(a) Field of the Invention
The present invention relates to liquid crystal displays (referred to as an LCD hereinafter) and manufacturing methods thereof, and more particularly, to circuits for preventing electrostatic discharge which are provided in the LCD and manufacturing methods thereof.
(b) Description of the Related Art
A liquid crystal display (LCD), which is one type of flat panel display (FPD), includes two substrates having transparent electrodes and a liquid crystal layer interposed between the substrates. In the LCD, light transmittance is controlled by varying the voltages applied to the liquid crystal layer.
On a thin film transistor (TFT) substrate of the LCD, N gate lines and M data lines, which cross each other, define a plurality of pixels In an N.times.M matrix. A pixel electrode is formed in each of the pixels and the pixel electrode is connected to the gate and the data lines through a switching device such as the TFT. The TFT controls display signals transmitted through the data line according to the states of the scanning signals transmitted through the gate line.
The majority of the LCD manufacturing process is performed on a glass substrate. Since the glass substrate is nonconductive, electric charges, which are abruptly generated on the substrate, cannot be dispersed. This may cause the insulating films or TFTs to become damaged by the electrostatic discharge.
In the LCD manufacturing process, since the electrostatic charges, which is generated after the step of assembling the TFT substrate and a color filter substrate is completed, cause high voltages even though the amount of the charges are small, the quality of the substrate decreases. In addition, since the electrostatic charge Is usually generated during the step of cutting the substrate, then flow into an active area having the pixel regions through gate and data pads, the channels of the TFTs near the pads become damaged by the electrostatic discharge with easy.
Lines 50 in the active area 40 illustrate pixels having some defects by damaged TFT portions. If electrostatic charges are generated in the pad area 30 and moves inside the active area 40, the channels of the TFTs, which are located near the pads, become damaged, or the quality of the channels is deteriorated.
The deteriorated TFT is shown in
If the electrostatic charges enter Into the TFT, comprised of the semiconductor film 70, the source and drain electrodes 81 and 82, and the gate electrode 61, sparks occur between the source and the drain electrodes 81 and 82, thereby damaging the semiconductor film 70.
To limit to the LCD by electrostatic discharge, a shorting bar, through which all metal wires are connected, is widely used for dispersing the electrostatic charges. However, in the case where an amount of the electric charges is large, it is not possible to completely prevent damage caused by the electrostatic discharge. Moreover, after the shorting bar is removed, it is not possible to prevent the electrostatic charges from entering into the substrate.
In manufacturing the LCD panel having the above structure, polarizers are attached after performing a visual display test by applying test signals to the shorting bar. Next, the main substrate is cut into individual LCD substrates, a liquid crystal material is injected between the substrates, and the injection holes are sealed. The shorting bar is removed in the step of cutting the substrate. In another visual display test, different test signals are applied to adjacent data lines by using probes directly contacted to each of the pads, then driving circuits are attached to the LCD panel.
As mentioned above, since the shorting bar is removed in the same step of cutting the substrate, it is difficult to protect the substrate against the electrostatic charges after the step of removing the shorting bar. Moreover, since the polarizers are attached after the simple test. In which only one signal is applied to every wire, by using the shorting bar, there is a high possibility that the polarizers are attached even on the damaged LCD panel. If the damaged panel is detected in the post-test, the panel, along with the expensive polarizers, has to be discarded, thereby increasing overall manufacturing costs of the LCD.
It is an object of the present invention to provide a liquid crystal display having a substrate which is protected against electrostatic charges, regardless of the strength thereof.
It is another object of the present invention to provide a liquid crystal display which prevents electrostatic charges from entering into the substrate after a shorting bar is removed, thereby minimizing pixel defects.
It is yet another object of the present invention to provide a manufacturing method of a liquid crystal display in which an LCD panel is prevented from becoming damaged by an electrostatic discharge, while manufacturing costs of the LCD are reduced.
To achieve the above objects, the present invention provides a liquid crystal display in which a plurality of spark inducing circuits, which extinguish electrostatic charges generated in wires of a TFT substrate, and electrostatic charging circuits, which charge the electrostatic charges and extinguish the same, are formed on a TFT substrate.
The spark inducing circuit includes a plurality of the TFTs, connected in series between two adjacent wires and gate electrodes of which are connected to one another; and two capacitors, one electrode of which is connected to the gate electrode of the TFTs and the other electrode of which is connected to the adjacent wire. Since a plurality of the spark inducing circuits are connected in parallel between the adjacent wires, if electrostatic charges generate in the wires, sparks occur in the TFTs of the spark inducing circuits and high voltage current is induced between the source and the drain electrode of the TFTs. This surge current loses its strength by being changed into joule heat. Therefore, the TFTs in an active area are protected from the electrostatic discharge. It is also possible for the electrostatic charges generated in the wires to be dispersed. The spark inducing circuit is formed such that the TFT connects to the capacitor between each wire and a common electrode in series.
In another aspects, the spark inducing circuit may include a TFT, a gate electrode and a drain electrode of which are respectively connected to the same wire, and a source electrode of which is connected to a dummy line, and a capacitor which is formed between the wire and the drain electrode.
Meanwhile, a circuit for dispersing electrostatic charges, which comprises a resistor and a capacitor connected in series between a data line and a dummy gate line; and another resistor connected between an adjacent data line of the data line and the capacitor, may be used instead of the spark inducing circuit.
The electrostatic charging circuit includes a first electrostatic charging circuit, which is formed outside a sealing material by which a TFT substrate and a corresponding substrate are assembled to each other, and a second electrostatic charging circuit, which is formed Inside a sealing material. The first electrostatic charging circuit has two capacitors which connect to each other between two adjacent wires in series. A plurality of the first electrostatic charging circuits may be connected to the adjacent wires in parallel. The second electrostatic charging circuit, for preventing electrostatic charges from entering inside the active area, includes capacitors which are formed between each wire and a common electrode. The capacitor includes an additional corresponding electrode connected to the common electrode and the wires. The corresponding electrode which corresponds to the gate line of the wires is made of a metal used for forming the data line, and the corresponding electrode which corresponds to the data line of wires is made of a metal used for forming the gate line. The first and the second electrostatic charging circuits charge and remove the electrostatic charges generating in the wires.
To protect the TFT substrate from electrostatic charges, a shorting bar, which links all the wires formed on the TFT substrate, is formed inside a cutting line of the substrate Since the shorting bar remains on the substrate even after the TFT substrate is divided into a plurality LCD panels, it is still possible for the TFT substrate to be protected by the shorting bar.
To protect the LCD from electrostatic charges occurring in the manufacturing process, a electrostatic discharge protection circuit, a TFT and wires are formed in a substrate, a shorting bar is formed inside the cutting line of the substrate, and the substrate is cut to be divided into several TFT substrates. Next, individual LCD panels are formed and the shorting bar is removed by edge-grinding. After visual display tests are performed by applying test signals to each of the wires, polarizers are attached on the LCD panel on which no defect is detected. Driving circuits are then connected to the LCD panels.
In the manufacturing method of the LCD, it is possible to protect the LCD panel against electrostatic charges generated during the manufacturing process since the step of cutting the substrate, of injecting liquid crystals and of sealing an injection hole are performed while the shorting bar remains on the LCD panel. Moreover, it is possible to reduce manufacturing costs since polarizers are attached on only the good LCD panels.
In another embodiment of the present invention, dummy lines are formed outside a visual active area which is defined by a plurality of pixels, the pixels being formed by a plurality of dummy pixels by the intersections of gate and data lines and the dummy lines. A dummy TFT connecting the dummy line is formed in each dummy pixel.
In the above, the ratio of the width to the length of the dummy TFT channel is larger than the ratio of the width to the length of the TFT channel, which is formed in the active area, or one or more dummy TFTs are formed in the dummy pixel. Accordingly, electrostatic charges are dispersed through the dummy TFT when the same is generated.
A dummy pixel electrode, which is connected to the TFT, is formed in the dummy pixel, and a black matrix which covers the dummy pixel is formed on one of two substrates.
Generally, since electrostatic charges, which generate at the beginning or end of each step, passes through the dummy gate and data lines which define the dummy pixels surrounding the active area, deterioration caused by electrostatic charges occur in the dummy TFT first. Therefore, the TFTs, which are formed inside the active area and connected to the gate and the data line, are protected against electrostatic charges. Here, damage to the dummy pixels does not affect the quality of the LCD.
The shape of the dummy TFT may be changed to effectively induce electrostatic charges It is preferable that the ratio of the width to the area of the dummy TFT channel is bigger than the ratio of the width to the area of the TFT. A plurality of dummy TFTs may be formed in the dummy pixel.
Meanwhile, a electrostatic charge dispersing pattern, consisting of two electrodes and a semiconductor pattern, is formed outside an active area to discharge electrostatic charges through the channel of the semiconductor pattern. To effectively discharge electrostatic charges, the ends of the electrodes may be pointedly formed and it preferable to form a capacitor in the end of the semiconductor pattern. A plurality of the discharging patterns may be connected to a wire, or two wires, in parallel.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout. It will be understood that when an element such as a layer, region or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present.
Referring first to
Shorting bars 102 and 202, which respectively link all the gate lines 100 and all the data lines 200 at ends thereof, are formed near edges of the substrate 10. The shorting bars 102 and 202 are interconnected such that the gate and the data lines 100 and 200 are electrically connected. As a result, if electrostatic charges are generated in the gate and data pads 101 and 201, the electrostatic charges are dispersed through the shorting bars 102 and 202.
In the case that the electrostatic charges have a high electric charge value, the electrostatic charges may nevertheless enter into the active area, even with the shorting bars 102 and 202 being provided as described above. In addition, if electrostatic charges are generated after the shorting bars 102 and 202 are removed along a cutting line 11, the electrostatic charges easily enter the active area. To effectively disperse the electrostatic charges, electrostatic charge dispersing circuits, which are connected to a guard ring or a dummy line 110 surrounding the active area, are provided at an area A of the substrate 10, i.e., at the area between the pads either 101 or 201 and the active area.
In a meanwhile, the shorting bars 102 and 202 may be located inside a cutting line 11 of the substrate, differently as illustrated in
Now, the electrostatic discharge protection diode circuits 120 are described with reference to
A gate electrode and a drain electrode of a TFT Q1 are connected to the dummy line 110, and a source electrode is connected to the wire 100. There is provided another TFT Q2 having a gate electrode and a drain electrode connected to the wire 100, and a source electrode connected to the dummy line 110. Since the gate and the drain electrodes of the TFTs Q1 and Q2 are connected to each other, the TFTs Q1 and Q2 serves as diodes. As a result, tire TFTs Q1 and Q2 are interconnected in a back-to-back mode between the dummy line 110 and the wire 100.
The TFTs Q1 and Q2 generally includes an amorphous silicon having high resistance, while the wire 100 is made of a material having low resistance such as a metal. Therefore, the amount of electrostatic charges which enter the dummy line 110 may be smaller than the amount of electrostatic charges which enter the wire 100. As a result, it is difficult to completely protect the LCD substrate against electrostatic charges having a large electric charge value using only the circuit shown in
The spark inducing circuit and the electrostatic charging circuit may help the electrostatic discharge protection.
As previously mentioned in
However, since the spark inducing circuits 130 and the electrostatic charging circuits 140 and 150 are located outside the area enclosed by the seal area 90, circuit defects such as erosion by air or damage by external shocks may occur.
As shown in
A various types of the spark inducing circuits 130 according to the preferred embodiments are shown in
The operation of the first spark inducing circuit ST1 will be described hereinafter. If electrostatic charges generated from the pads 101 enter into the first spark inducing circuit ST1, sparks occur in the TFTs of the first spark inducing circuit ST1 to extinguish the electrostatic charges. As a result, the TFTs in the active area are protected from the electrostatic charges. In the case that electrostatic charges are generated in the wires 100, since they are charged in the capacitors C1 and C2 to turn on the TFTs, the electrostatic charges are dispersed through the wires 100.
In the first spark inducing circuit ST1, if more than two TFTs are connected between the wires 100 in series, the increase of the current between the wires 100 can be effectively reduced.
In this embodiment, the common electrode is used as a storage electrode, but an additional electrode may be used as the storage electrode.
As the same as in the second spark inducing circuit, the common electrode is used as a storage electrode, but an additional electrode may be used as the storage electrode.
The first to the third spark inducing circuits ST1, ST2 and ST3 may be located inside the area enclosed by the seal area 90.
As shown in the drawing, a dummy wire or a guard ring including a dummy gate line 111 and a dummy data line connected to the dummy gate line 111 is provided, and a TFT 08 is formed on the dummy gate line 111. A gate, a source and a drain electrodes of the TFT Q8 are connected to the dummy gate line 111, a data line 200, and an electrode of a capacitor C5 which has another electrode connected to the dummy gate line 111.
In the fourth spark inducing circuit ST4, if electrostatic charges are transmitted to the dummy gate line 111, the capacitor C5 is charged to turn on the TFT Q8, and the electrostatic charges generated from the dummy gate line 111 and from the dummy data line 112, are dispersed to the data line 200 and the dummy wires. In the case that the charge value of the electrostatic charges is large, the TFT Q8 is broken down by sparks occurring in the same, thereby extinguishing the electrostatic charges.
In the first to fourth spark inducing circuits ST1, ST2, ST3 and ST4, the energy due to the electrostatic charges is changed to joule energy by burning the TFTs such that the electrostatic charges do not affect the circuits in the active area.
The fourth spark inducing circuit ST4 of
As shown in
In detail, a plurality of dummy gate lines 111 are formed on a substrate 10 in a horizontal direction, a gate insulating film 3 is formed thereon, and semiconductor patterns 700 are formed on the gate insulating film 3 opposite the dummy gate line 111. A dummy data line 112 and a plurality of data lines 200 are formed on the gate insulating film 3 in a vertical direction and the data lines 200 overlap one edges of the semiconductor patterns 700. A plurality of metal patterns 103, overlapping the opposite edges of the semiconductor patterns 700 are formed on the gate insulating film 3, and ohmic contact layers 710 for improving electric contact characteristics are formed between the semiconductor patterns 700 and the data lines 200 and the metal patterns 103. An interlayer insulating film 4 covers the dummy data line 112, the data lines 200 and the semiconductor patterns 700. Contact holes CH1 and CH3 are pierced in the interlayer insulating film 4, and contact holes CH2 in the gate insulating film 3 and the interlayer insulating film 4 expose the dummy gate line 111. Transparent conductive patterns 6 are formed on the interlayer insulating film 4 and connected to the metal pattern 103 through the contact hole CH3, and transparent contact patterns 5 on the interlayer insulating film 4 are connected to the dummy data line 112 and the respective dummy gate lines 111 through the contact holes CH1 and CH2.
In this embodiment, it is desirable that the distance between the dummy gate lines 111 is smaller than the distance between the gate lines inside the active area to reduce the area occupied by the dummy wires.
In the above spark inducing circuit having the TFT and the capacitor structures, when electrostatic charges enter the circuit through the data line 200 or the dummy data line 112, the electrostatic charges charge between the capacitor transparent conductive pattern 700 and the dummy gate line 111, and disappears. The electrostatic charges generating from the dummy data line 200 may be changed into joule heat energy by burning the TFT, and may disappear.
To prevent electrostatic charges from entering an active area, it is preferable to form dummy pixels having a structure similar with the pixels in the active area.
As shown in the drawings, a gate line or a dummy gate line 100 is formed on the first substrate 10 in a horizontal direction. The portion of the gate line or the dummy gate line 100 functions as a dummy gate electrode. A gate insulating layer film 3 covers the dummy gate line 100, and a dummy amorphous silicon layer 700 is formed on the gate insulating film 3 over the dummy gate electrode. A dummy data line 110 is formed on the gate insulating film 3 in a vertical direction. The dummy gate line 100 and the dummy data line 110 cross each other and define a dummy pixel DP. The dummy pixel may be defined by the crossing of the gate line and the dummy gate line or of the dummy data line and the dummy gate line.
A dummy source electrode 113, which branches from the dummy data line 110, overlaps an edge of a doped amorphous silicon layer 710, and a dummy drain electrode 114 overlaps another edge of the doped amorphous silicon layer 710 at the opposite side of the dummy source electrode 113. A highly doped amorphous silicon layer 710 is formed at the contact surface of the dummy electrodes 113 and 114 and the dummy amorphous silicon layer 710.
A width of the dummy source and drain electrodes 113 and 114 is equal to the width of the channel formed in the dummy amorphous silicon 700, and a distance DL between the dummy source electrode 113 and the dummy drain electrode 114 is a channel length DL. Here, the width of the dummy source and drain electrodes 113 and 114 is different from the width of the source and the drain electrode formed in the pixel, and the length between the dummy source electrode 113 and the dummy drain electrode 114 is different from the length between the source and the drain electrode formed in the pixel.
As described above, to induce electrostatic charges into the dummy pixel, it is preferable that the ratio of the channel width to the channel length in the dummy pixel is more than twice that of the ratio of the channel width to the channel length formed in the active area.
A passivation film 4 is formed on the dummy data line 110 and the dummy amorphous silicon layer 700, and a contact hole C4 is formed in the passivation film 4 to expose the dummy drain electrode 114. A pixel electrode 300, which is connected to the dummy drain electrode 114 through the contact hole CH4, is made of indium-tin-oxide (ITO) on the passivation film 4. The pixel electrode 300 partially overlaps the adjacent dummy gate line 100.
An alignment film 7 covering the passivation film 4 is formed on the first substrate 10. A black matrix 400, having an opening area at the region corresponding to the dummy pixel DP, is formed on the side of the second substrate 11 facing the first substrate 10. A color filter 500, overlapping the edges of the black matrix 400, is formed in the pixel region DP Further, a transparent conductive common electrode 600 and an alignment film 8 are, in this order, formed over the color filter 500 and the black matrix.
Although the black matrix 400 is formed in the second substrate 11 in the LCD according to the present Invention, it is possible to form the same in the first substrate 10. In this embodiment, the dummy gate line 100 and the dummy data line 110 are formed outside the active area to prevent electrostatic charges from entering into the active area. In addition, a plurality of the dummy TFTs may be formed in the dummy pixel.
A width DW1 of the first dummy source and drain electrodes 115 and 125 is narrower than a width DW2 of the second dummy source and drain electrode 116 and 126, and the width DW2 of the second dummy source and drain electrodes 116 and 126 is narrower than a width DW3 of the third dummy source and drain electrodes 117 and 127. With this structure, all distances DL between the dummy source electrodes 115, 116 and 117 and the dummy drain electrodes 125, 126 and 127 are the same. However, it is possible to form these distances differently.
Pixel defects in the active area can be prevented by changing the structure of the dummy TFT as described above and by quickly inducing electrostatic charges to the dummy TFT in the dummy pixel.
Another discharging pattern for preventing electrostatic charges from entering the active area will be described hereinafter.
A data line or a dummy data line 110 is formed on a gate insulating film 3 over a substrate 10, and an amorphous silicon pattern 704 for discharging electrostatic charges is formed on the gate insulating film 3. The first electrode pattern 118, which overlaps an edge of the amorphous silicon pattern 704, is extended from the data line or the dummy data line 110, and the second electrode pattern 128 overlaps another edge of the amorphous silicon pattern 704 at the opposite side of the first electrode pattern 118. The ends of the first and the second electrode patterns 118 and 128 are tapered to a point, and a doped amorphous silicon pattern 710, such as an Ohmic contact layer, is formed at the contact surface of the first and the second electrode patterns 118 and 128 and the amorphous silicon pattern 704. A passivation film 4 is formed over the dummy data line 110, and the first and the second electrode patterns 118 and 128; and a contact hole CH8 is formed in the passivation film 4 to expose the second electrode pattern 128. An ITO pattern 302 for the capacitor is formed on the passivation film 4 and overlaps the second electrode pattern 128. The ITO pattern 302 for the capacitor is connected to the second electrode pattern 128 through the contact hole CH8.
In other words, the discharging pattern includes the amorphous silicon pattern 704, the ITO pattern 302 for the capacitor for storing electrostatic charges, and the first and the second electrode patterns 118 and 128 which interlink the ITO pattern 302 and the amorphous silicon pattern 704 to the dummy data line 110. In the LCD having this discharging pattern, electrostatic charges generated in the dummy data line 110 often passes into the ITO pattern 302 through the amorphous silicon pattern 302 and the second electrode pattern 128, so that the amorphous silicon does not breakdown The reason that the tunneling effect is superior to the breakdown effect is that the first and the second electrode patterns 118 and 128 are pointedly formed so that the electrostatic charges are moved to the ends of the electrode patterns 118 and 128, rather than to other portions.
As shown in
As shown in
As described in the electrostatic charge discharging pattern of the first embodiment, the ends of the first to the fourth electrode pattern 118, 128, 119 and 129 are pointedly formed. The first and the third electrode patterns 118 and 119 respectively face the second and the fourth electrode patterns 128 and 129. The first and the second patterns 118 and 128 are formed on the first amorphous silicon pattern 704, and the third and fourth patterns 119 and 129 are formed on the second amorphous silicon pattern 705. Thus, the electrostatic charges flowing through the dummy data line 110 are discharged to the ITO pattern 302 for the capacitor through the pointed portion and stored in the capacitor. The number of the discharging devices D1 and D2 which are connected to the dummy data line 110 may be increased as required.
The structures of the electrostatic charge discharging patterns of the first to third embodiments described above have advantages in discharging electrostatic charges generated in the assembly step, the liquid crystal injection step, or the visual test step, since the capacitor is formed after the upper and the lower substrates for the LCD are assembled.
Referring now to
The electrostatic charge discharging pattern of the fourth embodiment can discharge electrostatic charges more effectively because one more capacitor is formed in the step of forming wires in the substrate.
Now, a manufacturing method of the electrostatic charge discharging patterns will be described hereinafter with references to
As shown in
As shown In
Subsequently, as shown in
As shown in
Next, another circuit for preventing the damage of the substrate by an electrostatic discharge will be described with reference to
As shown in
The electrostatic charges generated along the data line 200 passes through the resistors R1 and R2 to disperse in a moment. The electrostatic charges generated to the dummy data line 112 moves along the dummy gate line 111 and stores to the capacitor C1 formed by the data line 200 and the dummy gate line 111.
The disappearance of the electrostatic charges will be described with reference to
In general, since the device for protecting a substrate from electrostatic charges should be formed in narrow area between an active area and pads, there is a limitation in minimizing the electrostatic charge capacitance by increasing the capacitance of the capacitor. In this embodiment, a semiconductor pattern as a resistance, which connects a capacitor to two adjacent data lines at the same time, is used to increase the ability of dispersing the static electricity.
As shown in
On the gate insulating film 3, a plurality of semiconductor pattern 707 and 708 are formed near the dummy gate line 111 with an amorphous silicon material, and a plurality of data lines 200 are formed. Two or more semiconductor patterns 707 and 708 are located between the two adjacent data lines 200. If one of the patterns is named a first semiconductor pattern 707, and the other of the patterns is named a second semiconductor pattern 708, a first electrode 12 connected to the data line 200, and a second electrode 13 facing the first electrode 12 respectively overlap the both sides of the first semiconductor pattern 707. Moreover, a third electrode 15 connected to the other adjacent data line 200, and a fourth electrode 14 facing the third electrode 15 respectively overlap the both sides of the second semiconductor pattern 708. An Ohmic contact layer for improving the contact characteristic intermediates on the surface where the first the second, the third and the fourth electrodes 12, 13, 15 and 14 contacts the first and the second semiconductors 707 and 708.
At least one dummy data line 112 is formed outside the data line 200 in parallel with the data line 200.
A passivation film 4 covers the data lines 200 and the dummy data lines 112, and contact holes CH1, CH2, CH3, and CH4, through which the dummy data line 112, the end of the dummy gate line 111, the second and the fourth electrodes 13 and 14 are exposed, are made in the passivation film 4.
A connecting pattern 5, which overlap the dummy data line 112 and the dummy gate line 111, is formed on the passivation film 4 to connect the dummy data line 112 and the gate line 111. A pattern for a capacitor 9, which overlaps the second and the fourth electrodes 13 and 14 and the dummy gate line 111, is formed to connect the second and the fourth electrodes 13 and 14 though the contact holes CH3 and CH4. The connecting pattern 5 and the pattern for the capacitor 9 may be made of a transparent indium-tin-oxide (ITO).
As mentioned above, since the dummy gate line 111 is connected to the dummy data line 112, the electrostatic charges generated along the dummy data line 112 is transmitted to the dummy gate line 111 and is stored between the pattern for the capacitor 9 and the dummy gate line 111. The electrostatic charges generated along the data line 200 loses its energy by passing through the first and the second semiconductor patterns 707 and 708 to be transmitted to the pattern for the capacitor 9, or by demolishing the first and the second semiconductor patterns 707 and 708.
As shown in
The rest structures of the circuit are the same as in the third embodiment.
As shown in
In this embodiment, the dummy gate line 111 is electrically floated.
Now, a manufacturing method of the LCD, in which damage by an electrostatic discharge can be minimized, will be described hereinafter with reference to
As shown in
Next, in STEP 2, the TFT substrate 10 and the color filter substrate 11 are cut to form each substrate, the substrates 10 and 11 are disposed opposing one another, then liquid crystal material is injected between the substrates 10 and 11. Electrostatic charges, generating in the step of cutting the substrates 10 and 11 and in the step of injecting the liquid crystal material, are dispersed by the shorting bar 102
In STEP 3, a hole used to inject the liquid crystal material is sealed and then the shorting bar 102 is removed by a grinding process. In STEP 4, test signals are applied to each wire 105 to detect defects in the LCD substrate. In this test, it is possible to perform a variety of tests by applying different test signals to each of the wires 100 by using probes which contact to each of the pads 101. Electrostatic charges generated in this step extinguished in the spark inducing circuits, electrostatic charging circuit, and discharging patterns.
After the test, STEP5 is performed. In STEP 5, polarizers 1 and 2 are attached on outer surfaces of the LCD substrates where there are no defects. In STEP 6, driving circuits are connected to the pads of the LCD. Generally, electrostatic charges easily generate in the step of attaching the polarizers 1 and 2. In this method, the electrostatic charges are effectively dispersed by the spark inducing circuit and the electrostatic charging circuit, so that the electrostatic charges can be prevented from entering into the active area.
Unlike the conventional method, in this manufacturing method of the LCD, since the steps of cutting the substrate, injecting the liquid crystal, and sealing the injection hole are performed with the shorting bar 102 present, the LCD substrate is protected from electrostatic charges generated In the process. In addition, since the polarizers 1 and 2 are attached on substrates which pass the visual test, manufacturing costs are reduced.
As described above, in the LCD according to the present invention, a dummy line is added outside the active area, a plurality of electrostatic charge dispersing circuits are connected to the dummy line, and the electrostatic charge dispersing circuit is made having a suitable structure to effectively discharge electrostatic charges. Thus, electrostatic charges can be prevented from entering into the active area.
In addition, since the electrostatic charge dispersing circuits are left remaining after the shorting bar is removed and the expensive polarizers are attached after the visual test, damage to the LCD by an electrostatic discharge is minimized and manufacturing costs are decreased.
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purpose of limitation, the scope of the invention being set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
97-52480 | Oct 1997 | KR | national |
98-1699 | Jan 1998 | KR | national |
98-20793 | Jun 1998 | KR | national |
98-37940 | Sep 1998 | KR | national |
This application is a continuation of U.S. patent application Ser. No. 11/558,170 filed Nov. 9, 2006, which is a continuation application of U.S. patent application Ser. No. 10/465,883 filed Jun. 20, 2003, now U.S. Pat. No. 7,139,044 issued on Nov. 21, 2006, which is a divisional of U.S. patent application Ser. No. 09/172,130 filed on Oct. 14, 1998, now U.S. Pat. No. 6,587,160 issued on Jul. 1, 2003, which claims priority to Korean Patent Application No. 97-52480 filed on Oct. 14, 1997, Korean Patent Application No. 98-1699 filed on Jan. 21, 1998, Korean Patent Application No. 98-20793 filed on Jun. 5, 1998, and Korean Patent Application No. 98-37940 filed on Sep. 15, 1998, all of which are herein incorporated by references for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 09172130 | Oct 1998 | US |
Child | 10465883 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11558170 | Nov 2006 | US |
Child | 12728138 | US | |
Parent | 10465883 | Jun 2003 | US |
Child | 11558170 | US |