Thin Film Trough Solar Collector

Information

  • Patent Application
  • 20070240704
  • Publication Number
    20070240704
  • Date Filed
    April 05, 2007
    17 years ago
  • Date Published
    October 18, 2007
    17 years ago
Abstract
This invention is a trough solar collector that uses inexpensive aluminized plastic films as the reflecting surface. The films are held in proper shape by stretching them between rigid ribs that are spaced apart along the length of the collector. The structure of the trough is held rigid by a unique sun-tracking system that not only guides a whole of array of troughs on a field to point them toward the sun, but also maintains the whole length of each trough in rigid configuration. It is not necessary to extend rigid metal beams along the trough to maintain the rigidity of the trough. Small-diameter cables are wrapped around rotatable pipes that extend along the east and west sides of the field. The cables extend over the field of the troughs and are attached to connecting points above the troughs in such a way that when the rotatable pipes rotate, the cables move, the troughs move with them, and the cables provide the rigidity of the troughs. The troughs are supported by support posts that are driven into the ground. Since the support posts do not have to supply torque to rotate the troughs, no concrete foundations are necessary.
Description

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying drawings, which are incorporated into and form a part of the specification, illustrate embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating preferred embodiments of the invention and are not to be construed as limiting the invention. In the drawings:



FIG. 1 is a cross-sectional end-view schematic of one embodiment of the present invention in which the ribs are shown supporting the reflective film and the outside protective film, and the trough is pointed toward the sun by cables connected to an arch above the trough.



FIG. 2 is a side view of the trough showing the ribs with the tracking arches attached.



FIG. 3 is an isometric drawing that illustrates another embodiment of the present invention in which the operation of the tracking system uses a framework and a connecting rod to rotate all the troughs in a field toward the sun and provides rigidity to the troughs.



FIG. 4 is a schematic side view showing a method of having a support post hold up the fluid pipe and the trough components.



FIG. 5 is a schematic end view of the connection assembly construction of FIG. 4 showing its relationship to the support post and the rib. The bottom of the trough is open to allow the penetration of the support post, but the plastic films are cemented to the connection assembly in this area to prevent dust from entering the trough.



FIG. 6 is a perspective computer graphic image of a Suntrof array showing tracking cable connection to arches above the troughs.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 is a schematic drawing of an end-view of the trough. FIG. 2 shows a side view of a short trough. Actually a trough may be quite long, and there may be many ribs distributed periodically along the trough.


An important feature of this invention is that the whole trough is held rigid by the tracking cable system. At first, one might think that a long trough system built with lightweight plastic components would tend to twist along its length. That is, parts of it would point in different directions. But the tracking cable system is attached to the tracking arch 5, and that provides it with a long lever arm that pivots about the fluid pipe 11. Even a small cable can hold the system rigid in windy conditions, due to the long lever arm. Archimedes said, “Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.” The ribs 2 and the tracking arches 5 form levers that rotate the trough from the top, rather than having the trough rotated from the bottom as with regular troughs and dishes.


In FIG. 1, trough 30 has the reflective film 1 that is supported by ribs 2. A protective enclosure 3, which can be a tough plastic film, is supported by cementing the film to the outside of the ribs. The tracking arch 5 is attached rigidly to the ribs. Cable 6 fits into a groove in the top of the arch and is connected at point 9 in the arch. Cable 7 fits into a second groove in the arch and is connected at point 8. With this design, as the cables move from side to side, the arch rolls and moves the trough with it.


The trough is supported by a support post 10. The support post also supports the fluid pipe 11 and the glass enclosure tube 12.


The trough is covered by a transparent cover 16 to prevent wind and dust from entering the trough. The cover is sealed to the protective enclosure film along the top sides.



FIG. 2 gives a schematic side view of the trough showing the relationship of the films 1 and 3, the ribs 2, the arches 5, the fluid pipe 11, and the support posts 10. It also shows diagonal guy wires 21 that help maintain the rigidity of the trough structure. The guy wires 22 provide support for the end frames 20. The guy wires 22 are attached to support structures 23 at a point that is in line with the center of rotation of the trough (the center of the fluid pipe 11).


The tracking arch 5 is a piece of rigid material that is a circular arc as though it were a portion of a rim of a wheel with its radius equal to the distance from the rim to the pivot line of the rotation of the collector. (The pivot line is the center of the fluid pipe). The tracking cables fit into grooves 17.


If the forces necessary to counter gravity and wind loads were provided by a pivot at the bottom of the trough (as it is with current dish and trough solar collectors) the structure would have to be very robust, and heavy gear boxes would be required to point the trough toward the sun.



FIG. 3 illustrates another embodiment of the present invention. Rather than having arches for cable attachment, it has frame structures above the troughs that connect to the tracking cables. FIG. 3 is an isometric drawing showing the sun-tracking system consisting of cables 33, which are attached to connection rods 32 (cable connectors) that are held above the troughs 30 by frameworks 31. The cables 33 wrap around tracking pipes 35 and 36 on the east and west sides of the field, respectively. The tracking pipes are rotated by drivers 37. As the tracking pipes rotate, the cables, which are wrapped around the tracking pipes, are drawn in or let out. The tracking pipes act as reels. The cables form a single-layer wrap around the pipes. Poles 38 with pulleys on top provide support for the cables. Not shown are intermediate tracking pipe supports with bearings along the tracking pipes.


This method may be a little simpler than the arches, but it has the disadvantage that as the troughs point far to the east or west, the cables are pulled downward by their connections to connection rods 32. This would require that the tracking pipes on the east and west rotate at slightly different rates.


When the circular arches are used, the tracking pipes on the east and west would rotate at the same rate.


As the west tracking pipe rotates to pull on the cable and the east tracking pipe rotates to let the cable out, the troughs rotate to the west to follow the sun (in both the embodiments of FIGS. 1 and 3). If the cable connection point is six feet above the fluid pipe, the tracking pipe would need to draw in about 15 feet of cable (assuming the troughs go no lower than 20 degrees from the horizon). If quarter-inch cable is used and the tracking pipes are 4 inches in diameter, the cable would wrap around the pipe about 14 times, which means that the cable would occupy a distance of about 4 inches along the pipe when fully wound. We do not want the cable to be wrapped more than one layer in depth on the pipe. If it is wrapped more than one layer, the amount of draw during one revolution would be different on the second layer than on the first.



FIG. 4 is a side view schematic that shows a method of having the support posts 10 hold up the trough and the fluid pipe 11 and its glass enclosure tube 12. The support post holds up the connection assembly 40 by bearings 43, since the connection assembly must rotate. The rib 2 to which the plastic films 1 and 3 are attached is connected to the connection assembly 40. As the tracking system rotates the trough, the connection assembly rotates with the trough and the ribs. But the fluid pipe 11 and its glass enclosure tube 12 do not rotate. A hole from left to right through the top of the connection assembly provides a passage for the glass tube and the fluid pipe. Another bearing 44 allows the connection assembly to rotate as it supports the glass tube. A glass tube-pipe separator 42 between the pipe and glass tube provides support for the fluid pipe.


Note that the reflective film 1 and the enclosure film 3 approaching from the right are cemented to the rib. However, the support post must pass through the films in order to support the fluid pipe. That means that at the bottom, the films' continuity is interrupted by the penetration of the support post into the trough. The connection assembly affords a method of attaching the plastic films so that dust does not enter the trough. The reflective film 1 and the enclosure film 3 approaching from the left at the bottom are cemented to the connection assembly at points 45 and 46, respectively.



FIG. 5 shows an end view schematic of the relationship of the support post 10, the connection assembly 40, and the ribs 2.



FIG. 6 is a computer graphic image illustrating a field setup of some troughs of the embodiment shown in FIGS. 1 and 2. It has the arches 5 that connect the cables 7 to the troughs 30. The tracking pipe 35 and its driver 37 are shown in the distance.


Solar Collection Efficiency of Suntrof Compared to Other Solar Concentrators

Trough collectors have the disadvantage of losing efficiency during the winter due to the fact that the sun is low in the south (in the Northern Hemisphere), and the troughs do not rotate toward the south. On December 21 of each year in southern California, Arizona, and New Mexico, the sun is only about 34 degrees above the horizon at noon, which means that the solar collectors get only 56% as much solar energy as they would if the sunrays were perpendicular to the collectors' apertures. Solar parabolic dishes and Suncone collectors can rotate to the south to keep the sunrays perpendicular to the aperture.


The disadvantage of the dish collectors is that they have to be spaced apart in the north-south direction to prevent shadowing on each other in the winter. (All dish, trough, and Suncone collectors have to be spaced apart in the east-west direction). Consider a Suntrof collector that is 4 meters wide and 100 meters long. On December 21 at noon, it would be receiving 224 kilowatts of solar energy. A row of solar dishes lined up in a north-south row, each having a diameter of 4 meters, would need to have a north-south spacing of about 5.5 meters to reduce shadowing. Each dish would have an aperture of 12.57 square meters. If there were 19 dishes lined up along the 100-meter long field, the total amount of solar energy received would be 239 kW in mid winter, which is only about 7% more than the solar trough that covers the same amount of land. In the summer, the solar dish row would still receive 239 kW of solar energy, but the trough would receive 395 kW. So, for the same amount of land coverage, the troughs would receive much more solar energy. Of course, we must also consider how efficiently each collector transforms the energy into heat in the fluid that flows through it.


As a comparison between Suntrof and standard parabolic solar troughs, Table 1 gives computer ray-trace calculations of efficiency for both types of solar collectors.









TABLE 1







Efficiency comparison between Suntrof and regular parabolic trough solar


collectors as a function of temperature and degrees off center


(sun-tracking accuracy).










Temperature
Degrees Off
Efficiency of
Efficiency of


(Degrees C.)
Center
Suntrof (%)
Solar Troughs (%)













250
0
85.6
85.5


250
2
77.7
46.3


250
3
59.9
0.0


400
0
77.7
77.2


400
2
69.0
38.3


400
3
50.8
0.0


500
0
68.3
67.6


500
2
59.3
28.8


500
3
41.4
0.0


600
0
54.9
53.3


600
2
46.0
15.1


600
3
28.2
0.0


700
0
35.5
33.8


700
2
26.1
0.0


700
3
6.5
0.0









If the collector is pointed directly at the sun so that the sunlight is focused on the fluid pipe (containing the heat-collecting fluid), the “degrees off center” is zero. The degrees off center refers to the east-west tracking accuracy, not the north-south position of the sun. The efficiency represents the amount of heat delivered to the fluid compared to the sunlight that is incident on the reflector. In both cases, the collector aperture is two meters wide. However, the dimensions may be scaled up to any size with the same results in efficiency.


Note that the efficiency of both types of solar concentrators drops off as the degrees off center increases, but the efficiency of the regular solar trough drops off faster. In fact, when the regular solar collector is pointed three degrees off dead center of the sun it focuses zero energy onto the fluid pipe for all cases considered in the table.


At higher temperatures, the efficiency drops off, because there is greater radiation from the fluid pipe.


For high temperatures, dish or Suncone collectors have higher efficiency than troughs. Suntrof collectors have higher efficiency, are less expensive, and need less tracking accuracy than regular troughs.


Fabrication

The ribs are constructed with a parabolic shape for the inside surface. Two ribs are bolted together at the bottom to form the ribs on each side. The ribs can be assembled to the trough support system in the field, and then the tracking arches can be attached.


After the fluid pipe with its glass enclosing tube is emplaced and the ribs are connected, the unit is tilted down to one side, and a sheet of reflecting film is placed in the lowered ribs, stretched horizontally, and cemented to the ribs. If desirable, a strip of plastic material can be used to press the film against the rib, and the strip can be bolted in place by bolts that extend through the plastic film into the rib.


After that reflective film is in place, the unit is rotated the opposite direction, and a reflective sheet is placed in the other half, tightened, and cemented in place. The two sheets are sealed together at the bottom. Then the protective enclosing outer film is attached on the outside of the ribs as tension is applied. This protective film prevents the wind from affecting the reflective film.


The frame structure on the ends of the Suntrof modules must be robust enough to sustain the tension of the plastic sheets and the guy wires. End guy wires supply the force to counteract the plastic sheet tension. The lower end of the guy wires are attached to an anchor at a point that is in line with the pivot line (center of the fluid pipe).

Claims
  • 1. A solar energy collection system comprising: a set of rigid ribs spaced evenly apart along the length of the solar energy collection system; anda set of connection assemblies to which the rigid ribs are connected; anda set of support posts anchored to the ground or other foundation and rotatably connected to said connection assemblies in order to support the connection assemblies and the rigid ribs; anda reflective film attached to the inside of the rigid ribs for the purpose of reflecting sun rays to a focal line, wherein said reflective film is stretched in the horizontal direction so that the curvature of the film perpendicular to its length is approximately the same curvature as the inside of the ribs, thus forming a trough, which may be parabolic in cross section; anda protective enclosing film attached to the outside of the rigid ribs to protect the reflective film from wind; anda fluid pipe at the focal line of the reflected sunlight from he reflective film, which fluid pipe carries a flowing fluid to absorb the heat of the solar energy; anda transparent tube enclosing the fluid pipe to prevent loss of heat, which transparent tube may be evacuated; anda transparent cover placed across the top of the ribs and sealed to the said protective enclosing film at the sides;wherein sunlight passing through the transparent cover is reflected through the transparent tube and is absorbed by the fluid pipe and heats the flowing fluid within the fluid pipe, which heated fluid may then flow to devices external to the solar energy collection system to provide heat for useful purposes.
  • 2. A solar energy collection system according to claim 1, wherein a narrow arch is connected to the top of each pair of rigid ribs, which arch contains two grooves on its upper surface for the placement of two tracking cables, and wherein the tracking cables cause the rotation of the solar energy collection system east or west as the tracking cables are moved east or west, respectively, and wherein the tracking cables provide rigidity to the solar energy collection system when the tracking cables are moved in unison.
  • 3. A solar energy collection system according to claim 2, wherein said tracking cables may attach to the arches of a number of solar energy collection systems across a field and wherein the tracking cables are attached at the east and west ends of the field to tracking pipes and are wrapped around the tracking pipes, which tracking pipes draw in or let out the tracking cables as the tracking pipes rotate, and wherein a tracking system with an optical sun-tracking device and with geared motors cause rotation of the tracking pipes in order to cause the solar energy collection systems to point toward the sun as the sun crosses the sky.
  • 4. A solar energy collection system according to claim 1, wherein a rigid framework is attached to the top of each pair of ribs, and wherein a connecting rod is connected to the top of the rigid framework, and wherein a tracking cable is attached to each connecting rod, and wherein the tracking cables cause the rotation of the solar energy collection system east or west as the tracking cables are moved east or west, respectively, and wherein the tracking cables provide rigidity to the solar energy collection system when the tracking cables are moved in unison.
  • 5. A solar energy collection system according to claim 4, wherein said tracking cables may attach to the connecting rods of a number of solar energy collection systems across a field and wherein the tracking cables are attached at the east and west ends of the field to tracking pipes and are wrapped around the tracking pipes, which tracking pipes draw in or let out the tracking cables as the tracking pipes rotate, and wherein a tracking system with an optical sun-tracking device and with geared motors cause rotation of the tracking pipes in order to cause the solar energy collection systems to point toward the sun as the sun crosses the sky.
  • 6. A solar energy collection system according to claim 1, wherein the center of rotation of the solar energy collection system is the center of the fluid pipe so that the fluid pipe does not have to move or rotate as the solar energy collection system rotates, and the fluid pipe may be connected at its ends directly to input and output pipes and does not require swivel joints at the ends to connect to input and output pipes.
  • 7. A solar energy collection system according to claim 1, wherein the ends of the solar energy collection system consist of strong frameworks designed to support the tension of the reflective films and the protective enclosing films, and wherein end cables provide support for the strong frameworks, which end cables are attached to support structures at a point that is in line with the center of the fluid pipe.
  • 8. A solar energy collection system according to claim 1, wherein the cable tracking system provides rigidity to the solar energy collection system so that only small torques are applied to the support posts, and rugged concrete foundations are not necessary.
CROSS-REFERENCE TO RELATED APPLICATION

This claims priority to and the benefit of Provisional U.S. Patent Application Ser. No. 60/744,675, filed Apr. 12, 2006, the entirety of which is hereby incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60744675 Apr 2006 US