a first aluminum-yttrium alloy layer over the substrate; forming a second aluminum-yttrium alloy layer over the first aluminum-yttrium alloy layer; performing a nitridation step for the second aluminum-yttrium alloy layer to form an aluminum-yttrium alloy nitride layer on the first aluminum-yttrium alloy layer; and patterning the aluminum-yttrium alloy nitride layer and the first aluminum-yttrium alloy layer to form the gate and/or the source/drain.
According to an embodiment of the present invention, the gate and/or the source/drain can be formed by the steps of forming a first aluminum-yttrium alloy layer over the substrate; performing a first nitridation step for the first aluminum-yttrium alloy layer to form a first aluminum-yttrium alloy nitride layer; forming a second aluminum-yttrium alloy layer over the first aluminum-yttrium alloy nitride layer; forming a third aluminum-yttrium alloy layer over the second aluminum-yttrium alloy layer; and performing a second nitridation step for the third aluminum-yttrium alloy layer to form a second aluminum-yttrium alloy nitride layer on the second aluminum-yttrium alloy layer; and patterning the second aluminum-yttrium alloy nitride layer, the second aluminum-yttrium alloy layer and the first aluminum-yttrium alloy nitride layer to form the gate and/or the source/drain.
The electrodes (gate and or source/drain) of the thin film transistor comprise at least one layer of aluminum-yttrium alloy nitride layer which is more stable than metal alloy used in the prior art because a nitride protective thin film is formed on the surface of the aluminum-yttrium alloy so that the electrodes are more resistant to oxidation and erosion.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
In particular, the gate 102 comprises at least one layer of aluminum-yttrium (Al—Y) alloy nitride according to an embodiment of the present invention. In other words, the gate 102 may be a single-layer of aluminum-yttrium alloy nitride or a multiple layer comprising at least one aluminum-yttrium alloy nitride layer. If the gate 102 is a single layer, the gate 102 is composed of an aluminum-yttrium alloy nitride layer. In the case, the method of forming the single-layered gate 102 is as following steps. First, an aluminum-yttrium alloy layer is formed over the substrate 100 in a sputtering process chamber, an evaporation process chamber or other known deposition chamber. A nitridation step is performed for the aluminum-yttrium alloy layer so as to form an aluminum-yttrium alloy nitride layer. The nitridation step can be carried out with flowing nitrogen gas into the above deposition chamber after forming the aluminum-yttrium alloy layer, for example, or flowing nitrogen gas into the above deposition chamber when depositing the aluminum-yttrium alloy layer, for example. Thereafter, the aluminum-yttrium alloy nitride layer is patterned by photolithography process and etching process to form the gate 102.
If the gate 102 is a two-layered structure, the gate 102 is constituted of an aluminum-yttrium alloy layer 102a and an aluminum-yttrium alloy nitride layer 102b (as shown in
When the gate 102 is a three-layered structure, the gate 102 is constituted of a first aluminum-yttrium alloy nitride layer 102c, an aluminum-yttrium alloy layer 102d and a second aluminum-yttrium alloy nitride layer 102e (as shown in
In another embodiment, the source/drain 110 comprises at least one layer of aluminum-yttrium (Al—Y) alloy nitride, as shown in
If the source/drain 110 is a two-layered structure, the source/drain 110 is constituted of an aluminum-yttrium alloy layer 110a and an aluminum-yttrium alloy nitride layer 110b (as shown in
When the source/drain 110 is a three-layered structure, the source/drain 110 is constituted of a first aluminum-yttrium alloy nitride layer 1110c, an aluminum-yttrium alloy layer 1110d and a second aluminum-yttrium alloy nitride layer 110e (as shown in
In another embodiment, both the gate 102 and the source/drain 110 comprise at least one layer of aluminum-yttrium (Al—Y) alloy nitride, respectively. In other words, both the gate 102 and the source/drain 110 can be a single-layer of aluminum-yttrium (Al—Y) alloy nitride or a multiple layer comprising at least one aluminum-yttrium alloy nitride layer, respectively. The multiple layer comprising at least one aluminum-yttrium alloy nitride layer can be a two-layered structure or a three-layered structure, as shown in
It is noted that the aluminum-yttrium alloy nitride layer is more stable than metal alloy used in the prior art because a nitride protective thin film is formed on the surface of the aluminum-yttrium alloy so that the aluminum-yttrium alloy nitride layer is more resistant to oxidation and erosion. In other words, the electrodes of the thin film transistor comprising at least one layer of aluminum-yttrium alloy nitride layer are more resistant to oxidation and erosion. In particular, if a two-layered gate or source/drain is formed, the aluminum-yttrium alloy nitride layer overlies the aluminum-yttrium alloy layer to act as a protective layer. If a three-layered gate or source/drain is formed, the aluminum-yttrium alloy layer is sandwiched between the two aluminum-yttrium alloy nitride layers so as to protect the aluminum-yttrium alloy layer from oxidizing and eroding.
In addition, the deposition process of the aluminum-yttrium alloy layer and the nitridation step can be performed in the same chamber (in-situ). If the two-layered or three-layered structure is formed, these layers can also be formed in the same chamber (in-situ). Therefore, the gate and/or source/drain process of the present invention is not complex and the process throughput can be improved.
It should be noted that if the thin film transistor of the present invention is applied to a switching device of a LCD and if a two-layered or three-layered source/drain is used, the nitride thin film on the surface of the upper aluminum-yttrium alloy nitride layer can also act as an etching stop layer when a contact hole etching process for each pixel structure is performed subsequently.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.