This application claims priority to Korean Patent Application No. 10-2017-0161612, filed on Nov. 29, 2017 in the Korean Intellectual Property Office, the entire disclosure of which is incorporated herein by reference.
The present invention relates to a capply for a tire and a low-weight tire using the same, and more particularly, to a thin layer capply which is manufactured by spinning cord strands forming a capply cord in a thin tape form, thereby it is possible to maintain the same stiffness as a whole and reduce a weight of the tire, and a low-weight tire to which the thin layer capply is applied.
For reducing a weight of a tire, it is necessary to reduce the weight by applying various low-weight reinforcement materials while maintaining a strength or stiffness of the tire. As a solution for this, there is a method of reducing a rubber gauge, or a method of reducing the weights of a fiber cord and a steel cord used as a reinforcement material.
The fiber cord as a reinforcement material is used for a carcass ply, a capply, an edge ply, or the like. For these cords, fibers such as polyester, nylon, aramid, polyketone, or the like are used, and various application methods therefor according to an application have been studied.
In the recent global automobile market, a lot of resources and time have been invested to achieve a weight reduction of a vehicle to meet demands for environmental friendliness, that is, to cope with environmental problems in this era of high oil prices by developing relevant technologies.
Accordingly, in order to manufacture a lighter tire than the existing tire, studies for reducing a weight as well as maximally improving physical properties of the cords used as the reinforcement material for the tire have been continuously conducted.
For example, Korean Patent Laid-Open Publication No. 2016-0086157 (laid-open on Jul. 19, 2016) discloses a capply of a pneumatic tire and a method for manufacturing a capply of the pneumatic tire, and Korean Patent Registration No. 10-1342702 (registered on Dec. 17, 2013) discloses a tire cord and a tire including the same, however, these documents have not proposed an alternative solution in regard to the above problems.
In consideration of the above-mentioned circumstances, it is an object of the present invention to provide a thin layer capply which is manufactured by spinning cord strands used for a capply cord in a thin tape form, thereby it is possible to maintain the same stiffness as a whole and reduce a weight of the tire, and a low-weight tire to which the thin layer capply is applied.
In order to achieve the above object, according to an aspect of the present invention, there is provided a thin layer capply, including: a cord spinning layer which is formed in a thin tape form by spinning a plurality of cord strands; and a rubber coating layer which is coated on the cord spinning layer to cover an outer portion of the cord spinning layer.
Herein, the cord strand may be made of any one or more materials selected from polyester, nylon, aramid, polyketone, and polyethylene terephthalate (PET).
In addition, a fineness of warp yarn of the cord strands forming the cord spinning layer may be 6000 D to 14000 D, and the number of warp yarns may be 20 EA to 25 EA.
Further, the material strength of one cord strand may be 8 g/d to 11 g/d.
Further, a width of the thin layer capply may be 10 mm to 15 mm, and a thickness of the thin layer capply is 0.2 mm to 0.4 mm.
Furthermore, the rubber coating layer may be made of a compound including any one or more of resorcinol formalin latex (RFL), a maleic anhydride resin, and isocyanate.
According to another aspect of the present invention, there is provided a method of manufacturing a low-weight tire including: a step of forming a cord spinning layer by spinning a plurality of cord strands in a thin tape form; a rubber dip coating step of forming a rubber coating layer so as to cover an outer portion of the cord spinning layer; and a step of drying the rubber coating layer prepared through the rubber dip coating step by a dryer.
The thin layer capply and the low-weight tire to which the thin layer capply is applied according to the present invention have effects of reducing a rolling resistance of the tire through a weight reduction and improving fuel efficiency of a vehicle in which the tires are mounted while maintaining stiffness required for the tire, by forming the cord spinning layer in a thin tape form by spinning and depositing a plurality of cord strands, rather than twisting a plurality of cord strands to form the capply cord.
The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, so that persons having common knowledge in the technical field to which the present invention pertains may easily implement the invention. However, the present invention may be realized in various forms, and it is not limited to the embodiments described herein. In the drawings, publicly known functions and configurations that are judged to be able to make the purport of the present invention unnecessarily obscure will not be illustrated. Referring to the drawings, wherein like reference characters designate like or corresponding parts throughout the several views.
Referring to
The cord spinning layer 26 is formed in a thin tape form by spinning a plurality of cord strands 26a. In addition, the rubber coating layer 27 is formed by coating so as to cover the outer portion of the cord spinning layer 26.
In the present embodiment, an example, in which the cord strands 26a forming the cord spinning layer 26 are made of nylon, will be described. However, the present invention is not particularly limited thereto, and as long as the plurality of cord strands 26a are not twisted together, but can be spun to form the cord spinning layer 26 in the thin tape form, the cord strands may be made of any one or more materials selected from polyester, nylon, aramid, polyketone, and polyethylene terephthalate (PET).
Meanwhile, it is preferable that a fineness of warp yarn of the cord strands 26a forming the cord spinning layer 26 is 6000 D to 14000 D, and the number of warp yarns is 20 EA to 25 EA.
Herein, when the fineness of warp yarn of the cord strands 26a exceeds 14000 D, physical properties thereof may be more improved than those of a conventional capply 250. However, since the same material, nylon is used for manufacturing, a thickness of the cord strand is eventually increased. Accordingly, a thickness of a nylon strand (one warp yarn) is increased, and in this case, a phenomenon, in which the nylon cord strands (i.e., one warp yarn) are split apart from each other, occurs.
In addition, when the fineness of warp yarn of the applied cord strands 26a is less than 6000 D, since the thickness is too small, there is a need to satisfy the physical properties by increasing the number of warp yarns. In this case, since too many layers are laminated, rubber may not infiltrate at the time of rubber dip coating to be described below for forming the rubber coating layer 27. As a result, a phenomenon, in which the nylon cord strands (warp yarns) are split apart from each other, occurs.
In conclusion, when the linear density of the cord strands 26a forming the cord spinning layer 26 is within the range of 6000 D to 14000 D, the cord strands may be applied in the capply form without the phenomenon, in which the nylon cord strands are split apart from each other, as illustrated in
Further, the fineness of warp yarn is obtained by multiplying the number of warp yarns (the number of threads) and denier of the thread. In a case of the thin layer capply as the present embodiment, the capply is manufactured by laminating the warp yarns one by one. Accordingly, since the number of warp yarns exceeds 25 EA, which is too excessively large, the phenomenon in which the warp yarns are split apart from each other, occurs. When the number of warp yarns is less than 20 EA, which is excessively small, the physical properties required for the thin layer capply may not be achieved.
Meanwhile, it is preferable to use the cord strand 26a having a material strength of one warp yarn in a range of 8 g/d to 11 g/d. If the material strength thereof is out of the above range, the physical properties required for the capply of the present invention used for a low-weight tire are not satisfied.
The reason is as shown in Table 1 below. Table 1 shows results of a comparative experiment on a strength of the thin layer capply and a strength of the general nylon capply when the material strength of one warp yarn is 8 g/d to 11 g/d.
That is, as a result of the case in which the number of warp yarns is 25 EA (the maximum number of warp yarns), an excellent strength may be exhibited while decreasing thickness (g/A) as compared to the general nylon capply.
Meanwhile, the fiber cord itself is not adhesive to rubber. Therefore, in the present embodiment, as an example of a method for adhering the fiber cord to the rubber, a method, in which the fiber cord is first subject to an epoxy and isocyanate dip process and then subject to an RFL dip process, will be described.
That is, the fiber cord is activated through the epoxy and isocyanate dip process so as to sufficiently have solubility/hydrogen bond/reactive group/affinity which are insufficient in the fiber cord, and then, is subject to the RFL dip process so as to be adhered to the rubber.
However, the present invention is not particularly limited thereto, and as long as an adhesive force of the fiber cord itself to the rubber can be increased through the rubber coating layer, the rubber coating layer may be made of a rubber compound including any one or more of resorcinol formalin latex (RFL), a maleic anhydride resin, and isocyanate.
Referring to
At this time, in order to secure desired physical properties, the cord strand is spun to a specific denier, two plies are twisted to form a cord in a thread form, and the cord is topped with rubber through rolling and cutting processes, thereby manufacturing a sheet-like semifinished product.
However, in the case of thin layer capply 25 according to the present embodiment, the cord spinning layer 26 corresponding to the conventional capply cord 260 is manufactured by spinning the cord strands 26a, rather than twisting the cord strands 26a, and laminating the cord strands 26a in a thin tape form, and the rubber coating layer 27 is formed by coating the cord spinning layer 26 with rubber to cover the outer portion of the cord spinning layer 26. As a result, the thickness of the capply may be decreased and the weight thereof may be reduced to achieve the weight reduction, while maintaining the stiffness required for the capply forming the tire as it is.
Hereinafter, a process of manufacturing the thin layer capply 25 will be described with reference to
Referring to
Herein, in the cord spinning layer forming step (ST10), the cord spinning layer 26 is formed by spinning the plurality of cord strands 26a in a thin tape form.
Referring to
First, in the spinning step (ST11), the cord strands 26a formed by melt-spinning the nylon material are formed in a thin tape form.
In the depositing step (ST12), the plurality of cord strands 26a spun in the thin tape form are deposited to each other.
As shown in
Next, in the fixing step (ST13), the plurality of deposited cord strands 26a are fixed to maintain the thin tape form.
The cord spinning layer 26 formed in a sheet form through the above processes are wound in a roll form to complete a semifinished product of the thin layer capply 25 through the rubber coating layer forming step (ST20) to be described below.
Referring to
In the rubber dip coating step (ST21), the rubber coating layer 27 covering the outer portion of the cord spinning layer 26 is formed through the rubber dip coating process in which a wound roll having the sheet-like cord spinning layer 26 wound thereon is placed, and then the cord spinning layer 26 is unwound at a predetermined speed through transfer rollers, and passes through a tank 28 filled with the above-described rubber compound to be thinly coated with the rubber.
Further, in the drying step (ST22), the thin layer capply 25 is completed by passing the rubber coating layer 27 coated on the outer portion of the sheet-like cord spinning layer 26 through the rubber dip coating process by a dryer 29.
Then, the completed thin layer capply 25 is cut according to a size of a tire to be completed when molding the tire, and is wound in a roll.
According to the process of manufacturing the thin layer capply 25 of the present embodiment, the rolling process is excluded, thus productivity may be improved through simplification of the manufacturing process, in comparison to the process of manufacturing the general nylon capply 250 conventionally used, and since the cord spinning layer 26 applied to the thin layer capply 25 is manufactured in a thin tape form by spinning, the thickness of the capply may be decreased while maintaining the stiffness required for the capply as compared to the conventionally used nylon capply 250, and weight reduction of the tire using the thin layer capply 25 may be achieved.
Hereinafter, a low-weight tire 1 to which the thin layer capply 25 is applied will be described with reference to
Referring to
In the tread part 10, the shoulder part 20, the side wall part 30, and the bead part 40, a carcass ply 60 serving as a frame of the tire is laminated on an inner liner 50 having excellent air-tightness, and extends along a width direction of the tire.
In the tread portion 10, a belt 11 and a tread rubber layer 12 are sequentially laminated on the carcass ply 60.
The belt 11 which is a special cord fabric positioned between the carcass ply 60 and an under tread 15 alleviates external shock and prevents cracks or external damage generated at the tread rubber layer 12 from directly propagating to the carcass ply 60.
The shoulder part 20 has a thickness gradually decreased from the tread part 10, and is a portion to be connected with the side wall part 30.
The side wall rubber layer 31 which forms an outer side surface of the tire and is made of rubber covers the carcass ply 60 to protect the same, and supports a load of the vehicle and alleviates external shock caused by contraction and expansion.
Further, at the bead part 40, an end portion of the carcass ply 60 is turned up (bent upward) to enclose a bead wire 41 and an apex 42 to be adhered thereto.
Meanwhile, the turned up part 65 of the carcass ply 60 is formed to partially cover at an outside of the side wall part 30 adjacent to the bead part 40.
The bead wire 41 which is a bundle of wires in which a steel wire is coated with rubber serves as a frame for coupling and fixing the tire to a rim.
The apex 42 is formed in a triangle shape in which a width is gradually decreased upward from the bead wire 41, prevents dispersion of the bead wire 41, alleviates shock, and prevents pneumaticity from occurring at the bead part 40 at the time of molding.
Meanwhile, the capply 25 covering an upper side of the belt 11 is laminated in the tread part 10 and the shoulder part 20.
The capply 25 which is a special cord fabric adhered to the belt 11 may minimize a movement of the belt 11 at the time of driving, thereby preventing a separation phenomenon at the time of high-speed driving.
Herein, as the capply, the above-described thin layer capply 25 is used.
Meanwhile, it is preferable that the thin layer capply 25 applied to the low-weight tire 1 is cut to have a width within a range of 10 mm to 15 mm.
The above table 2 shows results of an experiment of comparing a weight of a semifinished product of the thin layer capply 25 according to a cut width of the thin layer capply, a weight of the low-weight tire 1 to which the thin layer capply 25 is applied, rolling resistance (RRc, %), defined tire high speed durability (ECE-R30, FMVSS-139H, %), and tire load durability (FMVSS-139E, %) in a case in which the cut width is 10 mm.
Accordingly, when the cut width of the thin layer capply 25 is less than 10 mm, the thin layer capply 25 encloses the tire 1 excessively densely, such that the durability of the tire is deteriorated (Experimental Example 8, 5 mm), and when the cut width of the thin layer capply 25 exceeds 15 mm, the thin layer capply 25 is wound too little, such that the tire 1 is deformed at the time of molding the tire, resulting in a relative deterioration in the performance (Experimental Example 9, 20 mm).
As such, when the width of the thin layer capply 25 is within the range of 10 mm to 15 mm, the physical properties of the tire may be preserved, and weight reduction of the tire may be achieved (Experimental Examples 6 and 7).
The above table 3 shows results of an experiment on a weight of a semifinished product of the thin layer capply 25, a weight of the low-weight tire 1 to which the thin layer capply 25 is applied, rolling resistance (RRc, %), defined tire high speed durability (ECE-R30, FMVSS-139H, %), and tire load durability (FMVSS-139E, %), based on comparison between the conventional tire to which the conventional general capply 250 is applied and the low-weight tire 1 to which the thin layer capply 25 according to the present invention is applied.
The capply 250 used for the conventional radial tire for a vehicle has a thickness of 0.8 mm to 1.2 mm. However, the thin layer capply 25 of Experimental Examples 10 to 13 according to the present embodiment may be configured to have a thickness of 0.2 mm to 0.4 mm.
In the case of the conventional radial tire for a vehicle, the capply 250 made of a nylon material is wound in a winding type A, whereas, in Experimental Example 10 according to the present invention, the thin layer capply 25 made of a PET material differently from the conventional capply is wound in the winding type A, and in Experimental Examples 11 to 13, the same nylon material as that of the conventional capply is used, but the thin layer capplies 25 are wound in different winding types A, B, and C, respectively.
Herein, the winding type A means that the capply 25 is wound to entirely cover the belt layer 11, the winding type B means that the capply 25 is further wound around only both edges of the belt layer 11 in addition to the winding type A, and the winding type C means that the capply 25 is wound at a winding interval smaller than that of the winding type A.
All of Experimental Examples 10 to 13 in which the thin layer capply 2 according to the present invention is applied show that the weight of the tire may be reduced as compared to the tire to which the conventional capply 250 is applied, and Experimental Examples 11 to 13 show that even when the thin layer capply 25 made of the same nylon material is applied, the weight becomes different depending on the winding type of the capply.
Accordingly, in the case of the low-weight tire 1 to which the thin layer capply 25 according to the present embodiment is applied, as compared to the tire to which the conventional capply 250 is applied, the weight (%) of semifinished product may be reduced by 40% to 50%, the weight (%) of the tire may be reduced by 8% to 10%, and the rolling resistance (RRc, %), the defined tire high speed durability (ECE-R30, FMVSS-139H, %), and the tire load durability (FMVSS-139E, %) may be improved by 4% to 6%, 2% to 5%, and 2% to 5%, respectively. As a result, it is possible to improve fuel efficiency of the vehicle.
While the present invention has been described with reference to the preferred embodiments and modified examples, the present invention is not limited to the above-described specific embodiments and the modified examples, and it will be understood by those skilled in the related art that various modifications and variations may be made therein without departing from the scope of the present invention as defined by the appended claims, as well as these modifications and variations should not be understood separately from the technical spirit and prospect of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0161612 | Nov 2017 | KR | national |