1. Field of the Invention
The present invention relates to a thin film transistor substrate, a thin film transistor of a display panel and a fabrication method thereof, and more particularly, to a thin film transistor, which can prevent photo leakage current, and a fabrication method thereof.
2. Description of the Prior Art
Being a non self-emitting device, the liquid crystal display panel consequently requires a backlight module to provide backlight as light source. The thin film transistor is a switch device of a pixel in a liquid crystal display, wherein a gate electrode, connected with a scan line, can be turned on by the scan line, a source region is connected with a data line for receiving signals, and a drain region is connected with a pixel electrode. By way of the above-mentioned connection, the thin film transistor will be turned on when the gate electrode receives a gate voltage. While the thin film transistor is turned on, the signals from the data line will be delivered to the pixel electrode through the source region, the channel region and the drain electrode in sequence. And at the same time, a liquid capacitor is formed between the pixel electrode and a common electrode, such that the transmittance can be changed to control the gray-scale brightness. However, as illustrated in
One goal of the present invention is to provide a thin film transistor of a display panel and a fabrication method thereof to reduce the photo leakage current of the thin film transistor.
To achieve the above-mentioned goal, the present invention provides a kind of thin film transistor formed on a transparent substrate. The thin film transistor includes a patterned semiconductor layer, a gate insulating layer disposed on the patterned semiconductor layer, and a gate electrode disposed on the gate insulating layer, and a patterned light-absorbing layer. The patterned semiconductor layer includes a channel region, and a source region and a drain region respectively disposed on two opposite sides of the channel region in the patterned semiconductor layer. The patterned light-absorbing layer is disposed between the transparent substrate and the patterned semiconductor layer.
To achieve the aforementioned goal, the present invention further provides a thin film transistor substrate, which is suitable for a display panel, includes a transparent substrate and a plurality of thin film transistors disposed on the transparent substrate. Each thin film transistor includes a patterned semiconductor layer, a gate insulating layer disposed on the patterned semiconductor layer, and a gate electrode disposed on the gate insulating layer, and a patterned light-absorbing layer. The patterned semiconductor layer includes a channel region, a source region and a drain region respectively disposed on two opposite sides of the channel region in the patterned semiconductor layer. The patterned light-absorbing layer is disposed between the transparent substrate and the patterned semiconductor layer.
To achieve the aforementioned goal, the invention further provides a fabrication method of a thin film transistor, which includes following steps. A transparent substrate is provided. Then, a patterned light-absorbing layer and a patterned semiconductor layer are sequentially formed on the transparent substrate, wherein the patterned light-absorbing layer substantially shields the patterned semiconductor layer. Subsequently, a thin film transistor is formed on the patterned semiconductor layer.
The thin film transistor of the display panel of the present invention utilizes the light-absorbing layer to shield the backlight illuminated from the backlight module and to decrease the direct-emitting backlight on the patterned semiconductor layer. Consequently, the problem of photo leakage current of the thin film transistor can be reduced.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
To provide a better understanding of the presented invention, preferred embodiments will be detailed as follows. The preferred embodiments of the present invention are illustrated in the accompanying drawings with numbered elements to elaborate the contents and effects to be achieved.
In the present embodiment, the silicon-rich dielectric is deposited and formed by such as plasma enhanced chemical vapor deposition (PECVD) using mixing gases of e.g. silane (SiH4), nitrous oxide (N2O) or ammonia (NH3) in a well-suited composition proportion. Accordingly, a silicon-rich silicon oxide layer, a. silicon-rich silicon nitride layer and a silicon-rich silicon oxynitride layer can be deposited and formed. For instance, a silicon-rich silicon oxide layer can be deposited by pouring a mixing gas of SiH4 and N2O, a silicon-rich silicon nitride layer can be deposited by pouring a mixing gas of SiH4 and NH3, and a silicon-rich silicon oxynitride layer can be deposited by pouring a mixing gas of SiH4, N2O and NH3. Furthermore, the index of refraction becomes higher while the amount of silicon in silicon-rich dielectric becomes higher, wherein the index of refraction is between 1.7 and 3.7 and the thickness of dielectric is approximately between 100 nm and 300 nm.
The pattered light-absorbing layer 32 is preferably a nanocrystalline silicon dielectric layer, wherein the diameter of the nanocrystalline silicon of the nanocrystalline silicon dielectric layer is substantially between 5 angstrom (Å) and 500 angstrom (Å), and the nanocrystalline silicon dielectric layer may be formed by a low-temperature laser annealing process but not limited. The pattered light-absorbing layer 32 is used to absorb the backlight coming from the bottom of the transparent substrate 30, such that the photo leakage current of the thin film transistor due to backlight illumination is prevented.
As illustrated in
As illustrated in
As illustrated in
From above-mentioned description we know, the light-absorbing layer 32 is disposed on the bottom of the semiconductor layer 36 of the thin film transistor 50 of the present invention, such that the backlight can be absorbed and the photo leakage current of the thin film transistor 50 can be therefore prevented. The light-absorbing layer 32 may preferably be high absorptive materials within the wavelength range of the backlight (the major wavelength range of backlight located on visible wavelength range), such that the backlight can be efficiently shielded. In the aforementioned embodiment, the material of the light-absorbing layer 32 is a silicon-rich dielectric material, which includes nanocrystalline silicon, but is not limited. Other suitable light-absorbing materials can also be employed in the present invention.
Curve A: No light-absorbing layer is disposed, and the backlight is turned off;
Curve B: No light-absorbing layer is disposed, and the backlight is turned on (the luminance is 5000 nits);
Curve C: A light-absorbing layer (a silicon-rich dielectric layer having a thickness between 2000 angstrom (Å) and 3000 angstrom (Å)) is disposed, and the backlight is turned on; and
Curve D: A light-absorbing layer is disposed, and the backlight is turned off.
As illustrated in
It can be seen that the light-absorbing layer disposed on the thin film transistor of the display panel of the present invention actually eliminates the problem of the leakage current and improves the reliability of the thin film transistor.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Number | Date | Country | Kind |
---|---|---|---|
097127149 | Jul 2008 | TW | national |