An artificial reality system, such as a head-mounted display (HMD) or heads-up display (HUD) system, generally includes a near-eye display (e.g., in the form of a headset or a pair of glasses) configured to present content to a user via an electronic or optic display in front of the user's eyes (e.g., about 10-20 mm away from the user's eyes). The near-eye display may present virtual objects or combine images of real objects with virtual objects, as in virtual reality (VR), augmented reality (AR), or mixed reality (MR) applications. For example, in an AR system, a user may view both images of virtual objects (e.g., computer-generated images) and the surrounding environment by, for example, seeing through transparent display glasses or lenses (often referred to as optical see-through) or viewing displayed images of the surrounding environment captured by a camera (often referred to as video see-through).
A near-eye display generally includes an optical system configured to form an image of a computer-generated image on an image plane. The optical system of the near-eye display may relay the image generated by an image source (e.g., a display panel) to create a virtual image that appears to be away from the image source and further than just a few centimeters away from the user's eyes. For example, the optical system may collimate the light from the image source or otherwise convert spatial information of the displayed virtual objects into angular information to create a virtual image that may appear to be far away. The optical system may also magnify the image source to make the image appear larger than the actual size of the image source. It is generally desirable that the optical system of a near-eye display has a small size, a low weight, a large field of view, a large eye box, a high efficiency, and a low cost.
This disclosure relates generally to polarization conversion and polarized light generation. More specifically, disclosed herein are techniques for converting the polarization state of an incident light beam or otherwise generating a light beam with a desired polarization state using a stack of thin liquid crystal layers. The stack of thin liquid crystal layers may have a low thickness (and thus a low weight) and a low loss (and thus a high efficiency) compared with existing polarization conversion and polarized light generation techniques. Polarization converters or polarization beam generators disclosed herein can be used in various optical systems (e.g., near-eye displays) that may utilize polarized light to achieve desired functions. Various inventive embodiments are described herein, including devices, systems, methods, materials, processes, and the like.
According to certain embodiments, a device may include a geometric phase grating and an angular selective waveplate. The geometric phase grating may include a first liquid crystal layer and may diffract an incident light beam into a first light beam and a second light beam. The first light beam may be characterized by a first polarization state and may propagate in a first direction, and the second light beam may be characterized by a second polarization state and may propagate in a second direction. The angular selective waveplate may include a second liquid crystal layer. The angular selective waveplate may be a zero or full-wave plate for the first light beam incident in the first direction, and a half-wave plate for the second light beam incident in the second direction.
In some embodiments of the device, the geometric phase grating may include a Pancharatnam-Berry phase (PBP) grating. In some embodiments, a thickness and a material of the PBP grating may be selected such that a birefringence of the PBP grating is about a half wavelength. In some embodiments, the first polarization state is a right-handed circular polarization, and the second polarization state is a left-handed circular polarization. In some embodiments, the first polarization state is a left-handed circular polarization, and the second polarization state is a right-handed circular polarization. In some embodiments, the angular selective waveplate may include a homogeneous oblique plate including liquid crystal molecules tilted uniformly at an oblique angle, or a splayed plate including liquid crystal molecules aligned at different respective angles in different layers.
In some embodiments, the device may include a polarizer after the angular selective waveplate and configured to transmit light in the first polarization state and block light in the second polarization state. In some embodiments, the device may include a second geometric phase grating after the angular selective waveplate, the second geometric phase grating configured to change polarization states of the first light beam and the second light beam that pass through the angular selective waveplate. The second geometric phase grating may include a geometric phase lens configured to collimate the first light beam and the second light beam that pass through the angular selective waveplate. In some embodiments, the device may include a polarizer after the second geometric phase grating, the polarizer configured to transmit light in the second polarization state and block light in the first polarization state.
In some embodiments, the device may include a depolarizer configured to depolarize the incident light beam before the incident light beam reaches the geometric phase grating. In some embodiments, the device may include a collimator configured to collimate the first light beam and the second light beam that pass through the angular selective waveplate, wherein the collimator comprises at least one of a refractive lens, a Fresnel lens, or a geometric phase lens. In some embodiments, the device may include a waveplate configured to covert circularly polarized light to linearly polarized light.
According to certain embodiments, a polarization converter may include a first geometric phase grating and an angular selective waveplate. The first geometric phase grating may be configured to diffract an incident light beam into a first light beam and a second light beam. The first light beam may be characterized by a first circular polarization state and a first propagation direction, and the second light beam may be characterized by a second circular polarization state and a second propagation direction. The angular selective waveplate may be configured to receive the first light beam and the second light beam from the first geometric phase grating, maintain the first circular polarization state of the first light beam incident in the first direction, and change a polarization state of the second light beam incident in the second direction from the second circular polarization state to the first circular polarization state.
In some embodiments of the polarization converter, the first geometric phase grating may include a Pancharatnam-Berry phase (PBP) grating. In some embodiments, the angular selective waveplate may include a homogeneous oblique plate including liquid crystal molecules tilted uniformly at an oblique angle, or a splayed plate including liquid crystal molecules aligned at different respective angles in different layers. In some embodiments, the polarization converter may include a circular polarizer configured to transmit light in the first circular polarization state and block light in the second circular polarization state. In some embodiments, the polarization converter may include a second geometric phase grating configured to change polarization states of the first light beam and the second light beam that pass through the angular selective waveplate. The second geometric phase grating may include a geometric phase lens configured to collimate the first light beam and the second light beam that pass through the angular selective waveplate. In some embodiments, the polarization converter may include a circular polarizer configured to transmit light in the second circular polarization state and block light in the first circular polarization state, a quarter-wave plate configured to covert circularly polarized light into linearly polarized light, or both. In some embodiments, the polarization converter may include a collimator configured to collimate the first light beam and the second light beam that pass through the angular selective waveplate, the collimator including at least one of a refractive lens, a Fresnel lens, or a geometric phase lens. In some embodiments, the polarization converter may include a depolarizer configured to depolarize the incident light beam before the incident light beam reaches the first geometric phase grating.
This summary is neither intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this disclosure, any or all drawings, and each claim. The foregoing, together with other features and examples, will be described in more detail below in the following specification, claims, and accompanying drawings.
Illustrative embodiments are described in detail below with reference to the following figures.
The figures depict embodiments of the present disclosure for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated may be employed without departing from the principles, or benefits touted, of this disclosure.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
Techniques disclosed herein relate generally to polarization conversion and polarized light generation. More specifically, disclosed herein are techniques for converting the polarization state of an incident light beam or generating a light beam with a certain polarization state using a stack of thin liquid crystal layers. The stack of thin liquid crystal layers may have a low thickness (and thus a low weight) and a low polarization conversion loss (and thus a high efficiency) compared with existing techniques. Polarization converters or polarization beam generators disclosed herein can be used in various optical systems that may utilize polarized light to achieve desired functions. For example, the polarization converters may be used as part of display optics in near-eye displays to reduce the sizes and dimensions of the near-eye displays. Various inventive embodiments are described herein, including devices, systems, methods, materials, and the like.
In many optical systems, linearly or circularly polarized light beams may be used to achieve various functions, such as beam splitting, combining, multiplexing, or other polarization-dependent (or polarization directed) light processing. For example, in some optical systems, light beams of a certain polarization state may be reflected or deflected by a polarization-dependent device to change (e.g., bend or fold) the optical paths of the light beams and/or may be converted to light beams in a different polarization state to pass through the polarization-dependent device. In another example, polarized light may be used in liquid crystal-on-silicon (LCoS) projection display systems, where the intensity of the light displayed to a user may be controlled by modulating the polarization state (e.g., polarization direction) of the illumination light. The linearly or circularly polarized light beams may be generated or converted from an unpolarized or partially polarized light beam emitted by a light source, such as a laser or a light emitting device (LED). The polarized light beams may be generated using polarization converters or polarization generators, such as waveplates (e.g., quarter-wave plates or half-wave plates), polarizing plate beam splitters (e.g., cube beam splitters), and absorbance polarizers that may absorb light in a certain polarization state while allowing light in a different (e.g., orthogonal) polarization state to pass through such that the transmitted beam may have a desired polarization state. These polarization converters and polarization generators are generally bulky and/or may have a high loss and thus a low conversion efficiency.
According to certain embodiments, a polarization converter or polarization beam generator may include a polarization-dependent grating and an angular selective waveplate arranged in a stack. The polarization-dependent grating may diffract incident light in different polarization states to different directions. For example, the polarization-dependent grating may include a geometric phase grating, such as a Pancharatnam-Berry phase (PBP) grating, that may diffract an unpolarized incident beam into a first light beam that is right-handed circularly polarized and propagates in a first direction, and a second light beam that is left-handed circularly polarized and propagates in a second direction. The angular selective waveplate may maintain or change the polarization state of an incident light beam, depending on the incident angle and the polarization state of the incident light beam. For example, the angular selective waveplate may maintain the polarization state of the right-handed circularly polarized light beam propagating in the first direction, while changing the polarization state of the left-handed circularly polarized light beam propagating in the second direction to right-handed circular polarization. As such, the light beams after passing through the angular selective waveplate may have the same polarization state (e.g., right-handed circular polarization). The light beams may optionally be filtered by a polarizer to remove components in other polarization states (if any). In some embodiments, the light beams may be collimated (or focused) by a geometric phase lens, such as a PBP lens, which may also change the polarization states of the beams, such as from right-handed circular polarization to left-handed circular polarization.
Polarization converters and polarization beam generators disclosed herein may have a low thickness and thus a low weight, compared to existing polarization converters and polarization beam generators. For example, each of the polarization-dependent grating and the angular selective waveplate may have a respective liquid crystal layer with a thickness less than a few microns or a few tens of microns (e.g., less than about 100, 50, 20, or 10 μm). Thus, the stack may have a thickness of a few tens of microns. Moreover, compared with other polarization converters and polarization beam generators, the polarization converters and polarization beam generators disclosed herein can achieve a much lower conversion loss and thus a higher conversion efficiency.
In the following description, for the purposes of explanation, specific details are set forth in order to provide a thorough understanding of examples of the disclosure. However, it will be apparent that various examples may be practiced without these specific details. For example, devices, systems, structures, assemblies, methods, and other components may be shown as components in block diagram form in order not to obscure the examples in unnecessary detail. In other instances, well-known devices, processes, systems, structures, and techniques may be shown without necessary detail in order to avoid obscuring the examples. The figures and description are not intended to be restrictive. The terms and expressions that have been employed in this disclosure are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof. The word “example” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “example” is not necessarily to be construed as preferred or advantageous over other embodiments or designs.
Near-eye display 120 may be a head-mounted display that presents content to a user. Examples of content presented by near-eye display 120 include one or more of images, videos, audio, or any combination thereof. In some embodiments, audio may be presented via an external device (e.g., speakers and/or headphones) that receives audio information from near-eye display 120, console 110, or both, and presents audio data based on the audio information. Near-eye display 120 may include one or more rigid bodies, which may be rigidly or non-rigidly coupled to each other. A rigid coupling between rigid bodies may cause the coupled rigid bodies to act as a single rigid entity. A non-rigid coupling between rigid bodies may allow the rigid bodies to move relative to each other. In various embodiments, near-eye display 120 may be implemented in any suitable form-factor, including a pair of glasses. Some embodiments of near-eye display 120 are further described below with respect to
In various embodiments, near-eye display 120 may include one or more of display electronics 122, display optics 124, and an eye-tracking unit 130. In some embodiments, near-eye display 120 may also include one or more locators 126, one or more position sensors 128, and an inertial measurement unit (IMU) 132. Near-eye display 120 may omit any of eye-tracking unit 130, locators 126, position sensors 128, and IMU 132, or include additional elements in various embodiments. Additionally, in some embodiments, near-eye display 120 may include elements combining the function of various elements described in conjunction with
Display electronics 122 may display or facilitate the display of images to the user according to data received from, for example, console 110. In various embodiments, display electronics 122 may include one or more display panels, such as a liquid crystal display (LCD), an organic light emitting diode (OLED) display, an inorganic light emitting diode (ILED) display, a micro light emitting diode (μLED) display, an active-matrix OLED display (AMOLED), a transparent OLED display (TOLED), or some other display. For example, in one implementation of near-eye display 120, display electronics 122 may include a front TOLED panel, a rear display panel, and an optical component (e.g., an attenuator, polarizer, or diffractive or spectral film) between the front and rear display panels. Display electronics 122 may include pixels to emit light of a predominant color such as red, green, blue, white, or yellow. In some implementations, display electronics 122 may display a three-dimensional (3D) image through stereoscopic effects produced by two-dimensional panels to create a subjective perception of image depth. For example, display electronics 122 may include a left display and a right display positioned in front of a user's left eye and right eye, respectively. The left and right displays may present copies of an image shifted horizontally relative to each other to create a stereoscopic effect (i.e., a perception of image depth by a user viewing the image).
In certain embodiments, display optics 124 may display image content optically (e.g., using optical waveguides and couplers) or magnify image light received from display electronics 122, correct optical errors associated with the image light, and present the corrected image light to a user of near-eye display 120. In various embodiments, display optics 124 may include one or more optical elements, such as, for example, a substrate, optical waveguides, an aperture, a Fresnel lens, a convex lens, a concave lens, a filter, input/output couplers, or any other suitable optical elements that may affect image light emitted from display electronics 122. Display optics 124 may include a combination of different optical elements as well as mechanical couplings to maintain relative spacing and orientation of the optical elements in the combination. One or more optical elements in display optics 124 may have an optical coating, such as an anti-reflective coating, a reflective coating, a filtering coating, or a combination of different optical coatings.
Magnification of the image light by display optics 124 may allow display electronics 122 to be physically smaller, weigh less, and consume less power than larger displays. Additionally, magnification may increase a field of view of the displayed content. The amount of magnification of image light by display optics 124 may be changed by adjusting, adding, or removing optical elements from display optics 124. In some embodiments, display optics 124 may project displayed images to one or more image planes that may be further away from the user's eyes than near-eye display 120.
Display optics 124 may also be designed to correct one or more types of optical errors, such as two-dimensional optical errors, three-dimensional optical errors, or any combination thereof. Two-dimensional errors may include optical aberrations that occur in two dimensions. Example types of two-dimensional errors may include barrel distortion, pincushion distortion, longitudinal chromatic aberration, and transverse chromatic aberration. Three-dimensional errors may include optical errors that occur in three dimensions. Example types of three-dimensional errors may include spherical aberration, comatic aberration, field curvature, and astigmatism.
Locators 126 may be objects located in specific positions on near-eye display 120 relative to one another and relative to a reference point on near-eye display 120. In some implementations, console 110 may identify locators 126 in images captured by external imaging device 150 to determine the artificial reality headset's position, orientation, or both. A locator 126 may be a light emitting diode (LED), a corner cube reflector, a reflective marker, a type of light source that contrasts with an environment in which near-eye display 120 operates, or any combination thereof. In embodiments where locators 126 are active components (e.g., LEDs or other types of light emitting devices), locators 126 may emit light in the visible band (e.g., about 380 nm to 750 nm), in the infrared (IR) band (e.g., about 750 nm to 1 mm), in the ultraviolet band (e.g., about 10 nm to about 380 nm), in another portion of the electromagnetic spectrum, or in any combination of portions of the electromagnetic spectrum.
External imaging device 150 may include one or more cameras, one or more video cameras, any other device capable of capturing images including one or more of locators 126, or any combination thereof. Additionally, external imaging device 150 may include one or more filters (e.g., to increase signal to noise ratio). External imaging device 150 may be configured to detect light emitted or reflected from locators 126 in a field of view of external imaging device 150. In embodiments where locators 126 include passive elements (e.g., retroreflectors), external imaging device 150 may include a light source that illuminates some or all of locators 126, which may retro-reflect the light to the light source in external imaging device 150. Slow calibration data may be communicated from external imaging device 150 to console 110, and external imaging device 150 may receive one or more calibration parameters from console 110 to adjust one or more imaging parameters (e.g., focal length, focus, frame rate, sensor temperature, shutter speed, aperture, etc.).
Position sensors 128 may generate one or more measurement signals in response to motion of near-eye display 120. Examples of position sensors 128 may include accelerometers, gyroscopes, magnetometers, other motion-detecting or error-correcting sensors, or any combination thereof. For example, in some embodiments, position sensors 128 may include multiple accelerometers to measure translational motion (e.g., forward/back, up/down, or left/right) and multiple gyroscopes to measure rotational motion (e.g., pitch, yaw, or roll). In some embodiments, various position sensors may be oriented orthogonally to each other.
IMU 132 may be an electronic device that generates fast calibration data based on measurement signals received from one or more of position sensors 128. Position sensors 128 may be located external to IMU 132, internal to IMU 132, or any combination thereof. Based on the one or more measurement signals from one or more position sensors 128, IMU 132 may generate fast calibration data indicating an estimated position of near-eye display 120 relative to an initial position of near-eye display 120. For example, IMU 132 may integrate measurement signals received from accelerometers over time to estimate a velocity vector and integrate the velocity vector over time to determine an estimated position of a reference point on near-eye display 120. Alternatively, IMU 132 may provide the sampled measurement signals to console 110, which may determine the fast calibration data. While the reference point may generally be defined as a point in space, in various embodiments, the reference point may also be defined as a point within near-eye display 120 (e.g., a center of IMU 132).
Eye-tracking unit 130 may include one or more eye-tracking systems. Eye tracking may refer to determining an eye's position, including orientation and location of the eye, relative to near-eye display 120. An eye-tracking system may include an imaging system to image one or more eyes and may optionally include a light emitter, which may generate light that is directed to an eye such that light reflected by the eye may be captured by the imaging system. For example, eye-tracking unit 130 may include a non-coherent or coherent light source (e.g., a laser diode) emitting light in the visible spectrum or infrared spectrum, and a camera capturing the light reflected by the user's eye. As another example, eye-tracking unit 130 may capture reflected radio waves emitted by a miniature radar unit. Eye-tracking unit 130 may use low-power light emitters that emit light at frequencies and intensities that would not injure the eye or cause physical discomfort. Eye-tracking unit 130 may be arranged to increase contrast in images of an eye captured by eye-tracking unit 130 while reducing the overall power consumed by eye-tracking unit 130 (e.g., reducing power consumed by a light emitter and an imaging system included in eye-tracking unit 130). For example, in some implementations, eye-tracking unit 130 may consume less than 100 milliwatts of power.
Near-eye display 120 may use the orientation of the eye to, e.g., determine an inter-pupillary distance (IPD) of the user, determine gaze direction, introduce depth cues (e.g., blur image outside of the user's main line of sight), collect heuristics on the user interaction in the VR media (e.g., time spent on any particular subject, object, or frame as a function of exposed stimuli), some other functions that are based in part on the orientation of at least one of the user's eyes, or any combination thereof. Because the orientation may be determined for both eyes of the user, eye-tracking unit 130 may be able to determine where the user is looking. For example, determining a direction of a user's gaze may include determining a point of convergence based on the determined orientations of the user's left and right eyes. A point of convergence may be the point where the two foveal axes of the user's eyes intersect. The direction of the user's gaze may be the direction of a line passing through the point of convergence and the mid-point between the pupils of the user's eyes.
Input/output interface 140 may be a device that allows a user to send action requests to console 110. An action request may be a request to perform a particular action. For example, an action request may be to start or to end an application or to perform a particular action within the application. Input/output interface 140 may include one or more input devices. Example input devices may include a keyboard, a mouse, a game controller, a glove, a button, a touch screen, or any other suitable device for receiving action requests and communicating the received action requests to console 110. An action request received by the input/output interface 140 may be communicated to console 110, which may perform an action corresponding to the requested action. In some embodiments, input/output interface 140 may provide haptic feedback to the user in accordance with instructions received from console 110. For example, input/output interface 140 may provide haptic feedback when an action request is received, or when console 110 has performed a requested action and communicates instructions to input/output interface 140. In some embodiments, external imaging device 150 may be used to track input/output interface 140, such as tracking the location or position of a controller (which may include, for example, an IR light source) or a hand of the user to determine the motion of the user. In some embodiments, near-eye display 120 may include one or more imaging devices to track input/output interface 140, such as tracking the location or position of a controller or a hand of the user to determine the motion of the user.
Console 110 may provide content to near-eye display 120 for presentation to the user in accordance with information received from one or more of external imaging device 150, near-eye display 120, and input/output interface 140. In the example shown in
In some embodiments, console 110 may include a processor and a non-transitory computer-readable storage medium storing instructions executable by the processor. The processor may include multiple processing units executing instructions in parallel. The non-transitory computer-readable storage medium may be any memory, such as a hard disk drive, a removable memory, or a solid-state drive (e.g., flash memory or dynamic random-access memory (DRAM)). In various embodiments, the modules of console 110 described in conjunction with
Application store 112 may store one or more applications for execution by console 110. An application may include a group of instructions that, when executed by a processor, generates content for presentation to the user. Content generated by an application may be in response to inputs received from the user via movement of the user's eyes or inputs received from the input/output interface 140. Examples of the applications may include gaming applications, conferencing applications, video playback application, or other suitable applications.
Headset tracking module 114 may track movements of near-eye display 120 using slow calibration information from external imaging device 150. For example, headset tracking module 114 may determine positions of a reference point of near-eye display 120 using observed locators from the slow calibration information and a model of near-eye display 120. Headset tracking module 114 may also determine positions of a reference point of near-eye display 120 using position information from the fast calibration information. Additionally, in some embodiments, headset tracking module 114 may use portions of the fast calibration information, the slow calibration information, or any combination thereof, to predict a future location of near-eye display 120. Headset tracking module 114 may provide the estimated or predicted future position of near-eye display 120 to artificial reality engine 116.
Artificial reality engine 116 may execute applications within artificial reality system environment 100 and receive position information of near-eye display 120, acceleration information of near-eye display 120, velocity information of near-eye display 120, predicted future positions of near-eye display 120, or any combination thereof from headset tracking module 114. Artificial reality engine 116 may also receive estimated eye position and orientation information from eye-tracking module 118. Based on the received information, artificial reality engine 116 may determine content to provide to near-eye display 120 for presentation to the user. For example, if the received information indicates that the user has looked to the left, artificial reality engine 116 may generate content for near-eye display 120 that mirrors the user's eye movement in a virtual environment. Additionally, artificial reality engine 116 may perform an action within an application executing on console 110 in response to an action request received from input/output interface 140 and may provide feedback to the user indicating that the action has been performed. The feedback may be visual or audible feedback via near-eye display 120 or haptic feedback via input/output interface 140.
Eye-tracking module 118 may receive eye-tracking data from eye-tracking unit 130 and determine the position of the user's eye based on the eye tracking data. The position of the eye may include an eye's orientation, location, or both relative to near-eye display 120 or any element thereof. Because the eye's axes of rotation change as a function of the eye's location in its socket, determining the eye's location in its socket may allow eye-tracking module 118 to more accurately determine the eye's orientation.
HMD device 200 may present to a user media including virtual and/or augmented views of a physical, real-world environment with computer-generated elements. Examples of the media presented by HMD device 200 may include images (e.g., two-dimensional (2D) or three-dimensional (3D) images), videos (e.g., 2D or 3D videos), audio, or any combination thereof. The images and videos may be presented to each eye of the user by one or more display assemblies (not shown in
In some implementations, HMD device 200 may include various sensors (not shown), such as depth sensors, motion sensors, position sensors, and eye tracking sensors. Some of these sensors may use a structured light pattern for sensing. In some implementations, HMD device 200 may include an input/output interface for communicating with a console. In some implementations, HMD device 200 may include a virtual reality engine (not shown) that can execute applications within HMD device 200 and receive depth information, position information, acceleration information, velocity information, predicted future positions, or any combination thereof of HMD device 200 from the various sensors. In some implementations, the information received by the virtual reality engine may be used for producing a signal (e.g., display instructions) to the one or more display assemblies. In some implementations, HMD device 200 may include locators (not shown, such as locators 126) located in fixed positions on body 220 relative to one another and relative to a reference point. Each of the locators may emit light that is detectable by an external imaging device.
Near-eye display 300 may further include various sensors 350a, 350b, 350c, 350d, and 350e on or within frame 305. In some embodiments, sensors 350a-350e may include one or more depth sensors, motion sensors, position sensors, inertial sensors, or ambient light sensors. In some embodiments, sensors 350a-350e may include one or more image sensors configured to generate image data representing different fields of views in different directions. In some embodiments, sensors 350a-350e may be used as input devices to control or influence the displayed content of near-eye display 300, and/or to provide an interactive VR/AR/MR experience to a user of near-eye display 300. In some embodiments, sensors 350a-350e may also be used for stereoscopic imaging.
In some embodiments, near-eye display 300 may further include one or more illuminators 330 to project light into the physical environment. The projected light may be associated with different frequency bands (e.g., visible light, infra-red light, ultra-violet light, etc.), and may serve various purposes. For example, illuminator(s) 330 may project light in a dark environment (or in an environment with low intensity of infra-red light, ultra-violet light, etc.) to assist sensors 350a-350e in capturing images of different objects within the dark environment. In some embodiments, illuminator(s) 330 may be used to project certain light patterns onto the objects within the environment. In some embodiments, illuminator(s) 330 may be used as locators, such as locators 126 described above with respect to
In some embodiments, near-eye display 300 may also include a high-resolution camera 340. Camera 340 may capture images of the physical environment in the field of view. The captured images may be processed, for example, by a virtual reality engine (e.g., artificial reality engine 116 of
Combiner 415 may include an input coupler 430 for coupling light from projector 410 into a substrate 420 of combiner 415. Combiner 415 may transmit at least 50% of light in a first wavelength range and reflect at least 25% of light in a second wavelength range. For example, the first wavelength range may be visible light from about 400 nm to about 650 nm, and the second wavelength range may be in the infrared band, for example, from about 800 nm to about 1000 nm. Input coupler 430 may include a volume holographic grating, a diffractive optical element (DOE) (e.g., a surface-relief grating), a slanted surface of substrate 420, or a refractive coupler (e.g., a wedge or a prism). For example, input coupler 430 may include a reflective volume Bragg grating or a transmissive volume Bragg grating. Input coupler 430 may have a coupling efficiency of greater than 30%, 50%, 75%, 90%, or higher for visible light. Light coupled into substrate 420 may propagate within substrate 420 through, for example, total internal reflection (TIR). Substrate 420 may be in the form of a lens of a pair of eyeglasses. Substrate 420 may have a flat or a curved surface, and may include one or more types of dielectric materials, such as glass, quartz, plastic, polymer, poly(methyl methacrylate) (PMMA), crystal, or ceramic. A thickness of the substrate may range from, for example, less than about 1 mm to about 10 mm or more. Substrate 420 may be transparent to visible light.
Substrate 420 may include or may be coupled to a plurality of output couplers 440, each configured to extract at least a portion of the light guided by and propagating within substrate 420 from substrate 420, and direct extracted light 460 to an eyebox 495 where an eye 490 of the user of augmented reality system 400 may be located when augmented reality system 400 is in use. The plurality of output couplers 440 may replicate the exit pupil to increase the size of eyebox 495 such that the displayed image is visible in a larger area. As input coupler 430, output couplers 440 may include grating couplers (e.g., volume holographic gratings or surface-relief gratings), other diffraction optical elements, prisms, etc. For example, output couplers 440 may include reflective volume Bragg gratings or transmissive volume Bragg gratings. Output couplers 440 may have different coupling (e.g., diffraction) efficiencies at different locations. Substrate 420 may also allow light 450 from the environment in front of combiner 415 to pass through with little or no loss. Output couplers 440 may also allow light 450 to pass through with little loss. For example, in some implementations, output couplers 440 may have a very low diffraction efficiency for light 450 such that light 450 may be refracted or otherwise pass through output couplers 440 with little loss, and thus may have a higher intensity than extracted light 460. In some implementations, output couplers 440 may have a high diffraction efficiency for light 450 and may diffract light 450 in certain desired directions (i.e., diffraction angles) with little loss. As a result, the user may be able to view combined images of the environment in front of combiner 415 and images of virtual objects projected by projector 410.
In some embodiments, display optics 124 or projector optics 414 may display image content optically (e.g., using optical waveguides and optical couplers), correct optical errors associated with the image light, combine images of virtual objects and real objects, and present the corrected image light to the user's eyes. The display optics or projector optics may relay the image to create virtual images that appear to be away from the image source and further than just a few centimeters away from the eyes of the user. For example, the display optics or projector optics may collimate light from the image source to create a virtual image that may appear to be far away, and convert spatial information of the displayed virtual objects into angular information. The display optics or projector optics may also magnify the image source to make the image appear larger than the actual size of the image source. The display optics or projector optics may be large and heavy if implemented using conventional optics. In some implementations, folded optics including reflective optical elements may be used to implement compact near-eye display systems. In some embodiments, liquid crystal-on-silicon (LCoS) projection display systems may be used to implement near-eye display systems.
In the example shown in
PBS 540 may transmit p-wave light while reflecting s-wave light. Thus, s-wave light beam from polarization conversion element 520 and magnification optics 530 may be reflected by PBS 540 towards LCoS micro-display device 550. When polarized light is incident on LCoS micro-display device 550, its polarization state may be modulated by the liquid crystal layer and may be reflected by the reflectors (e.g., aluminum mirrors) back to PBS 540. PBS 540 may split the modulated light by reflecting s-wave light and transmitting p-wave light towards viewing optics 560 (e.g., one or more lenses) for displaying to the user. The intensity of the light displayed to the user may be controlled by, for example, controlling the polarization modulation of the pixels of LCoS micro-display device 550 by applying appropriate voltage signals to the pixels of LCoS micro-display device 550. For example, the intensity of an image pixel may be higher when the light reflected by a corresponding pixel of LCoS micro-display device 550 has a larger p-wave component that may pass through PBS 540 and reach user's eyes.
It is note that the example show in
In some display systems, polarization conversion elements or polarizers may be used to polarize a light beam to improve the coupling efficiencies of the light beam into a waveguide. In some display systems, polarization conversion elements or polarizers may be used to multiplex light for different fields of view or from different view angles. For example, light from a left field of view may be polarized to a first polarization state, light from a right field of view may be polarized to a second polarization state, and the light in the first polarization state and light in the second polarization state may be multiplexed and sent through the display optics in a display system. In some optical systems, polarization conversion elements or polarizers may be used to split light beams, combine light beams, or otherwise perform different processing on different polarization components of light beams. For example, polarization conversion elements may be used to convert light emitted by light sources into polarized light to illuminate a LCoS micro-display device described above.
Various types of polarization conversion elements or polarizers may be used in these applications, such as absorbance polarizers (or dichroic polarizers), thin-film polarizers, birefringent polarizing beam splitters, wire grid polarizers, and the like. It is generally desirable that the power loss during the polarization conversion and/or the polarized light generation is as low as possible for light in a wide wavelength range and from a wide angular range.
In the example shown in
In the examples shown in
According to certain embodiments, a polarization converter or polarization beam generator may include a polarization-dependent grating and an angular selective waveplate arranged in a stack. The polarization-dependent grating may diffract incident light in different polarization states to different directions. For example, the polarization-dependent grating may include a geometric phase grating, such as a Pancharatnam-Berry phase (PBP) grating, that may diffract an unpolarized incident beam into a first light beam that is right-handed circularly polarized and propagates in a first direction, and a second light beam that is left-handed circularly polarized and propagates in a second direction. The angular selective waveplate may maintain or change the polarization state of an incident light beam, depending on the incident angle and the polarization state of the incident light beam. For example, the angular selective waveplate may maintain the polarization state of the right-handed circularly polarized light beam propagating in the first direction, while changing the polarization state of the left-handed circularly polarized light beam propagating in the second direction to right-handed circular polarization. As such, the light beams after passing through the angular selective waveplate may have the same polarization state (e.g., right-handed circular polarization). The light beams may optionally be filtered by a polarizer to remove components in other polarization states (if any). In some embodiments, the light beams may be collimated (or focused) by a geometric phase lens, such as a PBP lens, which may also change the polarization states of the beams, such as from right-handed circular polarization to left-handed circular polarization. In some embodiments, a waveplate (e.g., a quarter-wave plate) may be used to convert the circularly polarized beam to a linearly polarized beam.
In some circumstances, light beam 924 and/or light beam 922 may have an elliptical polarization state. Polarization converter 900 may optionally include a circular polarizer 930, such as a right-handed circular polarizer that allows right-handed circularly polarized light to pass through while blocking light of other polarization states. As such, light beam 922 and light beam 924 may become right-handed circularly polarized light beams 932 and 934, respectively. In some embodiments, light beams 932 and 934 may be collimated by a lens (not shown in
The diffraction efficiency of PBP grating 1100 for surface-normal incidence may be approximately determined by:
where nm is the diffraction efficiency of the mth diffraction order, Δn is the birefringence of liquid crystal layer 1130, d is the thickness of liquid crystal layer 1130, λ is the wavelength of the incident light, and S3′=S3/S0 is the normalized Stokes parameter corresponding to the ellipticity of the polarization of the incident light. Thus, if thickness d=λ/2Δn (half-wave retardation of liquid crystal layer 1130), the zeroth order transmission n0 may be zero, and all incident light may be diffracted to the ±1 diffraction orders. The ±1 diffraction orders may be sensitive to S3′, while the zeroth order may be polarization independent. For example, when the incident light has a right-handed circular polarization, S3′=+1, and thus n+1=0 and n−1=1, which indicates that all incident light passing through PBP grating 1100 may be diffracted into the −1 diffraction order. When the incident light has a left-handed circular polarization, S3′=−1, n+1=1, and n−1=0, which indicates that all incident light is diffracted into the +1 diffraction order. Although m=+1 is herein considered the primary order and the m=−1 order is considered the conjugate order, the designation of the orders may be reversed or otherwise changed. In general, only the zeroth and the two first diffracted orders may be possible, regardless of the grating period A and the thickness d.
Moreover, after passing through PBP grating 1100, the handedness of the circularly polarized light may be changed to the opposite circular polarization state as the light may experience a relative phase shift about a half wavelength in liquid crystal layer 1130. For example, after the right-handed circularly polarized light (S3=1) passes through PBP grating 1100, the polarization state of the light (e.g., in the −1 diffraction order) may be changed to the left-handed circular polarization (S3=−1). After the left-handed circularly polarized light (S3=−1) passes through PBP grating 1100, the polarization state of the light (e.g., in the −1 diffraction order) may be changed to the right-handed circular polarization (S3=1).
The pitch or period A of the repetitive rotational pattern of the liquid crystal molecules in PBP grating 1100 may determine, in part, certain optical properties of the PBP grating. For example, the pitch may determine the diffraction angles of the different diffraction orders according to the grating equation. Generally, the smaller the pitch, the larger the diffraction angle for light of a given wavelength and a given diffraction order.
Angular selective waveplate 920 or 1050 may include an oblique-plate (“O-plate”) waveplate. The O-plate waveplate may be homogeneous or may be splayed, and may have positive, negative, or biaxial anisotropy. A homogeneous O-plate may include liquid crystal molecules tilted uniformly at an oblique angle. A splayed O-plate (splayed plate) may include liquid crystal molecules oriented at different angles in different layers. The oblique angle range may be between about 0° and about 90°.
Polarization-dependent grating 1410 may be implemented using polarization-dependent grating 1000, or PBP grating 1100, 1200, or 202. Polarization-dependent grating 1410 may diffract an unpolarized (or partially polarized) incident beam 1402 into a first light beam 1412 that has a first polarization state (e.g., right-handed circular polarization) and propagates in a first direction, and a second light beam 1414 that has a second polarization state (e.g., left-handed circular polarization) and propagates in a second direction. Angular selective waveplate 1420 may function as a zero or full waveplate for first light beam 1412 propagating in the first direction and may also function as a half-wave plate for second light beam 1414 propagating in the second direction. Therefore, angular selective waveplate 1420 may maintain the first polarization state of first light beam 1412 (e.g., right-handed circularly polarized beam) propagating in the first direction, while changing the second polarization state of the second light beam 1414 (e.g., left-handed circularly polarized beam) propagating in the second direction to the first polarization state (e.g., right-handed circular polarization). As such, first light beam 1412 after passing through angular selective waveplate 1420 may become a light beam 1422 that has a same polarization state (e.g., right-handed circular polarization) as first light beam 1412. Second light beam 1414 after passing through angular selective waveplate 1420 may become a light beam 1424 that has a same polarization state (e.g., right-handed circular polarization) as light beam 1422. The pitch of polarization-dependent grating 1410 (e.g., PBP grating) may be selected based on the desired diffraction angles of first light beam 1412 and second light beam 1414, which may be selected based on the desired incident angles to achieve the zero (or full) waveplate and the half-wave plate, respectively.
In addition, polarization converter 1400 may include a second polarization-dependent grating 1430, such as a PBP grating. Second polarization-dependent grating 1430 may be in physical contact with angular selective waveplate 1420 or may be spaced apart from angular selective waveplate 1420. In some embodiments, second polarization-dependent grating 1430 may be a geometric phase lens or a polarization directed flat lens that has a spatially varying geometric phase in an x-y plane. For example, the geometric phase lens may include photo-aligned liquid crystal polymers formed by a holographic recording process using the wave-front of a lens. In the example illustrated in
In some embodiments, light beam 1434 and/or light beam 1432 may not be fully circularly polarized, such as having an elliptical polarization state. Polarization converter 1400 may optionally include a circular polarizer 1440, such as a left-handed circular polarizer that allows left-handed circularly polarized light to pass through while blocking light of other polarization states. As such, light beam 1432 and light beam 1434 may become left-handed circularly polarized beams 1442 and 1444, respectively, after passing through circular polarizer 1440.
Optionally, in some embodiments, polarization converter 1400 may include a depolarizer 1405 that may convert an incident light beam into a randomly polarized light beam or a pseudo-randomly polarized light beam. The randomly polarized light beam or pseudo-randomly polarized light beam may be more evenly diffracted by polarization-dependent grating 1410 into first light beam 1412 that has the first polarization state (e.g., right-handed circular polarization) and propagates in the first direction, and second light beam 1414 that has a second polarization state (e.g., left-handed circular polarization) and propagates in the second direction.
In the example shown in
A curve 1910 in
A curve 1920 in
A curve 2010 in
A curve 2020 in
Thus,
A curve 2110 in
A curve 2210 in
A curve 2310 in
A curve 2410 in
Embodiments disclosed herein may be used to implement components of an artificial reality system or may be implemented in conjunction with an artificial reality system. Artificial reality is a form of reality that has been adjusted in some manner before presentation to a user, which may include, for example, a virtual reality, an augmented reality, a mixed reality, a hybrid reality, or some combination and/or derivatives thereof. Artificial reality content may include completely generated content or generated content combined with captured (e.g., real-world) content. The artificial reality content may include video, audio, haptic feedback, or some combination thereof, and any of which may be presented in a single channel or in multiple channels (such as stereo video that produces a three-dimensional effect to the viewer). Additionally, in some embodiments, artificial reality may also be associated with applications, products, accessories, services, or some combination thereof, that are used to, for example, create content in an artificial reality and/or are otherwise used in (e.g., perform activities in) an artificial reality. The artificial reality system that provides the artificial reality content may be implemented on various platforms, including an HMD connected to a host computer system, a standalone HMD, a mobile device or computing system, or any other hardware platform capable of providing artificial reality content to one or more viewers.
Memory 2520 may be coupled to processor(s) 2510. In some embodiments, memory 2520 may offer both short-term and long-term storage and may be divided into several units. Memory 2520 may be volatile, such as static random-access memory (SRAM) and/or DRAM and/or non-volatile, such as read-only memory (ROM), flash memory, and the like. Furthermore, memory 2520 may include removable storage devices, such as secure digital (SD) cards. Memory 2520 may provide storage of computer-readable instructions, data structures, program modules, and other data for electronic system 2500. In some embodiments, memory 2520 may be distributed into different hardware modules. A set of instructions and/or code might be stored on memory 2520. The instructions might take the form of executable code that may be executable by electronic system 2500, and/or might take the form of source and/or installable code, which, upon compilation and/or installation on electronic system 2500 (e.g., using any of a variety of generally available compilers, installation programs, compression/decompression utilities, etc.), may take the form of executable code.
In some embodiments, memory 2520 may store a plurality of application modules 2522 through 2524, which may include any number of applications. Examples of applications may include gaming applications, conferencing applications, video playback applications, or other suitable applications. The applications may include a depth sensing function or eye tracking function. Application modules 2522-2524 may include instructions to be executed by processor(s) 2510. In some embodiments, certain applications or parts of application modules 2522-2524 may be executable by other hardware modules 2580. In certain embodiments, memory 2520 may additionally include secure memory, which may include additional security controls to prevent copying or other unauthorized access to secure information.
In some embodiments, memory 2520 may include an operating system 2525 loaded therein. Operating system 2525 may be operable to initiate the execution of the instructions provided by application modules 2522-2524 and/or manage other hardware modules 2580 as well as interfaces with a wireless communication subsystem 2530 which may include one or more wireless transceivers. Operating system 2525 may be adapted to perform other operations across the components of electronic system 2500 including threading, resource management, data storage control and other similar functionality.
Wireless communication subsystem 2530 may include, for example, an infrared communication device, a wireless communication device and/or chipset (such as a Bluetooth® device, an IEEE 802.11 device, a Wi-Fi device, a WiMAX device, cellular communication facilities, etc.), and/or similar communication interfaces. Electronic system 2500 may include one or more antennas 2534 for wireless communication as part of wireless communication subsystem 2530 or as a separate component coupled to any portion of the system. Depending on desired functionality, wireless communication subsystem 2530 may include separate transceivers to communicate with base transceiver stations and other wireless devices and access points, which may include communicating with different data networks and/or network types, such as wireless wide-area networks (WWANs), wireless local area networks (WLANs), or wireless personal area networks (WPANs). A WWAN may be, for example, a WiMAX (IEEE 802.16) network. A WLAN may be, for example, an IEEE 802.11x network. A WPAN may be, for example, a Bluetooth network, an IEEE 802.15x, or some other types of network. The techniques described herein may also be used for any combination of WWAN, WLAN, and/or WPAN. Wireless communications subsystem 2530 may permit data to be exchanged with a network, other computer systems, and/or any other devices described herein. Wireless communication subsystem 2530 may include a means for transmitting or receiving data, such as identifiers of HMD devices, position data, a geographic map, a heat map, photos, or videos, using antenna(s) 2534 and wireless link(s) 2532. Wireless communication subsystem 2530, processor(s) 2510, and memory 2520 may together comprise at least a part of one or more of a means for performing some functions disclosed herein.
Embodiments of electronic system 2500 may also include one or more sensors 2590. Sensor(s) 2590 may include, for example, an image sensor, an accelerometer, a pressure sensor, a temperature sensor, a proximity sensor, a magnetometer, a gyroscope, an inertial sensor (e.g., a module that combines an accelerometer and a gyroscope), an ambient light sensor, or any other similar module operable to provide sensory output and/or receive sensory input, such as a depth sensor or a position sensor. For example, in some implementations, sensor(s) 2590 may include one or more inertial measurement units (IMUs) and/or one or more position sensors. An IMU may generate calibration data indicating an estimated position of the HMD device relative to an initial position of the HMD device, based on measurement signals received from one or more of the position sensors. A position sensor may generate one or more measurement signals in response to motion of the HMD device. Examples of the position sensors may include, but are not limited to, one or more accelerometers, one or more gyroscopes, one or more magnetometers, another suitable type of sensor that detects motion, a type of sensor used for error correction of the IMU, or some combination thereof. The position sensors may be located external to the IMU, internal to the IMU, or some combination thereof. At least some sensors may use a structured light pattern for sensing.
Electronic system 2500 may include a display module 2560. Display module 2560 may be a near-eye display, and may graphically present information, such as images, videos, and various instructions, from electronic system 2500 to a user. Such information may be derived from one or more application modules 2522-2524, virtual reality engine 2526, one or more other hardware modules 2580, a combination thereof, or any other suitable means for resolving graphical content for the user (e.g., by operating system 2525). Display module 2560 may use liquid crystal display (LCD) technology, LED technology (including, for example, OLED, ILED, μLED, AMOLED, TOLED, etc.), light emitting polymer display (LPD) technology, or some other display technology.
Electronic system 2500 may include a user input/output module 2570. User input/output module 2570 may allow a user to send action requests to electronic system 2500. An action request may be a request to perform a particular action. For example, an action request may be to start or end an application or to perform a particular action within the application. User input/output module 2570 may include one or more input devices. Example input devices may include a touchscreen, a touch pad, microphone(s), button(s), dial(s), switch(es), a keyboard, a mouse, a game controller, or any other suitable device for receiving action requests and communicating the received action requests to electronic system 2500. In some embodiments, user input/output module 2570 may provide haptic feedback to the user in accordance with instructions received from electronic system 2500. For example, the haptic feedback may be provided when an action request is received or has been performed.
Electronic system 2500 may include a camera 2550 that may be used to take photos or videos of a user, for example, for tracking the user's eye position. Camera 2550 may also be used to take photos or videos of the environment, for example, for VR, AR, or MR applications. Camera 2550 may include, for example, a complementary metal-oxide-semiconductor (CMOS) image sensor with a few millions or tens of millions of pixels. In some implementations, camera 2550 may include two or more cameras that may be used to capture 3D images.
In some embodiments, electronic system 2500 may include a plurality of other hardware modules 2580. Each of other hardware modules 2580 may be a physical module within electronic system 2500. While each of other hardware modules 2580 may be permanently configured as a structure, some of other hardware modules 2580 may be temporarily configured to perform specific functions or temporarily activated. Examples of other hardware modules 2580 may include, for example, an audio output and/or input module (e.g., a microphone or speaker), a near field communication (NFC) module, a rechargeable battery, a battery management system, a wired/wireless battery charging system, etc. In some embodiments, one or more functions of other hardware modules 2580 may be implemented in software.
In some embodiments, memory 2520 of electronic system 2500 may also store a virtual reality engine 2526. Virtual reality engine 2526 may execute applications within electronic system 2500 and receive position information, acceleration information, velocity information, predicted future positions, or some combination thereof of the HMD device from the various sensors. In some embodiments, the information received by virtual reality engine 2526 may be used for producing a signal (e.g., display instructions) to display module 2560. For example, if the received information indicates that the user has looked to the left, virtual reality engine 2526 may generate content for the HMD device that mirrors the user's movement in a virtual environment. Additionally, virtual reality engine 2526 may perform an action within an application in response to an action request received from user input/output module 2570 and provide feedback to the user. The provided feedback may be visual, audible, or haptic feedback. In some implementations, processor(s) 2510 may include one or more graphic processing units (GPUs) that may execute virtual reality engine 2526.
In various implementations, the above-described hardware and modules may be implemented on a single device or on multiple devices that can communicate with one another using wired or wireless connections. For example, in some implementations, some components or modules, such as GPUs, virtual reality engine 2526, and applications (e.g., tracking application), may be implemented on a console separate from the head-mounted display device. In some implementations, one console may be connected to or support more than one HMD.
In alternative configurations, different and/or additional components may be included in electronic system 2500. Similarly, functionality of one or more of the components can be distributed among the components in a manner different from the manner described above. For example, in some embodiments, electronic system 2500 may be modified to include other system environments, such as an AR system environment and/or an MR environment.
The methods, systems, and devices discussed above are examples. Various embodiments may omit, substitute, or add various procedures or components as appropriate. For instance, in alternative configurations, the methods described may be performed in an order different from that described, and/or various stages may be added, omitted, and/or combined. Also, features described with respect to certain embodiments may be combined in various other embodiments. Different aspects and elements of the embodiments may be combined in a similar manner. Also, technology evolves and, thus, many of the elements are examples that do not limit the scope of the disclosure to those specific examples.
Specific details are given in the description to provide a thorough understanding of the embodiments. However, embodiments may be practiced without these specific details. For example, well-known circuits, processes, systems, structures, and techniques have been shown without unnecessary detail in order to avoid obscuring the embodiments. This description provides example embodiments only, and is not intended to limit the scope, applicability, or configuration of the invention. Rather, the preceding description of the embodiments will provide those skilled in the art with an enabling description for implementing various embodiments. Various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the present disclosure.
Also, some embodiments were described as processes depicted as flow diagrams or block diagrams. Although each may describe the operations as a sequential process, many of the operations may be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may have additional steps not included in the figure. Furthermore, embodiments of the methods may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware, or microcode, the program code or code segments to perform the associated tasks may be stored in a computer-readable medium such as a storage medium. Processors may perform the associated tasks.
It will be apparent to those skilled in the art that substantial variations may be made in accordance with specific requirements. For example, customized or special-purpose hardware might also be used, and/or particular elements might be implemented in hardware, software (including portable software, such as applets, etc.), or both. Further, connection to other computing devices such as network input/output devices may be employed.
With reference to the appended figures, components that can include memory can include non-transitory machine-readable media. The term “machine-readable medium” and “computer-readable medium,” as used herein, refer to any storage medium that participates in providing data that causes a machine to operate in a specific fashion. In embodiments provided hereinabove, various machine-readable media might be involved in providing instructions/code to processing units and/or other device(s) for execution. Additionally or alternatively, the machine-readable media might be used to store and/or carry such instructions/code. In many implementations, a computer-readable medium is a physical and/or tangible storage medium. Such a medium may take many forms, including, but not limited to, non-volatile media, volatile media, and transmission media. Common forms of computer-readable media include, for example, magnetic and/or optical media such as compact disk (CD) or digital versatile disk (DVD), punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), a Flash-EPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read instructions and/or code. A computer program product may include code and/or machine-executable instructions that may represent a procedure, a function, a subprogram, a program, a routine, an application (App), a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements.
Those of skill in the art will appreciate that information and signals used to communicate the messages described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Terms, “and” and “or” as used herein, may include a variety of meanings that are also expected to depend at least in part upon the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B, or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B, or C, here used in the exclusive sense. In addition, the term “one or more” as used herein may be used to describe any feature, structure, or characteristic in the singular or may be used to describe some combination of features, structures, or characteristics. However, it should be noted that this is merely an illustrative example and claimed subject matter is not limited to this example. Furthermore, the term “at least one of” if used to associate a list, such as A, B, or C, can be interpreted to mean A, B, C, or any combination of A, B, and/or C, such as AB, AC, BC, AA, BB, ABC, AAB, ACC, AABBCCC, etc.
Further, while certain embodiments have been described using a particular combination of hardware and software, it should be recognized that other combinations of hardware and software are also possible. Certain embodiments may be implemented only in hardware, or only in software, or using combinations thereof. In one example, software may be implemented with a computer program product containing computer program code or instructions executable by one or more processors for performing any or all of the steps, operations, or processes described in this disclosure, where the computer program may be stored on a non-transitory computer readable medium. The various processes described herein can be implemented on the same processor or different processors in any combination.
Where devices, systems, components or modules are described as being configured to perform certain operations or functions, such configuration can be accomplished, for example, by designing electronic circuits to perform the operation, by programming programmable electronic circuits (such as microprocessors) to perform the operation such as by executing computer instructions or code, or processors or cores programmed to execute code or instructions stored on a non-transitory memory medium, or any combination thereof. Processes can communicate using a variety of techniques, including, but not limited to, conventional techniques for inter-process communications, and different pairs of processes may use different techniques, or the same pair of processes may use different techniques at different times.
The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that additions, subtractions, deletions, and other modifications and changes may be made thereunto without departing from the broader spirit and scope as set forth in the claims. Thus, although specific embodiments have been described, these are not intended to be limiting. Various modifications and equivalents are within the scope of the following claims.
This application claims the benefit of and priority to U.S. Provisional Application No. 63/153,205, filed Feb. 24, 2021, entitled “THIN LIQUID CRYSTAL STACK FOR POLARIZATION CONVERSION,” which is herein incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
20180275350 | Oh | Sep 2018 | A1 |
20190285891 | Lam et al. | Sep 2019 | A1 |
20210011300 | Leister et al. | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
WO2021137967 | Jul 2021 | WO |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2022/017639, dated May 17, 2022, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20220276499 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
63153205 | Feb 2021 | US |