THIN FILM TRANSISTOR, METHOD OF FABRICATING ACTIVE LAYER THEREOF, AND LIQUID CRYSTAL DISPLAY

Abstract
A manufacturing method of an active layer of a thin film transistor is provided. The method includes following steps. First a substrate is provided, and a semiconductor precursor solution is then prepared through a liquid process. Thereafter, the semiconductor precursor solution is provided on the substrate to form a semiconductor precursor thin film. After that, a light source is used to irradiate the semiconductor precursor thin film to remove residual solvent and allow the semiconductor precursor thin film to produce semiconductor property, so as to form a semiconductor active layer.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.



FIGS. 1A˜1C are cross-sectional views illustrating the manufacturing flow of an active layer of a thin film transistor according to the first embodiment of the present invention.



FIG. 2 is a cross-sectional view illustrating the method of fabricating an active layer of a thin film transistor according to the second embodiment of the present invention.



FIG. 3 is a cross-sectional view illustrating the structure of a liquid crystal display according to the third embodiment of the present invention.





DESCRIPTION OF EMBODIMENTS


FIGS. 1A˜1C are cross-sectional views illustrating the manufacturing flow of an active layer of a thin film transistor according to the first embodiment of the present invention.


Referring to FIG. 1A, a substrate 100 having a gate 102 and a source/drain 104 formed thereon is provided, and an insulating layer 106 which separates the gate 102 and the source/drain 104 is further deposited on the substrate 100. For the application to low cost and large size product, the substrate 100 may be a Si wafer, a glass substrate, a ceramic substrate, a metal substrate, a paper substrate, or a plastic substrate. The gate 102 and the source/drain 104 may be comprised of metal material, transparent conductive material, and organic conductive material, wherein the metal material may be Al, Cu, Mo, Ag, or Au, the transparent conductive material may be indium tin oxide (ITO) or antimony tin oxide (ATO), and the organic conductive material may be poly (3,4-ethylene dioxy-thiophene) (PEDOT). The insulating layer 106 may include organic insulating material such as poly (vinyl pyrrolidone) (PVP), polyvinyl alcohol (PVA), poly (methyl methacrylate) (PMMA), and polyimide (PI), or inorganic insulating material such as SiOx, SiNx, LiF, and Al2O3. Even though only a bottom-gate thin film transistor is illustrated in the figures of the first embodiment, the present invention may also be applied to other types of thin film transistors, such as a top-gate thin film transistor.


Referring to FIG. 1B, a semiconductor precursor solution is then prepared through a liquid process which may be sol-gel, chemical bath deposition, photo-chemical deposition, or evenly distributing suitable semiconductor nano particles into a solvent. After that, the semiconductor precursor solution is provided on the substrate 100 to form a semiconductor precursor thin film 108, and the method used herein may be spin-coating, inkjet printing, drop-printing, casting, micro-contact, micro-stamp, or dipping. The material of the semiconductor precursor thin film 108 may be II-VI compound semiconductor precursor, and other II-VI compound semiconductor precursors may also be used besides ZnO adopted in following embodiments. Here a soft baking step is performed selectively to remove organics in the semiconductor precursor solution.


Referring to FIG. 1B again, a light source 114 is used to irradiate the semiconductor precursor thin film 108 to remove residual solvent in the semiconductor precursor thin film 108 and transform the semiconductor precursor thin film 108 into a semiconductor layer having semiconductor property. In this embodiment, the light source 114 has a wavelength between 5 nm and 750 nm and an energy density between 0.01 mj/cm2 and 1200 mj/cm2. For example, the light source 114 may be KrF excimer laser of 248 nm, H-20 UV (referring to Journal of CRYSTAL GROWTH 256 (2003) pages 73-77, titled as “Photoconductive UV detectors on sol-gel-synthesized ZnO films”) between 300 nm and 750 nm, Nd:YAG laser (referring to IEEE Photonics Technology Letters, Vol. 16, No. 11 (November, 2004) pages 2418-2420, titled as “Sol-Gel ZnO-SiO2 Composite Waveguide Ultraviolet Lasers”) of 355 nm, or other light sources of suitable wavelengths. Besides, to accomplish patterned effect, a mask 110 composed of a non-transmissive region 112a and a transmissive region 112b may be provided as a mask before irradiating the semiconductor precursor thin film 108 with the light source 114.


Referring to FIG. 1C, the semiconductor precursor thin film 108 irradiated by the light source (the light source 114 in FIG. 1B) then transforms into a semiconductor active layer 116. In an embodiment of the present invention, the semiconductor precursor thin film 108 that is not irradiated by the light source can be removed selectively and the solvent used for preparing the semiconductor precursor solution can be used directly so that no photolithography process is required.


The actual procedure of the first embodiment will be described in following example.


EXAMPLE

In this example, the zinc oxide (ZnO) sol-gel solution is prepared with sol-gel. First, 100 ml 2-methoxyethanol and 3.62 ml monoethanol amine (MEA) are mixed into a mixture solution, and then 13.2 g zinc acetate is dissolved into the mixture solution. The mixture solution is stirred for 30 minutes at 60° C. to be confectioned into a ZnO precursor solution.


After that, the foregoing ZnO precursor solution is formed on a glass substrate through spin-coating having an ITO gate (˜1 kÅ) and a source/drain (˜1 kÅ) a layer of SiO2 has been deposited between the gate and the source/drain serving as an insulating layer (˜3 kÅ) formed thereon. Next, a step of soft baking is performed at 200° C. to transform the ZnO precursor solution into a ZnO thin film. Eventually, a KrF excimer laser having a wavelength of 248 nm is used for irradiating the ZnO thin film over the device channel (the area between the source and the drain) through a mask to remove organic bonding in the ZnO thin film and to transform the ZnO from insulative into semiconductive, so as to obtain the desired thin film transistor.


When the voltage at the gate of the thin film transistor is 100V and the voltage at the drain thereof is also 100V, the current on/off ratio of the ZnO thin film transistor is 103, and the carrier mobility thereof is 1.81×10−4 cm2/Vs.



FIG. 2 is a cross-sectional view illustrating the fabrication process of an active layer of a thin film transistor according to the second embodiment of the present invention, wherein the same reference numerals as those in the first embodiment are used.


Referring to FIG. 2, the difference of FIG. 2 from the first embodiment is that the semiconductor precursor thin film 200 with a desired pattern may be formed using, such as inkjet printing, drop-printing, casting, micro-contact, or micro-stamp. Accordingly, no mask is required for irradiating the semiconductor precursor thin film 200 with the light source 114.



FIG. 3 is a cross-sectional view illustrating the structure of a liquid crystal display according to the third embodiment of the present invention.


Referring to FIG. 3, in the present embodiment, the liquid crystal display includes a display substrate 302, a counter substrate 304, and a liquid crystal layer 306 between the display substrate 302 and the counter substrate 304. The display substrate 302 includes a first substrate 308, a first electrode layer 310 formed on the first substrate 308, a thin film transistor 312 deposited on the first substrate 308 and electrically connected to the first electrode layer 310, and a first alignment film 314 deposited on the first electrode layer 310. Wherein the thin film transistor 312 is a thin film transistor formed in the first embodiment and which includes a gate 102, a source/drain 104, an insulating layer 106, and a semiconductor active layer 116. The semiconductor active layer 116 connecting the source/drain 104 may be a ZnO II-VI compound semiconductor layer, and the materials of the other layers can be referred to the first embodiment. Besides, the thin film transistor 312 also includes a semiconductor precursor thin film 108 connected to the semiconductor active layer 116; however, the semiconductor precursor thin film 108 may also be removed.


Referring to FIG. 3 again, a passivation layer 316 may be further deposited between the first electrode layer 310 and the thin film transistor 312. The counter substrate 304 includes a second substrate 318, a second electrode layer 320 formed on the second substrate 318, and a second alignment film 322 deposited on the second electrode layer 320. The first and the second alignment layers 314 and 322 may be rubbing alignment layers, photo alignment layers, or ion alignment layers.


Besides being applied to the active-matrix liquid crystal display in the third embodiment, the thin film transistor in the present invention may also be applied to other types of displays or equipments such as smart card, price tag, inventory tag, solar cell, and large-area sensor array.


In summary, a liquid process is adopted along with a light source of suitable wavelength and energy in the present invention to replace the conventional thermal process. Thus, the process of the present invention can be performed in atmospheric air where only partial heating is required. Accordingly, the process is suitable for manufacturing low-cost, large-size product. Alternatively, a desired pattern may be formed, and therefore no additional photolithography or etching process is required, accordingly the process can be simplified and the fabrication cost can be effectively reduced.


It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Claims
  • 1. A method of fabricating an active layer of a thin film transistor, comprising: providing a substrate;preparing a semiconductor precursor solution using a liquid process;applying the semiconductor precursor solution on the substrate to form a semiconductor precursor thin film; andirradiating the semiconductor precursor thin film with a light source to remove residual solvent in the semiconductor precursor thin film and transform the semiconductor precursor thin film into an active semiconductor layer having semiconductor property.
  • 2. The method as claimed in claim 1, wherein the light source has a wavelength between 5 nm and 750 nm and an energy between 0.01 mj/cm2 and 1200 mj/cm2
  • 3. The method as claimed in claim 1, wherein the liquid process comprises sol-gel, chemical bath deposition, photo-chemical deposition, or evenly distributing semiconductor nano particles into solvent.
  • 4. The method as claimed in claim 1, wherein the step of applying the semiconductor precursor thin film comprises spin-coating, inkjet printing, drop-printing, casting, micro-contact, micro-stamp, or dipping.
  • 5. The method as claimed in claim 1, further comprising a step of performing a soft baking before irradiating the semiconductor precursor thin film with the light source.
  • 6. The method as claimed in claim 1, further comprising a step of removing the semiconductor precursor thin film not irradiated by the light source after forming the semiconductor active layer.
  • 7. The method as claimed in claim 1, further comprising a step of providing a mask after forming the semiconductor precursor thin film to serve as a mask when irradiating the semiconductor precursor thin film with the light source.
  • 8. The method as claimed in claim 1, wherein the semiconductor precursor thin film comprises an II-VI compound semiconductor precursor.
  • 9. The method as claimed in claim 8, wherein the II-VI compound semiconductor precursor comprises ZnO.
  • 10. The manufacturing method as claimed in claim 1, wherein the substrate comprises Si wafer, glass substrate, ceramic substrate, metal substrate, paper substrate, or plastic substrate.
  • 11. A thin film transistor, comprising: a substrate;a gate, a source, and a drain, respectively disposed on the substrate;an insulating layer, disposed on the substrate isolating the gate and the source/drain; anda semiconductor active layer, connecting the source and the drain, wherein the material of the semiconductor active layer is a semiconductor precursor which produces semiconductor property after being irradiated by a light source.
  • 12. The thin film transistor as claimed in claim 11, wherein the light source has a wavelength between 5 nm and 750 nm and an energy between 0.01 mj/cm2 and 1200 mj/cm2.
  • 13. The thin film transistor as claimed in claim 11, wherein the semiconductor precursor comprises a II-VI compound semiconductor precursor.
  • 14. The thin film transistor as claimed in claim 13, wherein the II-VI compound semiconductor precursor comprises ZnO.
  • 15. The thin film transistor as claimed in claim 11, further comprising a semiconductor precursor thin film connected to the semiconductor active layer and having the same material as the semiconductor precursor.
  • 16. The thin film transistor as claimed in claim 11, wherein the substrate comprises Si wafer, glass substrate, ceramic substrate, metal substrate, paper substrate, or plastic substrate.
  • 17. The thin film transistor as claimed in claim 11, wherein the source, the drain and the gate respectively comprise metal material, transparent conductive material or organic conductive material.
  • 18. The thin film transistor as claimed in claim 17, wherein metal material comprises Al, Cu, Mo, Ag, or Au.
  • 19. The thin film transistor as claimed in claim 17, wherein transparent conductive material comprises indium tin oxide (ITO) or antimony tin oxide (ATO).
  • 20. The thin film transistor as claimed in claim 17, wherein organic conductive material comprises poly (3,4-ethylenedioxy-thiophene (PEDOT).
  • 21. The thin film transistor as claimed in claim 11, wherein the insulating layer comprises organic insulating material or inorganic insulating material.
  • 22. The thin film transistor as claimed in claim 21, wherein organic insulating material comprises poly (vinyl pyrrolidone) (PVP), polyvinyl alcohol (PVA), poly (methyl methacrylate) (PMMA), or polyimide (PI).
  • 23. The thin film transistor as claimed in claim 21, wherein inorganic insulating material comprises SiOx, SiNx, LiF, or Al2O3.
  • 24. A liquid crystal display, comprising: a display substrate, comprising:a first substrate;a first electrode layer, disposed on the first substrate;a thin film transistor as claimed in claim 11, disposed on the first substrate and electrically connected to the first electrode layer;a first alignment film, disposed on the first electrode layer;a counter substrate, comprising:a second substrate;a second electrode layer, disposed on the second substrate;a second alignment film, disposed on the second electrode layer; anda liquid crystal layer, disposed between the display substrate and the counter substrate.
  • 25. The liquid crystal display as claimed in claim 24, wherein the semiconductor active layer in the thin film transistor comprises a II-VI compound semiconductor layer.
  • 26. The liquid crystal display as claimed in claim 25, wherein the II-VI compound semiconductor layer comprises a ZnO semiconductor layer.
  • 27. The liquid crystal display as claimed in claim 24, wherein the source, the drain, and the gate in the thin film transistor respectively comprise metal material, transparent conductive material or organic conductive material.
  • 28. The liquid crystal display as claimed in claim 27, wherein metal material comprises Al, Cu, Mo, Ag, or Au.
  • 29. The liquid crystal display as claimed in claim 27, wherein transparent conductive material comprises ITO or ATO.
  • 30. The liquid crystal display as claimed in claim 27, wherein organic conductive material comprises PEDOT.
  • 31. The liquid crystal display as claimed in claim 24, wherein the insulating layer of the thin film transistor comprises organic insulating material or inorganic insulating material.
  • 32. The liquid crystal display as claimed in claim 31, wherein organic insulating material comprises PVP, PVA, PMMA, or PI.
  • 33. The liquid crystal display as claimed in claim 31, wherein inorganic insulating material comprises SiOx, SiNx, LiF, or Al2O3.
Priority Claims (2)
Number Date Country Kind
95132538 Sep 2006 TW national
95141133 Nov 2006 TW national