Claims
- 1. A panel illuminator comprising a solid transparent panel member having top and bottom surfaces and an input edge for receiving light from a light source for conduction through said panel member, and means for causing the conducted light to be emitted from one of said surfaces along the length of said panel member, said means for causing light to be emitted comprising a solid transparent film on one of said surfaces of said panel member having spaced apart prism edges running generally perpendicular to said input edge, and deformities along the length of said prism edges.
- 2. The illuminator of claim 1 wherein the depth and shape of said deformities varies along the length of said prism edges to produce a desired light output distribution.
- 3. A light emitting panel comprising a solid transparent wave guide having an input edge for receiving light from a light source for conduction through said wave guide, a prismatic surface on one side of said wave guide for causing such conducted light to be emitted therefrom, said prismatic surface including a plurality of spaced apart prism edges extending substantially parallel to said input edge, a prismatic film in close proximity to said prismatic surface for shifting the angular direction of light emitted therefrom, and transparent means for bonding said prismatic film to said prismatic surface.
- 4. A light emitting panel comprising a solid transparent wave guide having an input edge for receiving light from a light source for conduction through said wave guide, and a prismatic surface on one side of said wave guide for causing such conducted light to be emitted therefrom, said wave guide being in the shape of a channel having a bottom wall, spaced apart side walls and an open top, and prismatic surfaces along the interior length of said bottom and side walls to cause light to be emitted interiorly.
- 5. The panel of claim 4 wherein the exterior of said channel has a reflective coating to redirect any externally emitted light back to the channel interior.
- 6. A panel illuminator comprising a solid transparent panel member having top and bottom surfaces and an input edge for receiving light from a light source for conduction through said panel member, and means for causing the conducted light to be emitted from one of said surfaces along the length of said panel member, said means for causing light to be emitted comprising a prismatic surface on one of said surfaces of said panel member, said prismatic surface including a plurality of spaced apart edges which run generally parallel to said input edge, and a prismatic film disposed in close proximity to said prismatic surface for shifting the angular direction of light emitted therefrom, said prismatic film being bonded to said prismatic surface by transparent means.
- 7. A panel illuminator comprising a solid transparent panel member having top and bottom surfaces and an input edge for receiving light from a light source for conduction through said panel member, said means for causing light to be emitted comprising a prismatic surface on one of said surfaces of said panel member, a prismatic film disposed in close proximity to said prismatic surface for shifting the angular direction of light emitted therefrom, and transparent means for bonding said prismatic film to said prismatic surface.
- 8. A light emitting panel comprising a solid transparent wave guide having an input edge for receiving light from a light source for conduction through said wave guide, a prismatic surface on one side of said wave guide for causing such conducted light to be emitted therefrom, and a prismatic film in close proximity to said prismatic surface for shifting the angular direction of light emitted therefrom.
- 9. The panel of claim 8 wherein there is an air gap between said prismatic film and said prismatic surface.
- 10. A light emitting panel comprising a solid transparent wave guide having an input edge for receiving light from a light source for conduction through said wave guide, and a prismatic surface on one side of said wave guide for causing such conducted light to be emitted therefrom, said prismatic surface including a plurality of spaced apart prism edges running generally perpendicular to said input edge, said prismatic surface progressively decreasing in depth along the length of said wave guide as the distance from said input edge increases.
- 11. The panel of claim 10 further comprising reflector means for redirecting the emitted light from said prismatic surface back through said wave guide.
- 12. The panel of claim 11 wherein there is an air gap between said reflector means and said prismatic surface.
- 13. The panel of claim 11 wherein said reflector means is bonded to said wave guide by a transparent adhesive.
- 14. The panel of claim 11 wherein said reflector means is deposited directly on said prismatic surface.
- 15. A light emitting panel comprising a solid transparent wave guide having an input edge for receiving light from a light source for conduction through said wave guide, and a prismatic surface on one side of said wave guide for causing such conducted light to be emitted therefrom, said prismatic surface including a plurality of spaced apart prism edges running generally perpendicular to said input edge, said wave guide having a pair of input edges at opposite ends thereof for receiving light from plural light sources.
Parent Case Info
This is a divisional of copending application Ser. No. 07/309,424 filed on Feb. 10, 1989, now U.S. Pat. No. 5,005,108.
US Referenced Citations (8)
Foreign Referenced Citations (1)
Number |
Date |
Country |
1035788 |
Aug 1953 |
FRX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
309424 |
Feb 1989 |
|