1. Technical Field
The present disclosure relates generally wound dressings, and in particular to a delivery apparatus for the application of thin film dressings over a wound for use in a treatment such as negative wound pressure therapy.
2. Background of Related Art
Wound dressings are generally placed over a wound to protect and promote healing of the wound. One type of wound dressing consists essentially of a thin membrane of a polymer or similar material, coated on an underside with a pressure-sensitive adhesive. The adhesive may adhere the dressing to healthy skin surrounding the wound such that the dressing provides an effective bacterial barrier to protect the wound from contamination. Because of their extremely elastic nature, thin polymeric film dressings may readily conform to irregular contours of a patient's skin while promoting patient movement and comfort. This type of dressing may also be sufficiently transparent to permit visual inspection of the wound without the need for removing the dressing and exposing the wound to contaminants in the environment.
One technique that may utilize a thin film dressing may be described as negative wound pressure therapy (NWPT). The thin film dressing may be positioned to form a substantially fluid tight seal with the skin surrounding the wound to define a reservoir over the wound where a negative pressure may be maintained. The reservoir subjects the wound to a sub-atmospheric pressure to effectively draw wound fluid, including liquid exudates, from the wound with, e.g., a vacuum pump. Vacuum pressure may be applied continuously, or in varying intervals, depending on the nature and severity of the wound. This technique has been found to promote blood flow to the wound area, stimulate the formation of granulation tissue and encourage the migration of healthy tissue over the wound. This type of treatment may subject a thin film dressing to repeated changes of size and shape, taking advantage of the flexibility of the dressing.
The flexibility of a thin film dressing may, however, present difficulties in the application of the dressing to a wound site. For example, the dressing may tend to fold, wrinkle and adhere to itself. To mitigate these tendencies, a delivery layer may be supplied with the dressing to temporarily support the dressing until the dressing is applied. When a thin film dressing is applied as part of an NWPT treatment, additional concerns arise including properly sizing the dressing and appropriately locating a vacuum port relative to the wound. Accordingly, a need exists for a composite dressing and delivery apparatus suitable for use in conjunction with an NWPT treatment.
A composite wound dressing and delivery apparatus includes a substantially transparent dressing layer having a lower surface that is coated with a pressure sensitive for applying the dressing layer over a wound to define a reservoir in which a negative pressure may be maintained. A substantially transparent backing layer adhered to the lower surface of the dressing layer in a releasable manner, and a vacuum port is centrally located on the dressing layer. The vacuum port is adapted to provide fluid communication between a vacuum source and the reservoir through the dressing layer. A targeting grid associated with either the dressing layer or the backing layer includes regularly spaced reference marks along at least two axes extending from the vacuum port.
The targeting grid may be applied to the backing layer, and may include rule marks associated with two orthogonal axes extending from the vacuum port such that the targeting grid is arranged for Cartesian measurement of a distance to the vacuum port. At least a portion of the rule marks may be associated with numerical markers corresponding to units of a standard measurement system, and the numerical markers may identify a number of the units that is twice a distance from a center of the vacuum port.
The targeting grid may include orthogonal gridlines, including major gridlines and minor gridlines where the major gridlines are adapted to appear more prominent than the minor gridlines. The targeting grid may alternatively include curvilinear rule lines arranged around the vacuum port such the targeting grid is arranged for radial measurement of a distance to the vacuum port.
The apparatus may also include a substantially transparent delivery layer adhered to the upper surface of the dressing layer in a releasable manner. The backing layer may include a first identifier prominently visible thereon and the delivery layer may include a second identifier obscured by the backing layer such that the second identifier is revealed by the removal of the backing layer. The first and second identifiers may thus indicate an order in which the backing layer and delivery layer should be removed from the dressing layer.
The delivery layer may include a slit extending between a central opening and an exterior edge of the delivery layer to permit the delivery layer to be removed from the dressing layer when a vacuum tube is coupled to the vacuum port. The delivery layer may comprise a pair of opposed tabs protruding beyond the extents of the dressing layer. The apparatus also include a dressing layer that is generally triangular in shape.
According to another aspect of the disclosure, a composite wound dressing and delivery apparatus includes a substantially transparent dressing layer having a lower surface and an upper surface. The lower surface is coated with a pressure sensitive adhesive such that the dressing layer may form a fluid tight seal over a wound to define a reservoir in which a negative pressure may be maintained. The apparatus also includes substantially transparent backing layer adhered to the lower surface of the dressing layer in a releasable manner, and a substantially transparent delivery layer adhered to the upper surface of the dressing layer in a releasable manner. A vacuum port is centrally located on the dressing layer, and is adapted to provide fluid communication between a vacuum source and the reservoir through the dressing layer. A targeting grid is associated with the dressing layer, backing layer or the delivery layer, and includes regularly spaced reference marks along at least two axes extending from the vacuum port. Numerical markers correspond to units of a standard measurement system, and identify a number of the units that is twice the distance from a center of the vacuum port.
According to another aspect of the disclosure, a negative wound pressure therapy kit includes a composite wound dressing, a delivery apparatus and a patch. The composite apparatus includes a dressing layer configured for placement over a wound to define a reservoir over the wound in which a negative pressure may be maintained, a backing layer adhered to the dressing layer in a releasable manner and a vacuum port for providing fluid communication through the dressing layer. The vacuum port exhibits a predetermined geometry. The patch includes a patch layer and a backing layer. The patch layer has an opening therein that exhibits a geometry substantially similar to the geometry of the vacuum port.
The kit may further include a filler material adapted for placement within a wound to capture wound exudates, a wound contact layer adapted for placement adjacent the wound to promote unidirectional flow of wound exudates, or a canister adapted for placement exterior to the wound for the collection of wound exudates.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with the detailed description of the embodiments given below, serve to explain the principles of the disclosure.
Referring initially to
Wound dressing 12 includes a contact layer 18 positioned in direct contact with the bed of wound “w” and may be formed from perforated film material. An appropriate perforated material permits the negative pressure applied to the reservoir to penetrate into the wound “w,” and also permits exudates to be drawn through the contact layer 18. Passage of wound fluid through the contact layer 18 is preferably unidirectional such that exudates do not flow back into the wound bed. Unidirectional flow may be encouraged by conical or directional apertures formed in the contact layer 18, or a lamination of materials having absorption properties differing from those of contact layer 18. A non-adherent material may be selected such that contact layer 18 does not tend to cling to the wound “w” or surrounding tissue when it is removed. One exemplary material that may be used as a contact layer 18 is sold under the trademark XEROFORM® and VENTEX® by Tyco Healthcare Group LP (d/b/a Covidien)
Wound filler 20 is positioned in the wound “w” over the contact layer 18 and is intended to allow wound dressing 12 to absorb, capture and/or wick wound exudates. Wound filler 20 is cut to a shape that is conformable to the shape of wound “w,” and may be packed up to the level of healthy skin “s,” or alternatively, wound filler 20 may overfill the wound “w.” An absorbent material such as non-woven gauze, reticulated foam, or alginate fibers may be used for filler 20 to transfer any exudate that migrates through contact layer 18 away from the wound “w”. An antimicrobial dressing sold under the trademark KERLIX®AMD by Tyco Healthcare Group LP (d/b/a Covidien), may be suitable for use as filler 20.
Wound dressing 12 also includes a cover layer 24. Cover layer 24 may be positioned over the wound “w” to form a substantially fluid-tight seal with the surrounding skin “s.” Thus, cover layer 24 may act as both a microbial barrier to prevent contaminants from entering the wound “w,” and also a fluid barrier maintaining the integrity of vacuum reservoir 14. Cover layer 24 is preferably formed from a moisture vapor permeable membrane to promote the exchange of oxygen and moisture between the wound “w” and the atmosphere, and is preferably transparent permit a visual assessment of wound conditions without requiring removal of the cover layer 24. A membrane that provides a sufficient moisture vapor transmission rate (MVTR) is a transparent membrane sold under the trade name POLYSKIN®II by Tyco Healthcare Group LP (d/b/a Covidien) Cover layer 24 may be customized from a composite dressing and delivery apparatus 100 (
A vacuum port 30 having a flange 34 may also be included in wound dressing 12 to facilitate connection of the wound dressing 12 to fluid conduit 36. The vacuum port 30 may be configured as a rigid or flexible, low-profile component, and may be adapted to receive a fluid conduit 36 in a releasable and fluid-tight manner. An adhesive on the underside of flange 34 may provide a mechanism for affixing the vacuum port 30 to the dressing 12, or alternatively the flange 34 may be positioned within reservoir 14 (not shown) such that an adhesive on an upper side of the flange 34 affixes the vacuum port 30. However it is affixed to the dressing, a hollow interior of the vacuum port 30 provides fluid communication between the fluid conduit 36 and the reservoir 14. Vacuum port 30 may assume various other forms discussed below.
Fluid conduit 36 extends from the vacuum port 30 to provide fluid communication between the reservoir 14 and collection canister 40. Any suitable conduit may be used for fluid conduit 36 including those fabricated from flexible elastomeric or polymeric materials. Fluid conduit 36 may connect components of the NWPT apparatus by conventional air-tight means such as friction fit, bayonet coupling, or barbed connectors. The conduit connections may be made permanent, or alternatively a quick-disconnect or other releasable means may be used to provide some adjustment flexibility to the apparatus 10.
Collection canister 40 may comprise any container suitable for containing wound fluids. For example, a rigid bottle may be used as shown or alternatively a flexible polymeric pouch may be appropriate. Collection canister 40 may contain an absorbent material to consolidate or contain the wound drainage or debris. For example, super absorbent polymers (SAP), silica gel, sodium polyacrylate, potassium polyacrylamide or related compounds may be provided within canister 40. At least a portion of canister 40 may be transparent to assist in evaluating the color, quality or quantity of wound exudates. A transparent canister may thus assist in determining the remaining capacity of the canister or when the canister should be replaced.
Leading from collection canister 40 is another section of fluid conduit 36 providing fluid communication with vacuum source 50. Vacuum source 50 generates or otherwise provides a negative pressure to the NWPT apparatus 10. Vacuum source 50 may comprise a peristaltic pump, a diaphragmatic pump or other mechanism that is biocompatible and draws fluids, e.g. atmospheric gasses and wound exudates, from the reservoir 14 appropriate to stimulate healing of the wound “w.” Preferably, the vacuum source 50 is adapted to produce a sub-atmospheric pressure in the reservoir 14 ranging between about 20 mmHg and about 500 mm Hg, about 75 mm Hg to about 125 mm Hg, or, more preferably, between about 40 mm HG and 80 mm Hg. Referring now to
Dressing layer 102 may be formed from a variety of thin, transparent, polymeric membranes, such as polyurethane, elastomeric polyester or polyethylene. The thickness of the dressing layer 102 may, for example, be in the range of about 0.8 mils to about 1.2 mils. Thicknesses in this range may permit dressing layer 102 to conform to the contours of a patient's skin surrounding a wound, and accommodate evacuation cycles associated with an NWPT procedure. While the dressing layer 102 may be manufactured in any desired size or shape, the particular geometry of the wound to be treated may prompt customization of each individual dressing layer 102. As provided, dressing layer 102 is generally rectangular having a length of about 6 inches and a width of about 4 inches.
Dressing layer 102 has a lower surface 108 and an upper surface 110. Lower surface 108 is coated with an adhesive to facilitate adherence of the dressing layer 102 to the healthy skin “s” surrounding the wound “w.” The adhesive coating should provide firm, continuous adhesion to the skin “s” such that leak paths are not readily formed between the dressing layer 102 and the skin “s” when as reservoir 14 is subjected to the evacuation cycles of an NWPT treatment. The adhesive should also not unduly interfere with the transparency of dressing layer 102, and should peel away from the skin easily when the dressing layer 102 is no longer required.
The adhesive coating also preferably does not interfere with the transmission of moisture vapor through dressing layer 102. To promote enhanced moisture vapor transmission rate (MVTR) of the dressing layer 102, the adhesive coating may be interrupted in some embodiments such that only a periphery of dressing layer 102 is coated to form a seal with the skin “s” leaving a central portion of the dressing layer 102 uncoated. This arrangement is not necessarily preferred since cover layer 102 may be customized to accommodate the particular geometry of an individual wound and an appropriate periphery may not be known at the time of manufacturing. An adhesive coated substantially over the entire lower surface 108 may be selected that exhibits an MVTR equal to that of the film material.
Centrally located on the dressing layer 102 is a vacuum port 112 to facilitate connection to a vacuum tube 38. Vacuum port 112 is depicted schematically and may assume a variety of forms. For example, a structure similar to vacuum port 30 having a flange pre-affixed to dressing layer 102 may be provided along with the composite dressing 100. Alternatively, the vacuum port 112 may consist essentially of a pre-cut hole in the dressing layer 102, or in other embodiments, vacuum port 112 may comprise a marking to indicate a central location of the dressing layer 102 in which an opening may be cut by a clinician after dressing layer 102 is applied over a wound “w.”
Backing layer 104 is generally transparent and has a firm but releasable affinity for the adhesively coated lower surface 108 of dressing layer 102. Backing layer 104 covers the lower surface 104 and includes a peripheral region 114 that extends substantially beyond at least one edge of the dressing layer 102. Peripheral region 114 thus provides a gripping surface to facilitate the separation of the backing layer 112 from the dressing layer 102. Peripheral region 114 includes an indicator, such as first numerical indicator 116, printed or otherwise applied thereto. First numerical indicator 116 provides a prominent visual queue to indicate the order in which the three distinct layers 102, 104 and 106 should be separated.
Opposite peripheral region 114, backing layer 104 includes a background region 118 upon which a solid stripe is printed. Background region 118 is less translucent than dressing layer 102 and may be substantially opaque. Also printed on backing layer 104 is a circular reference 122, which is centrally located as to correspond with the location of vacuum port 112 on dressing layer 102. Surrounding the circular reference 122, a targeting grid 126 is printed or otherwise applied with regularly spaced reference lines in two orthogonal directions. Targeting grid 126 may be used to facilitate placement of the vacuum port 108 centrally over a wound “w” by providing a reference for measurement of the wound “w,” and by providing a reference for precise cutting or customization of the dressing layer 102.
Delivery layer 106 is adhered to the upper surface 110 of the dressing layer 102 in a releasable manner. Delivery layer 106 is substantially rigid in relation to dressing layer 102 to maintain the dressing layer 102 in a relatively smooth and unwrinkled configuration while the dressing layer 102 is applied to the skin “s.” Delivery layer 106 is, however, sufficiently flexible to conform to irregular contours of the skin “s” such that the dressing layer 102 may be pressed onto the skin “s” to form a substantially fluid tight seal therewith.
Preferably, both delivery layer 106 and upper surface 110 are non-adhesive, and may be adhered by heat lamination contact or similar means. A peripheral region 130 of delivery layer 106 overlies dressing layer 102, but is not adhered to dressing layer 102. Peripheral region 130 thus provides a gripping surface to facilitate separation of the delivery layer 106 from the dressing layer 102.
An indicator such as second numerical indicator 132 is positioned on the peripheral region 130 to indicate the order in which the three distinct layers 102, 104 and 106 should be separated. Second numerical indicator 132 is defined by the transparent or relatively transparent text and graphics surrounded by a darker background area of peripheral region 130. The background area of peripheral region 130 may be printed to have an appearance that is substantially similar to the appearance of background region 118 on backing layer 104. In this way, second numerical indicator 132 may be camouflaged or obscured when the backing layer 104 is adhered to the dressing layer 102 and revealed when backing layer 104 is separated from the dressing layer 102.
Delivery layer 106 also includes a central opening 134 to accommodate vacuum port 112 on the dressing layer 102 and a printed boundary 136 opposite peripheral region 130. Printed boundary 136 may be coincident with an edge of the dressing layer 102 to help identify the edge when the delivery layer 106 is adhered to the dressing layer 102.
Referring now to
In the first major step, the wound “w” is prepared. The vacuum source 50 may be deactivated and the existing dressing 12 may be removed. The wound “w” may be cleaned and wound conditions may then be assessed. The sub-step of documenting the wound conditions may be performed concurrently with the second major step of preparing the dressing, and may be facilitated by any of the composite wound dressing and delivery apparatuses depicted in
In the second major step, the dressing is prepared. Once supplies have been gathered, an NWPT package (not shown) may be opened. An NWPT package may be provided that includes a sterilized kit including various items used in an NWPT procedure such as a composite wound dressing and delivery apparatus 100, material for wound contact layer 18, material for filler 20 and other items including those described herein below. Once the NWPT package is opened, the packaging material may be used as a clean preparation surface for inventory and organization of the kit components. The packaging material should therefore exhibit a tendency to lie flat and should be sufficient in size to accommodate each of the kit components thereon.
Material may be provided in an NWPT kit for filler 20. The material may be cut to size to allow filler 20 to fill or overfill the wound “w” as described above. The composite system 100 may then be cut appropriate the size of the wound “w.” To allow dressing layer 102 to form an appropriate seal with the skin “s,” composite system 100 should be cut to permit from about one inch to about one and one half inches of contact between the skin “s” and the adhesively coated lower surface 108 of dressing layer 102 around the wound “w.” Cutting the composite system 100 may be facilitated by the targeting grid 126, which provides reference to guide the cut.
Surgical scissors (not shown), may be used to make the cut and may be sterilized or cleaned prior to each use. The scissors need not be included in the NWPT kit. The scissors may also be used to cut wound contact layer 18 to size before it is placed adjacent to the wound “w.”
In the third major step, the dressing may be applied to the wound “w.” The filler 20 may be placed over the contact layer 18. Often, a portion dressing layer 102 that was cut from composite system 100 in a previous step is used to tack the filler 20 in place.
Next, dressing layer 102 may be applied over the wound “w.” The backing layer 104 is first separated to expose the adhesive coating on the lower surface 108 of dressing layer 102. First numerical indicator 116 indicates that the peripheral region 114 may first be grasped to remove the backing layer 104. Once the adhesive is exposed, dressing layer 102 may be pressed onto the skin “s” to form a fluid-tight seal therewith. With backing layer 104 removed, second numerical indicator 132 is revealed as described above. The alternate embodiments depicted in
If necessary, a hole may be cut in vacuum port 112 to receive fluid conduit 36. Fluid conduit 36 may be placed relative to vacuum port 112 such that the fluid conduit 36 may communicate with reservoir 14. Next, an exposed portion of fluid conduit may be oriented or routed so as not to interfere with patient movement or comfort. Again, a portion of the dressing layer 102 that was cut from composite system 100 in a previous step may be used to secure the fluid conduit 36.
In the fourth major step, treatment of the wound “w” may begin. The fluid conduit 36 may be connected to vacuum source 50 through canister 40. The vacuum source 99 may then be activated to evacuate atmospheric gasses from the reservoir 14. A distinctive sound or audible indicator may indicate whether a proper seal has been achieved over the wound “w.” If necessary, any leaks identified may be patched with a portion of the dressing layer 102 that was cut from composite system 100 in a previous step.
Alternatively, a prefabricated patch, such as the patches depicted in
Patch layer 502 is shaped such that an opening or interior region 538 has a geometry that is substantially similar to the geometry of the vacuum port 112. Interior region 538 may be open to receive vacuum port 112 therein. Creating a seal around vacuum port 112 may present a challenge, and incorporating a patch layer 502 configured to approximate the particular size and shape of the perimeter of vacuum port 112 into an NWPT kit may be helpful. Opening 538 is substantially circular to accommodate vacuum port 112, but other configurations may be used. For example, a patch (not shown) having a semicircular or other arc shape may be provided.
Patch 542 depicted in
Each of the patches described above may be provided as a kit component in an NWPT package. Having prefabricated patches on hand can ensure the integrity of a fluid tight seal over a wound “w.” Also prefabricated patches may be used to tack filler 20 in place in a sterile manner, or to conveniently secure the position of fluid conduit 38. Prefabricated patches may be provided to serve any function that may otherwise be served by a portion of the dressing layer 102 that was cut from composite system 100.
A final sub-step may be to collect and retain any unused components, e.g., patches or portions of dressing layer 102, and to dispose of any refuse. Backing layer 104 and delivery layer 106 each include printing thereon, e.g., the targeting grid 126 or numerical identifiers 116, 132, which can assist in locating these components for disposal.
Referring now to
Backing layer 604 includes a peripheral region 614 with a first numerical indicator 616, and a background region 618 positioned along an edge orthogonal to the peripheral region 614. Delivery layer 606 includes a second numerical indicator 632 printed in a darker color than background region 618. Second numerical indicator 632 is thus visible when backing layer 604 is adhered to dressing layer 602, but more prominent when backing layer 604 is removed.
Referring now to
Referring now to
Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
This application is a continuation application of and claims the benefit of priority under 35 U.S.C. §120 to co-pending U.S. patent application Ser. No. 12/176,773, filed Jul. 21, 2008, titled THIN FILM WOUND DRESSING, the entirety of which is hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3026874 | Stevens | Mar 1962 | A |
3367332 | Groves | Feb 1968 | A |
3486504 | Austin, Jr. | Dec 1969 | A |
3572340 | Lloyd et al. | Mar 1971 | A |
3712298 | Snowdon et al. | Jan 1973 | A |
3809086 | Schachet et al. | May 1974 | A |
3874387 | Barbieri | Apr 1975 | A |
3980166 | DeFeudis | Sep 1976 | A |
4063556 | Thomas et al. | Dec 1977 | A |
4080970 | Miller | Mar 1978 | A |
4112947 | Nehring | Sep 1978 | A |
4112949 | Rosenthal et al. | Sep 1978 | A |
4136696 | Nehring | Jan 1979 | A |
4202331 | Yale | May 1980 | A |
4224945 | Cohen | Sep 1980 | A |
4228798 | Deaton | Oct 1980 | A |
4266545 | Moss | May 1981 | A |
4280680 | Payne | Jul 1981 | A |
4382441 | Svedman | May 1983 | A |
4499896 | Heinecke | Feb 1985 | A |
4510802 | Peters | Apr 1985 | A |
4524064 | Nambu | Jun 1985 | A |
4538645 | Perach | Sep 1985 | A |
4600001 | Gilman | Jul 1986 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4700479 | Saito et al. | Oct 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4738257 | Meyer et al. | Apr 1988 | A |
4743232 | Kruger | May 1988 | A |
4786282 | Wagle et al. | Nov 1988 | A |
4870975 | Cronk et al. | Oct 1989 | A |
4874363 | Abell | Oct 1989 | A |
4917112 | Kalt | Apr 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4984570 | Langen et al. | Jan 1991 | A |
4990137 | Graham | Feb 1991 | A |
4997438 | Nipper | Mar 1991 | A |
5000172 | Ward | Mar 1991 | A |
5059424 | Cartmell et al. | Oct 1991 | A |
5071409 | Rosenberg | Dec 1991 | A |
5100395 | Rosenberg | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5106629 | Cartmell et al. | Apr 1992 | A |
5135485 | Cohen et al. | Aug 1992 | A |
5141503 | Sewell, Jr. | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5160322 | Scheremet et al. | Nov 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5178157 | Fanlo | Jan 1993 | A |
5180375 | Feibus | Jan 1993 | A |
5195977 | Pollitt | Mar 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5263922 | Sova et al. | Nov 1993 | A |
5265605 | Afflerbach | Nov 1993 | A |
5415627 | Rasmussen et al. | May 1995 | A |
5423737 | Cartmell et al. | Jun 1995 | A |
5447492 | Cartmell et al. | Sep 1995 | A |
D364679 | Heaton et al. | Nov 1995 | S |
5484427 | Gibbons | Jan 1996 | A |
5489262 | Cartmell et al. | Feb 1996 | A |
5501661 | Cartmell et al. | Mar 1996 | A |
5520629 | Heinecke et al. | May 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5536233 | Khouri | Jul 1996 | A |
5549584 | Gross | Aug 1996 | A |
5588958 | Cunningham et al. | Dec 1996 | A |
5605165 | Sessions et al. | Feb 1997 | A |
5624374 | Von Iderstein | Apr 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5701917 | Khouri | Dec 1997 | A |
5704905 | Jensen et al. | Jan 1998 | A |
5713842 | Kay | Feb 1998 | A |
5733305 | Fleischmann | Mar 1998 | A |
5738642 | Heinecke et al. | Apr 1998 | A |
5749842 | Cheong et al. | May 1998 | A |
5779657 | Daneshvar | Jul 1998 | A |
5840049 | Tumey et al. | Nov 1998 | A |
5911222 | Lawrence et al. | Jun 1999 | A |
5931800 | Rasmussen et al. | Aug 1999 | A |
5944703 | Dixon et al. | Aug 1999 | A |
5960837 | Cude | Oct 1999 | A |
5973221 | Collyer et al. | Oct 1999 | A |
6010524 | Fleischmann | Jan 2000 | A |
6043406 | Sessions et al. | Mar 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6093465 | Gilchrist et al. | Jul 2000 | A |
6117111 | Fleischmann | Sep 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
D434150 | Tumey et al. | Nov 2000 | S |
6142982 | Hunt et al. | Nov 2000 | A |
6168800 | Dobos et al. | Jan 2001 | B1 |
6174306 | Fleischmann | Jan 2001 | B1 |
6203563 | Fernandez | Mar 2001 | B1 |
6261276 | Reitsma | Jul 2001 | B1 |
6325788 | McKay | Dec 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6348423 | Griffiths et al. | Feb 2002 | B1 |
6395955 | Roe et al. | May 2002 | B1 |
6398767 | Fleischmann | Jun 2002 | B1 |
6406447 | Thrash et al. | Jun 2002 | B1 |
6420622 | Johnston et al. | Jul 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6500112 | Khouri | Dec 2002 | B1 |
D469175 | Hall et al. | Jan 2003 | S |
D469176 | Hall et al. | Jan 2003 | S |
6520982 | Boynton et al. | Feb 2003 | B1 |
6547255 | Donaway et al. | Apr 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
D475134 | Randolph | May 2003 | S |
6557704 | Randolph | May 2003 | B1 |
D478659 | Hall et al. | Aug 2003 | S |
6607495 | Skalak et al. | Aug 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6648862 | Watson | Nov 2003 | B2 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6695824 | Howard et al. | Feb 2004 | B2 |
D488558 | Hall | Apr 2004 | S |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6755807 | Risk, Jr. et al. | Jun 2004 | B2 |
6764462 | Risk, Jr. et al. | Jul 2004 | B2 |
6767334 | Randolph | Jul 2004 | B1 |
6800074 | Henley et al. | Oct 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6824533 | Risk, Jr. et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6855860 | Ruszczak et al. | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6887228 | McKay | May 2005 | B2 |
6887263 | Bleam et al. | May 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6942633 | Odland | Sep 2005 | B2 |
6942634 | Odland | Sep 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6960181 | Stevens | Nov 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
6994702 | Johnson | Feb 2006 | B1 |
7022113 | Lockwood et al. | Apr 2006 | B2 |
7037254 | O'Connor et al. | May 2006 | B2 |
7052167 | Vanderschuit | May 2006 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7077832 | Fleischmann | Jul 2006 | B2 |
7093600 | Sorribes | Aug 2006 | B2 |
7108683 | Zamierowski | Sep 2006 | B2 |
7117869 | Heaton et al. | Oct 2006 | B2 |
7128719 | Rosenberg | Oct 2006 | B2 |
7128735 | Weston | Oct 2006 | B2 |
7144390 | Hannigan et al. | Dec 2006 | B1 |
7169151 | Lytinas | Jan 2007 | B1 |
7182758 | McCraw | Feb 2007 | B2 |
7195624 | Lockwood et al. | Mar 2007 | B2 |
7198046 | Argenta et al. | Apr 2007 | B1 |
7214202 | Vogel et al. | May 2007 | B1 |
7216651 | Argenta et al. | May 2007 | B2 |
D544092 | Lewis | Jun 2007 | S |
7273054 | Heaton et al. | Sep 2007 | B2 |
7276051 | Henley et al. | Oct 2007 | B1 |
7279612 | Heaton et al. | Oct 2007 | B1 |
7316672 | Hunt et al. | Jan 2008 | B1 |
D565177 | Locke et al. | Mar 2008 | S |
7338482 | Lockwood et al. | Mar 2008 | B2 |
7351250 | Zamierowski | Apr 2008 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7381211 | Zamierowski | Jun 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7396345 | Knighton et al. | Jul 2008 | B2 |
7401413 | Nelson | Jul 2008 | B1 |
7410495 | Zamierowski | Aug 2008 | B2 |
7413570 | Zamierowski | Aug 2008 | B2 |
7413571 | Zamierowski | Aug 2008 | B2 |
7422576 | Boynton et al. | Sep 2008 | B2 |
7534927 | Lockwood et al. | May 2009 | B2 |
7723560 | Lockwood et al. | May 2010 | B2 |
7888546 | Marcoux et al. | Feb 2011 | B2 |
7981136 | Weiser | Jul 2011 | B2 |
8021347 | Vitaris et al. | Sep 2011 | B2 |
8257326 | Vitaris | Sep 2012 | B2 |
8491548 | Livne et al. | Jul 2013 | B2 |
20010020145 | Satterfield | Sep 2001 | A1 |
20010031943 | Urie | Oct 2001 | A1 |
20010043943 | Coffey | Nov 2001 | A1 |
20020016577 | Ohmstede | Feb 2002 | A1 |
20020108614 | Schultz | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020151836 | Burden | Oct 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20020198504 | Risk, Jr. et al. | Dec 2002 | A1 |
20030078532 | Ruszczak et al. | Apr 2003 | A1 |
20030093041 | Risk, Jr. et al. | May 2003 | A1 |
20030181850 | Diamond et al. | Sep 2003 | A1 |
20030208149 | Coffey | Nov 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030212359 | Butler | Nov 2003 | A1 |
20030219469 | Johnson et al. | Nov 2003 | A1 |
20040006319 | Lina et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040039415 | Zamierowski | Feb 2004 | A1 |
20040064111 | Lockwood et al. | Apr 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040073151 | Weston | Apr 2004 | A1 |
20040093026 | Weidenhagen et al. | May 2004 | A1 |
20040113309 | Thompson, Jr. et al. | Jun 2004 | A1 |
20040122434 | Argenta et al. | Jun 2004 | A1 |
20040167482 | Watson | Aug 2004 | A1 |
20040193218 | Butler | Sep 2004 | A1 |
20040241213 | Bray | Dec 2004 | A1 |
20040243073 | Lockwood et al. | Dec 2004 | A1 |
20040249353 | Risks, Jr. et al. | Dec 2004 | A1 |
20040260230 | Randolph | Dec 2004 | A1 |
20050004534 | Lockwood et al. | Jan 2005 | A1 |
20050010153 | Lockwood et al. | Jan 2005 | A1 |
20050020955 | Sanders et al. | Jan 2005 | A1 |
20050070835 | Joshi | Mar 2005 | A1 |
20050070858 | Lockwood et al. | Mar 2005 | A1 |
20050085795 | Lockwood et al. | Apr 2005 | A1 |
20050090787 | Risk, Jr. et al. | Apr 2005 | A1 |
20050101940 | Radl et al. | May 2005 | A1 |
20050107756 | McCraw | May 2005 | A1 |
20050131327 | Lockwood et al. | Jun 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20050147562 | Hunter et al. | Jul 2005 | A1 |
20050177190 | Zamierowski | Aug 2005 | A1 |
20050182445 | Zamierowski | Aug 2005 | A1 |
20050222527 | Miller et al. | Oct 2005 | A1 |
20050222544 | Weston | Oct 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20050288691 | Leiboff | Dec 2005 | A1 |
20060015087 | Risk, Jr. et al. | Jan 2006 | A1 |
20060025727 | Boehringer et al. | Feb 2006 | A1 |
20060029650 | Coffey | Feb 2006 | A1 |
20060039742 | Cable, Jr. et al. | Feb 2006 | A1 |
20060041247 | Petrosenko et al. | Feb 2006 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060100586 | Karpowicz et al. | May 2006 | A1 |
20060100594 | Adams et al. | May 2006 | A1 |
20060116620 | Oyaski | Jun 2006 | A1 |
20060149170 | Boynton et al. | Jul 2006 | A1 |
20070005028 | Risk, Jr. et al. | Jan 2007 | A1 |
20070014837 | Johnson et al. | Jan 2007 | A1 |
20070016152 | Karpowicz | Jan 2007 | A1 |
20070021697 | Ginther | Jan 2007 | A1 |
20070027414 | Hoffman et al. | Feb 2007 | A1 |
20070032754 | Walsh | Feb 2007 | A1 |
20070032755 | Walsh | Feb 2007 | A1 |
20070032778 | Heaton et al. | Feb 2007 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070066946 | Haggstrom et al. | Mar 2007 | A1 |
20070078366 | Haggstrom et al. | Apr 2007 | A1 |
20070078432 | Halseth et al. | Apr 2007 | A1 |
20070167926 | Blott et al. | Jul 2007 | A1 |
20070167927 | Hunt et al. | Jul 2007 | A1 |
20070179460 | Adahan | Aug 2007 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070219513 | Lina et al. | Sep 2007 | A1 |
20070225663 | Watt et al. | Sep 2007 | A1 |
20070233022 | Henley et al. | Oct 2007 | A1 |
20080011667 | Ruschke | Jan 2008 | A1 |
20080051688 | Lowe | Feb 2008 | A1 |
20080071235 | Locke et al. | Mar 2008 | A1 |
20080082059 | Fink et al. | Apr 2008 | A1 |
20080103462 | Wenzel et al. | May 2008 | A1 |
20080132819 | Radl et al. | Jun 2008 | A1 |
20080167593 | Fleischmann | Jul 2008 | A1 |
20080183233 | Koch et al. | Jul 2008 | A1 |
20080200857 | Lawhorn | Aug 2008 | A1 |
20080200906 | Sanders et al. | Aug 2008 | A1 |
20080208147 | Argenta et al. | Aug 2008 | A1 |
20080234641 | Locke et al. | Sep 2008 | A1 |
20090227969 | Jaeb et al. | Sep 2009 | A1 |
20090234313 | Mullejeans et al. | Sep 2009 | A1 |
20090264805 | Davis et al. | Oct 2009 | A1 |
20100010458 | Sherman | Jan 2010 | A1 |
20100028390 | Cleary et al. | Feb 2010 | A1 |
20100106106 | Heaton et al. | Apr 2010 | A1 |
20120253255 | Tsuruta et al. | Oct 2012 | A1 |
20140163486 | Riesinger | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
41 11 122 | Apr 1993 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
0 358 302 | Mar 1990 | EP |
1 0588 569 | Apr 2001 | EP |
1 219 311 | Jul 2002 | EP |
0 853 950 | Oct 2002 | EP |
488 232 | Jul 1938 | GB |
1 415 096 | Nov 1975 | GB |
1 549 756 | Mar 1977 | GB |
2 195 255 | Apr 1988 | GB |
2 235 877 | Mar 1991 | GB |
2 307 180 | May 1997 | GB |
2 329 127 | Mar 1999 | GB |
2 336 546 | Oct 1999 | GB |
2 344 531 | Jun 2000 | GB |
2 415 908 | Jan 2006 | GB |
1 762 940 | Jan 1989 | SU |
WO 8001139 | Jun 1980 | WO |
WO 8002182 | Oct 1980 | WO |
WO 8401904 | May 1984 | WO |
WO 8905133 | Jun 1989 | WO |
WO 9011795 | Oct 1990 | WO |
WO 9219313 | Nov 1992 | WO |
WO 9309727 | May 1993 | WO |
WO 9420041 | Sep 1994 | WO |
WO 9605873 | Feb 1996 | WO |
WO 0021586 | Apr 2000 | WO |
WO 03005943 | Jan 2003 | WO |
WO 03018098 | Mar 2003 | WO |
WO 03030966 | Apr 2003 | WO |
WO 03057070 | Jul 2003 | WO |
WO 03057071 | Jul 2003 | WO |
WO 03057307 | Jul 2003 | WO |
WO 03045492 | Aug 2003 | WO |
WO 03086232 | Oct 2003 | WO |
WO 03092620 | Nov 2003 | WO |
WO 03101508 | Dec 2003 | WO |
WO 2004018020 | Mar 2004 | WO |
WO 2005009488 | Feb 2005 | WO |
WO 2006015599 | Feb 2006 | WO |
WO 2006105892 | Oct 2006 | WO |
WO 2008020862 | Feb 2008 | WO |
WO 2008048481 | Apr 2008 | WO |
WO 2009126103 | Oct 2009 | WO |
Entry |
---|
US 6,216,701, 04/2001, Heaton et al. (withdrawn) |
US 7,186,244, 03/2007, Hunt et al. (withdrawn) |
KCI, Inc., V.A.C. Therapy Clinical Guidelines, A reference source for clinicians, Jul. 2007, in 92 pages. |
KCI, Inc., V.A.C. Abdominal Dressing System, Advanced Management of the Open Abdomen, 2006, in 6 pages. |
Björn, et al., “Irrigation Treatment in Split-thickness Skin Grafting of Intractable Leg Ulcers,” Scand J Plast Reconstr Surg 19:211-213, 1985. |
B.M. Kostiuchenok, et al., “The Vacuum Effect in the Surgical Treatment of Purulen Wounds,” Russian Journal: Vestnik Khirurgii, Sep. 1986, (18-21). |
Chardack, et al., “Experimental studies on Synthetic Substitutes for Skin and Their Use in the Treatment of Burns,” Annals of Surgery, vol. 155, No. 1, (127-139), 1962. |
Chariker, M. E., et al. (eds). “Effective Management of Incisional and Cutaneous Fistulae with Closed Suction Wound Drainage,” Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
H. Teder, et al., “Continuous Wound Irrigation in the Pig,” Journal of Investigative Surgery, vol. 3, (399-407), (1990). |
Jeter, Katherine F., et al., “Managing Draining Wounds and Fistulae: New and Established Methods”, Chronic Wound Care, 1990, pp. 204-246. |
Mulder, G.D., et al., “Clinicians' Pocket Guide to Chronic Wound Repair,” Wound Healing Publications Second Edition, 1991. |
P. Svedman, “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation,” Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986 (125-133). |
Paul Svedman, “A Dressing Allowing Continuous Treatment of a Biosurface,” IRCS Medical Science: Biomedical Technoloyg; Clinical Medicine; Surgery and Transplantation, 7, 221 (1979). |
Paul Svedman, “Irrigation Treatment of Leg Ulcers,” Teh Lancet, Sep. 3, 1983 (532-534). |
Paul Svedman, et al., “Staphylococcal Wound Infection in the Pig: Part 1. Course,” Annals of Plastic Surgery, vol. 23, No. 3, Sep. 1989 (212-218). |
Ryosuke Fujimoro, M.D., et al., “Sponge Method for Treatment of Early Scars,” From the Department of Dermatology in the Faculty Medicine, Kyoto Univeristy, vol. 42, No. 4, Oct. 1968 (323-326). |
Sandén, M.D., et al., “Staphylococcal Wound Infection in the Pig: Part II. Innoculation, Quantification of Bacteria, and Reproducibility,” Annals of Plastic Surgery, vol. 23, No. 3, Sep. 1989 (219-223). |
Sherry Stoll, “Energetic Remedies—Cupping: Healing Within a Vacuum,” https://www.suite101.com/article.cfm/energetic) remedies/74531, Apr. 13, 2005. |
W. Fleischmann, “Vacuum Sealing for Treatment of Problematical Wounds”, Univeristy Surgical Clinic and Polyclinic—Accident Surgery Department, WundForum Spezial—IHW 94, 4 pages, (1994). |
W. Fleischman, et al., Vacuum Sealing: Indication, Technique and Results, Emr J Orthop Surg Tramatol (1995) 5:37-40. |
Y.N. Usupov, et al., “Active Wound Drainage,” Russian Journal: Vestnik Khirugii, Apr. 1987, (42-45). |
Yu A. Davydov, et al., “Bacteriological and Cytological Assessment of Vacuum Therapy of Purulent Wounds”, Vestnik Khirurgii, Oct. 1998, (48-52). |
Yu A. Davydov, et al., “Concepts for Clinical Biological Management of the Wound Process in the Treatment of Purulent Wounds Using Vacuum Therapy,” Vestnik Khirugii, Feb. 1991, 132-135). |
Yu A. Davydov, et al., “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis,” Russian Journal: Vesnik Khiturgii, Sep. 1986, (66-70). |
Yu A. Davydov, et al., “Vacuum Therapy in treatment of Acute Purulent Diseases of Soft Tissues and Purulent Wounds,” Vestnik Khirurgii, (Surgeon's Herald), MEDICINE Publishers, 1986. |
Gorica Zivadinovic, et al., “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Conference Papers of the 5th Timok Medical Days, Majdanpek, 1986 (161-164). |
Number | Date | Country | |
---|---|---|---|
20110313339 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12176773 | Jul 2008 | US |
Child | 13218689 | US |