The present invention relates generally to the field of sensors and, more particularly, to a thin flexible sensor
There are many types of semiconductor-based rigid sensors. Implementation of semiconductor-based sensors that measure acceleration, force or pressure on a substrate and a size such that the sensors are flexible or semi-flexible has been problematic and commercially unsuccessful for the most part. These problems include thermal budget restrictions of the underlying substrates, mechanical integrity of the sensors on the flexible substrate, surface roughness of the substrates, signal routing, adhesion of metals to polyimide substrates, cross-talk between sensors, power supply requirements, high cost and unacceptable manufacturing requirements. Moreover, current flexible sensors do not provide real-time feedback that can be used to adjust a stimulus, such as touch, force, acceleration and flow, or the operational characteristics of device to compensate for the stimulus.
Accordingly, there is a need for a flexible, non-intrusive, real-time, low cost, readily available feedback device to measure and assess acceleration, force or pressure.
The present invention provides a flexible or semi-flexible sensor that is compact and thin so as to be readily available and easily portable, self-contained and wireless, self-powered, semi-flexible, simple and easy to use within minimal instruction and provides real-time feedback to the user or monitoring system. Moreover, the flexible or semi-flexible sensor of the present invention sufficiently overcomes the problems encountered in previous designs.
For example, a first embodiment of a sensor in accordance with the present invention includes a thin and substantially flat flexible substrate (e.g., polymer, metal film, etc.) having one or more sensor arrays, a power source, an output interface and a processor or analog circuit, all of which are disposed on the substantially flat flexible substrate. The substrate can be any shape (e.g., rectangular, circular, a polygon, an irregular shape that is decorative) and made from a polymer, metal film or other suitable material. Note that the substrate can be rigid or semi-flexible instead of flexible. A protective layer may cover the sensor array and power source. Alternatively, a protective covering can be used to encapsulate the device. The one or more sensor arrays measure acceleration, force or pressure.
Similarly, as second embodiment of a sensor in accordance with the present invention includes a thin and substantially flat flexible substrate (e.g., polymer, metal film, etc.) having one or more sensor arrays, a processor or analog circuit, a power source, a communications interface, a geographic locator (e.g., GPS receiver, wireless communications device or other wireless location device), an output interface and a data storage, all of which are disposed on the substantially flat flexible substrate. A protective layer covers the sensor array, processor or analog circuit, power source, communications interface, geographic locator, output interface and data storage. Alternatively, a protective covering can be used to encapsulate the device. The one or more sensor arrays measure acceleration, force or pressure, and one or more operational parameters (e.g., physical contact with a recipient, physical contact with a provider, temperature of the recipient, heartbeat of the recipient, pulse of the recipient, cardiac electrical activity of the recipient, etc.). The processor or analog circuit is connected to the sensor array, power source, communications interface, geographic locator, output interface and data storage.
A third embodiment of a sensor in accordance with the present invention includes an upper protective layer, a lower protective layer and a thin and substantially flat flexible substrate (e.g., polymer, metal film, etc.) disposed between the upper protective layer and the lower protective layer. In addition, one or more sensor arrays, a processor or an analog circuit, a power source and an output interface are disposed on the flexible substrate. The one or more sensor arrays measure acceleration, force or pressure. The processor or analog circuit is connected to the sensor array, output interface and power source.
In addition, the present invention provides a method for manufacturing a sensor by performing the following steps: passivating a silicon wafer; adding a polyimide layer to the wafer; creating one or more sensor arrays using a MEMS process wherein the sensor array(s) measure acceleration, force or pressure; dicing the wafer to extract the individual dies/sensors; printing a circuit on a flexible substrate; applying a paste or epoxy to the flexible substrate to receive and secure the individual dies/sensors; placing the individual dies/sensors on the flexible substrate; placing the flexible substrate on a lower protective layer containing electrical interconnects and an output interface, a processor or an analog circuit, and a power source; securing the flexible substrate to the lower protective layer; placing and securing a upper protective layer to the flexible substrate and the lower protective layer to complete assembly of the sensor.
The present invention is described in detail below with reference to the accompanying drawings.
The above and further advantages of the invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention. The discussion herein relates primarily to sensors, but it will be understood that the concepts of the present invention are applicable to any thin form acceleration, force or pressure sensors.
The sensor is a low cost, very compact assembly of individual force and/or pressure, acceleration sensors, powering source (battery or energy harvesting with conditioning and storage electronics), biasing circuitry, read-out circuitry and necessary electrical connections. Individual sensors are fabricated on traditional non-flexible substrates (silicon). These individual sensors are then placed on a flexible printed circuit or a rigid card. The sensor can be incorporated into portable equipment or can be used stand-alone. Because of its revolutionary small size and low cost, it can be manufactured as part of a wallet, a pocket or part of any clothing. Flexible, disposable versions can be incorporated into public phones, cell phones or land-line home phones as removable strips when needed. The present invention provides a flexible or semi-flexible sensor that is compact and thin so as to be readily available and easily portable, self-contained and wireless, self-powered, semi-flexible, simple and easy to use within minimal instruction and provides real-time feedback to the user or monitoring system. Moreover, the flexible or semi-flexible sensor of the present invention sufficiently overcomes the problems encountered in previous designs.
Now referring to
A processor or analog circuit or logic circuit within or external to the sensor arrays 104 and/or output interface 108 determines whether one or more operational parameters are within one or more guidelines in order to provide feedback to the provider indicating whether the operational parameters are within the guidelines via the output interface 108. The one or more operational parameters may include an applied pressure, an acceleration, a shearing force, a compressive force (e.g., depth, force, frequency or acceleration) or a combination thereof. The one or more sensors 104 may also detect a physical contact with an object or a recipient, a temperature of the object or the recipient, an electrical activity of the object or the recipient. The recipient can be a human, an animal or a manikin. The object can be a machine, a structure, a composition, a vehicle (land, water, air, space, subsurface), a plant or a natural object. The output interface 108 can be a visual display (e.g., light emitting diodes, liquid crystal displays or other visual display known to those skilled in the art), a speaker, a multi-tone generator, a communications interface or a combination thereof. The visual display can be a set of light emitting diodes that provide a feedback to the user, a status of the sensor, a status of the recipient or a combination thereof.
The power source 106 can be a battery, a solar panel, a layer of piezoelectric film or any type of energy harvesting technology for voltage generation or a combination thereof. Note that the battery can be disposed on the flexible substrate 102 such that it is replaceable or rechargeable. The power source 106 can also be a combination of a battery along with one of the voltage generators connected to a power controller to manage power consumption and storage in the battery and the layer of piezoelectric film or other energy harvesting methods for voltage generation.
A protective layer (not shown) may cover the sensor array 104 and power source 106. A window or clear protective layer can be used to protect the output interface 108, yet still allow the output interface 108 to provide data, signals, indications and visual and/or audio signals. Alternatively, a protective covering can be used to encapsulate the device 100.
The sensor 100 can be integrated in or attached to a manikin, a recipient, an object, a device, a personal item (e.g., business card, a credit card, a debit card, a membership card, a driver's license, an identification card, a wallet, etc.) a clothing or other thin portable user device. The device can be a cellular phone, a mobile communications device, a personal data assistant, an audio and/or video playback device or other device likely to be carried by a person. The sensor 100 can also be disposable in cases where the sensors cannot be reused (e.g., medical applications). The sensor 100 may also include an adhesive layer dispose on a back exterior surface of the sensor 100 and a sheet of removable protective material covering the adhesive layer so that the sensor 100 will temporarily remain in place on the recipient or object.
Referring now to
Now referring to
The processor or analog circuit 304 determines whether one or more operational parameters are within one or more guidelines in order to provide feedback to the provider indicating whether the operational parameters are within the guidelines via the output interface 108. The one or more operational parameters may include an applied pressure, an acceleration, a shearing force, a compressive force (e.g., depth, force, frequency or acceleration) or a combination thereof. The recipient can be a human, an animal or a manikin. The object can be a machine, a structure, a composition, a vehicle (land, water, air, space, subsurface), a plant or a natural object. The output interface 108 can be a visual display (e.g., light emitting diodes, liquid crystal displays or other visual display known to those skilled in the art), a speaker, a multi-tone generator, a communications interface or a combination thereof. The visual display can be a set of light emitting diodes that provide a feedback to the provider, a status of the sensor, a status of the recipient or a combination thereof. The visual display can also be a LCD/CRT-like display that provides interactive wireless communication between the provider and other support personnel.
The communications interface 306 can be an optical communications interface, an infrared communications interface, a wireless communications transceiver, a physical communications port or a combination thereof. The wireless transceiver can be a cellular phone, Internet communication, personal data assistant (PDA), an active radio frequency identification tag, a passive radio frequency identification tag, etc. The geographic locator 308 (e.g., GPS receiver, wireless communications device, etc.) can be used to determine a location of the sensor 300. The processor or analog circuit 304 can periodically transmits a status of the sensor 300, location of the sensor 300, diagnostic information, a status of the recipient or the object, or a combination thereof to a monitoring station or facility via the communications interface 306. The processor or analog circuit 304 can receive instructions from the monitoring station of facility via the communications interface 306. The data storage 310 can be used to store the one or more parameters, the feedback, a status of the sensor, diagnostic information or a combination thereof. The data storage 310 can be a RFID tag, a magnetic strip, a memory or a combination thereof.
The power source 106 can be a battery, a solar panel, a layer of piezoelectric film for voltage generation during compressions, an electromagnetic voltage generator or a combination thereof. Note that the battery can be disposed on the flexible substrate 102 such that it is replaceable or rechargeable. The power source 106 can also be a combination of a battery along with one of the voltage generators connected to a power controller to manage power consumption and storage in the battery and the layer of piezoelectric film or other energy harvesting methods for voltage generation.
The sensor 300 can be integrated in or attached to a manikin, a recipient, an object, a device, a personal item (e.g., business card, a credit card, a debit card, a membership card, a driver's license, an identification card, a wallet, etc.) a clothing or other thin portable user device. The device can be a cellular phone, a mobile communications device, a personal data assistant, an audio and/or video playback device or other device likely to be carried by a person. The sensor 300 can also be disposable in cases where the sensors cannot be reused (e.g., medical applications). The sensor 300 may also include an adhesive layer dispose on a back exterior surface of the sensor 300 and a sheet of removable protective material covering the adhesive layer so that the sensor 300 will temporarily remain in place on the recipient or object.
Referring now to
In addition, one or more sensor arrays (six force sensors 410 and one compression depth sensor 412), a signal processor 414, a power source 416 (energy collector and producer means) and an output interface 418 (e.g., light emitting diodes, liquid crystal displays or other visual display known to those skilled in the art) are disposed on or attached to the flexible substrate 406. The one or more sensor arrays 410 and 412 measure acceleration, force or pressure and are typically implemented as MEMS (Micro-Electro-Mechanical Systems) sensors. The signal processor 414 is connected to the sensor array 410 and 412, output interface 418 and power source 416. The signal processor 414 compares the measured signals with threshold values and provides a feedback signal according to the results of the comparison to the output interface 418. This signal can be in the form of a series of lights corresponding to different compression depths and/or compression forces. The flexible substrate 406 also includes various leads 420 for connecting to other layers and components, and connections 422 to the energy producing layer 408. The output interface 418 displays different variables related to performance of CPR, such as compression depth, force, rate, etc.
Now referring to
Now referring to
For example, the present invention can be implemented in a cardiopulmonary resuscitation sensor as described in a U.S. non-provisional patent application filed on Jun. 15, 2007 and entitled “Cardiopulmonary Resuscitation Sensor” which is hereby incorporated by reference in its entirety.
Referring now to
Additional details regarding various examples of the fabrication of the sensor arrays will now be described. For example, the following steps describe a process flow for a non-micromachined pressure sensor:
The following information is application to the previous example as well as the following examples. The polysilicon is a typical zero-stress MEMS structural layer. All the Si3N4 layers should be zero-stress as deposited. In addition, the dimensions of a representative Si3N4 Bridge arm are:
Polysilicon 2 is a large grain (1 μm size on average) doped ploy layer with resistivity of 0.1 to 100 Ω-cm. The dimensions of a representative polysilicon 2 piezoresistor on the bridge are are:
The dimensions of the Al pads used for bonding are typically:
In another example, the following steps describe a process flow for a micromachined pressure sensor:
In another example, the following steps describe a process flow for an accelerometer:
In another example, the following steps describe a process flow for an accelerometer with encapsulation:
The inventors have unexpectedly found a preferred method of depositing the Al layer by annealing the layered substrate at about 400 degrees Centigrade. Annealing provides a grain formation of aluminum at the bottom with amorphous silicon above, after which, by under etching, the aluminum is removed.
Piezoresistive sensors are preferred due to their high stability, high sensitivity, easy of fabrication and operate as well as for being more reliable and robust. Sensors are designed to provide a balance between strength and durability as well as sensitivity and repeatability. Suitable piezoresistive materials may include polysilicon. When using polysilicon, it has been found that laser ablated polysilicon piezo-resistors is a preferred material because it is crystalline during deposition, does not affect a polyimide material, when used, and provides improved properties to a final fabricated device as compared with low-pressure chemical vapor deposition polysilicon or as-grown polysilicon. The sensors include a central shuttle plate suspended over an undercut etched pit supported by bridge arms. Silicon nitride is a preferred material for forming a shuttle plate of the sensor because of its high strength as compared with bulk silicon.
ΔR/R=average strain×gauge factor (1)
And, a differential output voltage of a Wheatstone bridge (ΔVout) due to an applied pressure is given by:
ΔVout=ΔR/R×Vbias (2)
The test results for the various designs are shown below:
Additional designs are shown below:
Examples of response of sensor designs to pressures imparted to an event such as CPR are shown below:
It will be understood by those of skill in the art that information and signals may be represented using any of a variety of different technologies and techniques (e.g., data, instructions, commands, information, signals, bits, symbols, and chips may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof). Likewise, the various illustrative logical blocks, modules, circuits, and algorithm steps described herein may be implemented as electronic hardware, computer software, or combinations of both, depending on the application and functionality. Moreover, the various logical blocks, modules, and circuits described herein may be implemented or performed with a general purpose processor (e.g., microprocessor, conventional processor, controller, microcontroller, state machine or combination of computing devices), a digital signal processor (“DSP”), an application specific integrated circuit (“ASIC”), a field programmable gate array (“FPGA”) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. Similarly, steps of a method or process described herein may be embodied directly in hardware including a purely analog circuit, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. Although preferred embodiments of the present invention have been described in detail, it will be understood by those skilled in the art that various modifications can be made therein without departing from the spirit and scope of the invention as set forth in the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/066842 | 6/13/2008 | WO | 00 | 5/10/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/157298 | 12/24/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4263659 | Hirata et al. | Apr 1981 | A |
5257547 | Boyer | Nov 1993 | A |
5476092 | Karlis et al. | Dec 1995 | A |
5665249 | Burke et al. | Sep 1997 | A |
6071819 | Tai et al. | Jun 2000 | A |
6239724 | Doron et al. | May 2001 | B1 |
6268635 | Wood | Jul 2001 | B1 |
6306107 | Myklebust et al. | Oct 2001 | B1 |
6308723 | Louis et al. | Oct 2001 | B1 |
6351671 | Myklebust et al. | Feb 2002 | B1 |
6390996 | Halperin et al. | May 2002 | B1 |
6858016 | Davaris et al. | Feb 2005 | B2 |
6939299 | Petersen et al. | Sep 2005 | B1 |
7074199 | Halperin et al. | Jul 2006 | B2 |
7108665 | Halperin et al. | Sep 2006 | B2 |
7118542 | Palazzolo et al. | Oct 2006 | B2 |
7122014 | Palazzolo et al. | Oct 2006 | B2 |
7220235 | Geheb et al. | May 2007 | B2 |
7295871 | Halperin et al. | Nov 2007 | B2 |
7409876 | Ganapathi et al. | Aug 2008 | B2 |
7518493 | Bryzek et al. | Apr 2009 | B2 |
7670861 | Hanaoka et al. | Mar 2010 | B2 |
8007436 | Katayama | Aug 2011 | B2 |
8034006 | Celik-Butler et al. | Oct 2011 | B2 |
20020055694 | Halperin et al. | May 2002 | A1 |
20020078954 | Davaris et al. | Jun 2002 | A1 |
20020180605 | Ozguz et al. | Dec 2002 | A1 |
20020193711 | Halperin et al. | Dec 2002 | A1 |
20030012231 | Tayebati et al. | Jan 2003 | A1 |
20030089394 | Chang-Chien et al. | May 2003 | A1 |
20030093248 | Vock et al. | May 2003 | A1 |
20040016995 | Kuo et al. | Jan 2004 | A1 |
20040082888 | Palazzolo et al. | Apr 2004 | A1 |
20040210170 | Palazzolo et al. | Oct 2004 | A1 |
20040210171 | Palazzolo et al. | Oct 2004 | A1 |
20050160814 | Vaganov et al. | Jul 2005 | A1 |
20050197672 | Freeman et al. | Sep 2005 | A1 |
20050266599 | Ikegami | Dec 2005 | A1 |
20060009809 | Marcovecchio et al. | Jan 2006 | A1 |
20060113537 | Krulevitch et al. | Jun 2006 | A1 |
20060235320 | Tan et al. | Oct 2006 | A1 |
20060247560 | Halperin et al. | Nov 2006 | A1 |
20070010764 | Palazzolo et al. | Jan 2007 | A1 |
20070018083 | Kumar et al. | Jan 2007 | A1 |
20070100379 | Tan et al. | May 2007 | A1 |
20070123756 | Kitajima et al. | May 2007 | A1 |
20070135739 | Halperin et al. | Jun 2007 | A1 |
20070162076 | Tan et al. | Jul 2007 | A1 |
20080171311 | Centen et al. | Jul 2008 | A1 |
20090152655 | Laming et al. | Jun 2009 | A1 |
20100288157 | LeFebvre et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
1057451 | Dec 2000 | EP |
1491176 | Dec 2004 | EP |
9731608 | Sep 1997 | WO |
2006088373 | Aug 2006 | WO |
2006104977 | Oct 2006 | WO |
Entry |
---|
Shamanna et al. disclosed Micromachined Integrated Pressure-Thermal Sensors on Flexible Substrates. |
Mahmood et al. disclosed Flexible Microbolometers Promise Smart Fabrics with Embedded Sensors. |
Mahmood et al. disclosed Micromachined Bolometers on Polyimide. |
Butler et al. disclosed Flexible Sensors-A Review. |
Celik-Butler, Z., et al., “Flexible Sensors: a Review,” J. Nanoelectronics and Optoelectronics, (2006), 1:194-202. |
Dayeh, S. A., et al., “Micromachined Infrared Bolometers on Flexible Polyimide Substrates,” Sensors and Actuators (2005), AI18:49-56. |
Mahmood, A., et al., “Flexible Microbolometers Promise Smart Fabrics with Imbedded Sensors,” Laser Focus World, (2004) pp. 99-103. |
Mahmood, A., et al., “Micromachined Bolometers on Polyimide,” Sensors and Actuators A, (2006), 132:452-459. |
Shamanna, V., et al., “Integrated Pressure-Thermal Sensors on Flexible Substrates,” Journal of Micromechanics and Microengineering (2006), 16:1984-1992. |
Yaradanakul, A., et al., “Uncooled Infrared Microbolometers on a Flexible Substrate,” IEEE Transactions on Electron Devices, (2002), 49:930-933. |
Yildiz, A., et al., “Microbolometers on a Flexible Substrate for Infrared Detection,” IEEE Sensors Journal, (2004), 4:112-117. |
Celik-Butler, Z, “Nano-Bio Interface,” BIOFW Regional Alliance, Southwestern Medical Center, Dallas, TX (Apr. 20, 2006). |
Celik-Butler, Z., et al., Self Packaged Flexible Electronics, IEEE-EDIS Distinguished Lecture, Tempe AZ (Jan. 13, 2006). |
Celik-Butler, Z., “Self-Packaged Flexible Electronics,” NanoTX, Dallas Convention Center, Dallas TX (Sep. 28, 2006). |
Celik-Butler, Z., et al., “Smart Skin,” Mid-Cities Technical Club Meeting, Arlington, TX (Mar. 3, 2004). |
Celik-Butler, Z., et al., “Smart Skin: Multifunctional Sensory Arrays on Flexible Substrates,” Strategic Partnership for Research in Nanotechnology (SPRING) Workshop 11, University of Texas at Dallas, (Nov. 12, 2004). |
Extended European Search Report for EP 08 45 0087 dated Aug. 28, 2008. |
International Search Report and Written Opinion for PCT/US2008/066842 dated Feb. 20, 2009. |
Number | Date | Country | |
---|---|---|---|
20100245114 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
60944479 | Jun 2007 | US |