This application relates generally to a thin, printable cells and batteries and its manufacturing method. More specifically, this application relates to a thin, printed cell and battery manufactured using a pouch-filling process.
For the past one hundred years or so, scientists have been making Carbon/Zinc portable power sources for various applications. In the early days of portable power, these power sources were very large compared to today's standards. For example the very popular “Ignitor Cell” made by Eveready was about 3″ diameter and about 9″ tall was used in many applications such as radios, buzzers, Xmas lighting. These large cells as well as some smaller versions, such as the Eveready famous #6 (about 2″ dia.×6″ tall) and the smallest unit cell of the day, the #950 (D size) were commonly made into battery packs with voltages exceeding 40 volts in some applications. These were similar in size and larger than today's car batteries, for uses in lighting devices, radios and car ignition systems. In the mid 1900's with the advent of advanced electronics such as the transistor, the electrical requirements for portable power sources were reduced. Consequently cell sizes were also reduced to include C's, AA's, and AAA's and even small button cells. This power reduction has continued into the twenty first century where applications such as smart labels, smart credit cards, sensors, novelty devices such as greeting cards and badges now require a maximum current of several milliamperes with many applications requiring only a few microamperes at about 1.5-3.0 volts. These applications also have the requirement that the power sources be flat and very thin.
In the past twenty-five years, the approach to make thin flat cells/batteries was attempted by numerous scientists, corporations, and approaches. This includes the widely known battery developed by Polaroid. This six-volt battery pack was used in each package of Polaroid film. This allowed Polaroid to have a fresh battery in the camera each time the user placed a new roll of film in the camera. This high cost battery with multiple layers and a metal foil laminate package is a high voltage, high current battery, capable of igniting flash bulbs, and is not a competitor of the new thin low cost batteries that are now being developed. In addition to Polaroid, others have tried to develop thin batteries in various electrochemical systems.
Needed is a way to mass produce an economical, thin battery for use in modern, relatively low-power applications.
Provided is a battery including an electrochemical cell having a substrate with an inner surface; a first electrochemical layer covering some portion of the inner surface; a second electrochemical layer covering another portion of the inner surface and adjacent to the first electrochemical layer; an electrolyte layer substantially covering and in electrical contact with both the first electrochemical layer and the second electrochemical layer; and a covering layer covering the electrolyte layer and bound to the substrate to form a pouch for substantially to completely sealing the electrolyte layer in an interior of the cell.
Also provided is a battery including an electrochemical cell comprising a substrate including a multi-layer laminate and having: an outer surface, and an inner surface.
The substrate forms a fold over itself, such that the inner surface forms a first inner side and a second inner side on opposite sides of an interior of the cell, and the outer surface defines a first outer side and a second outer side on opposite sides of the exterior of the battery cell.
The cell further comprising collector layer, including a first cured and/or dried conductive ink, at least partially covering the first inner side; a first electrochemical layer, including a second cured and/or dried ink, at least partially covering the collector layer; a second electrochemical layer on one of the first inner side and the second inner side; an electrolyte layer, including an electrolyte soaked in an absorbent material, in contact with both the first electrochemical layer and the second electrochemical layer and between the first inner side and the second inner side; and a connecting and/or sealing layer for connecting a portion of an outer perimeter of the first inner side to a portion of an outer perimeter of the second inner side to bind the first inner side to the second inner side for holding the substrate in the folded position, thereby forming a pouch for containing the electrolyte in the interior of the cell.
Still further provided is a method for manufacturing a thin battery including an electrochemical cell, the method comprising the steps of:
Also provided is the above method, further comprising the step of providing an absorbent layer for contacting a portion of both the first electrochemical layer and the second electrochemical layer, wherein, during or subsequent to the adding an electrolyte step, at least a portion of the electrolyte is absorbed by the absorbent layer.
The foregoing and other features and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:
a shows a modified geometry for application of adhesive to seal the thin electrochemical cell of the invention, herein termed a “picture frame,” to improve seal effectiveness.
b and 6c show further alternative modes of construction for a thin printable cell according to the present invention.
a shows a further preferred printed battery construction.
As used herein, unless otherwise explicitly indicated, all percentages are percentages by weight. As used herein, when a range is given, such as “5-25”, for example, this means preferably at least 5 and, separately and independently, preferably not more than 25. Also herein, a parenthetical range following a listed or preferred value indicates a broadly preferred or less preferred range for that value according to the invention.
The present invention relates to thin printed electrochemical cells and/or batteries. More specifically, this invention relates to a thin printable cell that contains two electrodes, separator, and electrolyte between two laminated film layers. One method of mass-producing such a cell includes depositing aqueous and/or non-aqueous solvent inks or coatings in a pattern on a special laminated polymeric film layer by means of printing and/or laminating a metallic foil on high speed web printing presses, particularly if the required volumes are very high. If volumes are lower, say in the quantities of only about several million or less, then slower methods such as web printing with flat bed screens would be appropriate as well. If the volumes are extremely low, such as in the hundreds or thousands, then a sheet fed flat bed printing press may be appropriate. After all of the inks are printed and all of the solids have been properly placed and a web is used, the cells are assembled automatically on high-speed commercial pouch filling machines (Horizontal and/or vertical). When the production volumes are low and the cell components are placed on sheets, the cells are hand assembled with or without machine assistance.
With the growing market needs for low cost, low capacity thin flat cells, it has been found possible to produce a thin, at least partly printable flexible cell that is versatile and inexpensive to mass-produce. Printed disposable thin cells can be well suited for low power and high production volume applications, for example, because they offer adequate voltage, sufficient capacity, and low-cost solutions. In one embodiment, the batteries disclosed herein include all of these attributes, whereas the conventional low profiled batteries may contain only a few of these attributes.
The electrochemical cell/battery according to the invention has the following advantages:
A typical cell has two electrodes (i.e., anode and cathode) and an electrolyte. The electrodes are comprised of electrochemical materials that interact with the chemicals in an electrolyte to generate a voltage across the electrodes, thus providing a current to an electric circuit.
In its most generalized form, a cell/battery according to the invention is comprised of a substrate having an inner and an outer surface. A first electrochemical layer representing one electrode is applied to some portion of said inner surface, such as by printing or laminating, for example. The first electrochemical layer could be a cathode electrode layer or an anode electrode layer, for example.
If the first electrochemical layer has a relatively low conductivity, it can be printed or laminated on top of a cathode or anode collector layer, in order to improve its conductivity. The collector layer could, for example, be directly printed or laminated onto the inner surface of the substrate. The electrochemical layer may then cover all, or only a portion, of the collector layer, if the collector layer is used.
A second electrochemical layer (representing the other electrode) covering another portion of the inner surface, and adjacent to, or across from, the first electrochemical layer, is also provided. This second electrochemical layer is the other of the anode or cathode electrodes, so that the cell has both an anode and a cathode electrochemical layer, as necessary for interacting with the chemical electrolyte for the cell to provide a voltage across the electrochemical layers (the electrodes) and thus provide an electrical current to an electrical circuit. For this second electrochemical layer as well, if the conductivity of the second electrochemical layer is low, it could be printed or applied over a corresponding collector layer for improving total conductivity.
A separator of various types of materials including papers, coated papers, matted and or woven polymers, and combinations of the former is disposed over the top of the two electrodes. This material absorbs a portion of the electrolyte and improves the contact and wetting of the electrodes with the electrolyte thus reducing the internal resistance of the cell./battery.
Thus, the electrolyte layer is substantially covering or otherwise in physical electrical contact with both said first electrochemical layer and said second electrochemical layer to complete the battery cell electrochemical process and thus power the electrical circuit.
A covering layer is provided for covering the separator/electrolyte layer. The covering layer is bound to the lower substrate to subsantially or completely seal the cell and prevent leakage of the electrolyte. The covering layer could be, for example, a part of the substrate, which could then be continuous piece. In that case, the electrochemical layers could both be placed on the same inner side the substrate. The substrate would then be folded, forming a covering layer as well, such that the inner surfaces of the substrate face each other, and, using a sealing layer, substantially or completely sealing the internal components of the cell described above.
Alternatively, one of the first and second electrochemical layers (and the corresponding collector layer, if present) could be placed on the inner surface of the covering layer, thus putting the first and second electrochemical layers opposite each other. Such a construction would likely use a separator layer to separate and isolate the electrodes.
A number of embodiments specifically implementing the above generalized cell are provided below, along with variations on the above described cell design.
The invention in one embodiment is a thin, printed cell that includes a lower film layer of a special polymer laminate that has special features that can include a heat sealing layer on the inside, (heat sealing on the outside surface is also possible depending on the cell/battery construction), a high moisture barrier layer in the center of the laminate, a structural film on the outside of the laminate, with both interior and exterior surfaces made to be print receptive and extending beyond the internal components. A portion of the inner surface of the lower film layer preferably has a cathode current collector, comprising carbon, printed or coated, on a portion of the film. At the outside contact area of this collector is printed a highly conductive ink comprising silver, nickel, or tin, for example, to improve the conductivity to the application connection. If the battery application is for very low currents, then the higher conductive material may not be required, whereas it is desirable for higher currents.
In some embodiments, printed on the cathode current collector is a water-based cathode ink that includes manganese dioxide (MnO2), carbon, and a polymer binder. For some embodiments adjacent to the cathode collector, at a spacing of about 0.050″, a narrow strip of zinc foil anode is placed. Prior to this placement, the zinc foil is laminated to a dry film adhesive that includes a release liner. Inserted over both electrodes is a paper separator layer that is starch coated on one side. Once the separator is in place, an aqueous electrolyte solution is added to the cell. In many embodiments, zinc chloride (ZnCl2) is the preferred electrolyte choice in the concentration range of 18%-45% by weight. Other embodiments use electrolytes such as ammonium chloride (NH4Cl), mixtures of zinc chloride (ZnCl2) and ammonium chloride (NH4Cl), zinc acetate (Zn(C2H2O2)), zinc bromide (ZnBr2), zinc fluoride (ZnF2), zinc Iodide (Znl2), zinc tartrate (ZnC4H4O6.H2O), zinc per-chlorate Zn(ClO4)2.6H2O), potassium hydroxide KOH, sodium hydroxide NaOH, or organic compounds could also be used.
Zinc chloride is often the electrolyte of choice, providing excellent electrical performance for ordinary environmental conditions normally encountered. Likewise, any of the above mentioned electrolytes may be used in concentrations (by weight) within the range of 18%-50%, for example, with the preferred range often being of 25%-45%, to provide acceptable performance under ordinary environmental conditions. The use of electrolytes other than that of zinc chloride can provide improved cell/battery electrical performance under differing environmental conditions, as desired.
For example, 32% by weight of zinc acetate (F.P.—freezing point—of −28° C.) exhibits a lower freezing point than 32% by weight zinc chloride (F.P.—23° C.), and thus could be preferable for colder applications. Both of these solutions exhibit lower freezing point than the industry standard 27% zinc chloride (F.P.—18° C.). Other zinc acetate concentrations (e.g. 18-45 or 25-30 weight percent) can also exhibit reduced freezing point relative to the industry standard −18° C. Use of such electrolytes as substitutes for zinc chloride or in various mixtures in cells/batteries allows for improved performance at lower temperatures.
For example, it has been found that the use of an about 30% zinc acetate electrolyte substantially improves low temperature (i.e. below −20° C.) performance of a voltaic cell. To illustrate, data are reported in the table below from an experiment comparing cells having the typical 27% zinc chloride electrolyte with the novel 30% zinc acetate electrolyte:
The experiment was conducted using a ten second-pulse load of 6500 ohms at the various temperatures given in the table above. The closed circuit voltage was measured under load at the end of the pulse. From the above table data, it can be seen that at −23° C., a voltage improvement of 4.5% is achieved using the zinc acetate solute compared to the zinc chloride solution. The improvement is over 17% just four degrees cooler at −27° C., and at −29° C. the zinc acetate cell exhibited 1.262 volts whereas the zinc chloride cell exhibited zero or a near zero negligible voltage. This is a substantial degree of improvement in low temperature performance compared to conventional electrolytes.
This type of electrochemical cell performance improvement at low temperature can be useful in the growing business of battery assisted RFID tags and other transient (transportable) electrically operated devices such as smart active labels and temperature tags, because many products that are shipped today, such as food products pharmaceuticals, blood products, etc, require low temperature storage and shipping conditions, thus tracking these items with such tags and/or labels requires electrochemical cells and/or batteries to operate effectively at temperatures at or below −20° C., preferably −23° C., preferably −27° C., preferably −29° C. When zinc acetate is used to achieve improved low temperature performance for low temperature applications, preferably the zinc acetate concentration is in the range of 28-30, less preferably 30-34, less preferably 25-28, weight percent, as additional examples.
Another method of enhancing low temperature performance and processability is through the addition of polymeric thickeners or gels to the electrolyte. Through the use of these materials, the freezing point of the electrolyte can be reduced from the −18° C. to −30° C. Improvement of the low temperature performance of the cell is then enhanced using the preferred zinc chloride electrolyte. The preferred material is carboxymethylcellulose in the amount of about 0.6% with a range of about 0.01%-1.2% of the total electrolyte by weight. Alternate classes of thickeners may also be used. These may be from the same class of materials as the cathode binders. Other less preferred classes of materials include the following: polyvinyl alcohol, classes of starches and modified starches including rice, potato, corn, and bean varieties; ethyl and hydroxyl-ethyl celluloses; methyl celluloses; polyethylene oxides; polyacryamides; as well as mixtures of the above materials.
In many embodiments, the electrolyte-separator layer is disposed to ensure complete physical and ionic contact with the anode and the cathode in the assembled cell, which is often desirable.
The upper layer of the cell package can be comprised of a special laminated polymeric film, which has an edge that extends beyond the internal cell/battery components. The upper layer of this film is sealed around its edges to the lower film layer by means of heat sealing, or with some type of adhesive, thus confining the internal components within the cell cavity. The above was a general description of some preferred cell constructions according to the invention, and further details follow below. A useful example production process for cell printing and assembly also will be described with respect to
The wet cell construction described herein is likely to be the preferred construction for many embodiments; however, using a similar cell construction, the present invention could be also be manufactured using a reserve cell construction, which has the benefit of providing extended shelf life prior to the application of a liquid, for example.
The preferred printable, flexible, zinc chloride thin cell can be made environmentally friendly. This construction does not typically require the use of components such as mercury or cadmium. Old and/or depleted cells can thus typically be disposed in regular waste removal procedures, rather than requiring special disposal procedures as required for many battery designs.
Furthermore, the devices for which this technology can be used are extensive. A device that requires, for example, relatively low power or a limited life of one to three years, for example, may function with a thin cell/battery according to the invention. The cell as explained herein can be relatively inexpensively mass-produced allowing use as or in a disposable product. The low cost allows for applications that previously may not have been cost effective.
Battery Cell Structures
The unfinished cell 20 (without top laminate 11 of
To assist in sealing the contacts through the seal areas, a strip of double sided dry film adhesive 31 is applied across the cell seal area prior to the disposition of anode electrochemical layer 25. After the anode layer 25 is disposed, another layer or strip of double sided dry film adhesive 31a is applied. These adhesive layers, when activated with a heat sealing process, allows the inner portions of both upper 11 and lower 12 laminate films to adhere to both collectors in the seal areas as well as fill a gap 231 that is formed due to the anode 25 height relative to the lower laminate 12.
The inner portions of the lower and upper laminated films 12 and 11 respectively are heat sealed together as shown by the shaded area to form the cell seal 13. In the preferred construction the upper laminate 11 and lower laminate 12 are the same materials. They are the same for several reasons which are: similar materials are more compatible for heat sealing, similar high moisture barrier materials allows for good moisture protection for the entire cell, and finally this allows the package to be made with a folded substrate that will be discussed later. This allows the unit cells to be assembled on a high speed pouch filling machine which will be discussed later in this description. Although the same material is highly preferred for performance and assembly, there may be situations where the top and lower cell container layers may be of different materials.
In the first embodiment, the laminated film is supplied by Curwood Inc. of Oshkosh, Wis. and is shown in the cross section drawing of
This composite layer 101 is laminated to a 0.48 mil thick (0.2-5.0 mil) high moisture barrier polymer layer 103 such as the GL films supplied by Toppan of Japan by means of a 0.10 mil (0.1-2.0 mil thick) layer of Urethane adhesive 102. These polymer (polyester) based films have varying moisture transmission values depending on the type and the amount of vacuum deposited oxides or metals coatings 111.
Depending on the cell construction, the cell application, and/or the cell environment, it may be advantageous to have different barrier properties for the substrate. Due to the wide range of vapor transmission rates available, the barrier layer can be chosen for each specific application and construction. In some cases, where the cell by design has a higher gassing rate, then it may be appropriate and desirable to use a film with a higher transmission rate to allow for a larger amount of gas to escape so as to minimize cell bulging. Another example would be an application that is in a hot dry environment such as a desert. In that case, it would be desirable to have a barrier film with low transmission rates to prevent excessive moisture loss from the cell.
The outside layer or structural layer 104 of this five layer laminate 100 is of about a 2.0 mil (0.5-10.0 mil) layer of orientated polyester (OPET) which is laminated to the other layers by means of an urethane adhesive 102 that is about 0.1 mil thick. This “structural layer” can be a Dupont polyester orientated (OPET) film. The preferred material is from Toyobo Co. Ltd. of Japan. This material is polyester based synthetic paper which is designated as a white microvoided orientated polyester (WMVOPET). This layer 104 would then form the outer surface of the substrate 100 in its typically application to the invention.
The use of a thicker substrate by increasing any or all of the polymer thicknesses has some advantages: These may include one or more of the following:
In addition to the above specifications, both the outside and the inside layers could be made with a print receptive surfaces for the required inks. The inside layer is for receiving the functional inks while the outside layer is for receiving graphic inks for identification or advertising purposes, for example.
In most flat cell constructions with a sealed system, the package consists of a laminated structure that contains metallized films and/or very thin metal foil for the moisture barrier. Although this structure with the metal layer may have better moisture barrier properties than the one described herein without the metal layer, it also has some disadvantages. These include:
The film layers 11 and 12 of
If a very long shelf life and/or the environmental conditions are extreme, the polymer of
The substrate could also be optimized into a three-layer laminate by combining the barrier layer with the structural layer. This could be done by depositing the barrier coating directly onto the thicker structural layer and then laminating this to the heat-seal layer. Another means of reducing the number of layers would be to apply the heat seal layer on either the barrier layer and/or on the structural layer, and then laminating this structure to the other material. Thus, in one case the barrier coating is applied to the structural layer, but in the other case the heat sealing layer is applied directly to the structural layer. Both of these structures would result in a three-ply laminate. The total thickness of this three-ply laminate would be about 0.003″ with a range of about 0.001-0.015″.
The cell materials for one of the preferred embodiments of cell construction, as shown in
To further reduce the above resistance, a highly conductive contact 16 is printed at the external contact area of the positive electrode. The material used in the preferred construction is a silver filled conductive ink (479SS) manufactured by Acheson Colloids of Port Huron, Mich. and is screen printed. Other, conductive materials such as gold, tin, copper, nickel and/or mixtures of two or more conductive materials could also be used where desirable. All of these conductive inks could be applied by means of printing methods such as rotary screen, flexography, and gravure as well as with ink jet printing techniques. Additionally, manufactured foils of graphite or mixtures of conductive resins, metals or graphite could be inserted and used instead of printing the cathode collector.
The cathode electrochemical layer 21 is printed on a portion of the previously printed and dried cathode collector 22 using an aqueous based ink that has a wet composition of about 43.4% of battery grade Manganese Dioxide (20%-60%), about 14.4% of KS-6 graphite (2%-25%), about 29.5% of a 6.5% (0.5%-15%) aqueous solution of polyvinylpyrrolidone (PVP) (20%-60%); and about 9.65% of De-ionized or distilled water (0.1%-20%). This ink is printed with an about 46 mesh (10-65 mesh) fiberglass screen so as to allow a dry lay down weight of about 0.10 grams per square inch (0.03-0.25 g/sq. in.). The amount of dry print would be dictated by the required cell capacity, with larger capacity requiring more material. By using this unconventional printing method of a very coarse mesh screen instead of multiple hits of a finer mesh screen, the number of printing stations can be reduced and the cell performance can be increased.
The electro-active cathode electrochemical layer (21) material used in the preferred construction is an electrolytic manganese dioxide of high purity battery grade. The material particle size range is about 1 to 100 microns with an average of about 40 microns. If additional fineness of the material is required to facilitate the application to the collector, the material is milled to achieve a particle size range of about 1 to 20 microns with an average of about 4 microns.
Other less preferred electro-active cathode materials may be used in conjunction with the zinc anode in the subject construction. These are, silver oxides Ag2O and AgO, mercuric oxide HgO, nickel oxide NiOOH, oxygen O2 as in the form of an air cell, Vanadium oxide VO2. Cathodic materials that may be used with different anodic materials are NiOOH with Cd, NiOOH with metal hydrides of the AB2 and the AB3 types, NiOOH with Fe and FES2
The binder used in the preferred construction for the cathode layer 21 is a class of high molecular weight binders that exceed 950,000-grams/mole. The preferred polymer used is polyvinylpyrrolidone, K 85-95 or K 120 (higher molecular weight). Other classes of materials that could be used when desired include the following: polyvinyl alcohol, classes of starches and modified starches including rice, potato, corn, and bean varieties; ethyl and hydroxy-ethyl celluloses; methyl celluloses; polyethylene oxides; polyacryamides; as well as mixtures of the above materials. Additional binding may be derived from the use of Teflon solutions or Teflon fibrillated during the blending process.
Next, a double sided dry film adhesive strip 31 such as MACtac's film adhesive #2180, IB 1190 or IB2130 is inserted over the cathode collector and across the cell width and under the anode foil 25. After the anode foil 25 is inserted, another adhesive/caulking layer of film adhesive 31A is applied in the same location except that this one is over the anode as well as over the cathode collector. This sealant material in the cell heat sealing process is thermally activated, thus causing it to flow around and over both collectors thus forming an effective cell seal 13.
For a cell that is about 2″×2″, a precut anode strip 25 (1.75″×0.20″×0.004″) zinc foil/dry film pressure sensitive adhesive laminate is inserted onto the inside surface of the lower laminate, adjacent to the cathode collector/cathode assembly at gap of about 0.050″ from this cathode assembly. Prior to insertion, the 2 mil thick battery grade zinc foil is laminated to a double sided dry film adhesive with a release liner, such as #2180, IB1190 or IB2130 manufactured by Morgan Adhesive Co. of Stow, Ohio, for example. After this lamination is completed on a wide roll of zinc (about 3-12′ wide), this laminated structure is slit into narrow rolls with a width of about 0.200″ (0.150″-0.300″) for a cell that is about 2″×2″. Other size cells with other sizes of cathodes may require a different slit width and length for the anode laminate These widths could be as small as about 0.10″ to about 1-2″ When narrower widths are required then zinc wire could be used for ease of processing. The lengths could vary from a few tenths of inches to many inches. In alternative constructions, the lamination could be done with a printed adhesive on the substrate prior to applying the zinc foil to the substrate.
The paper separator layer 23 with a starch coating is placed over the anode and cathode layers, with the starch coating preferably lying against the anode layer 25. The separator paper may alternatively be placed with the paper side against the anode, where the starch coating would then reside on the opposite side of the paper and not against the anode 25. Alternately the paper separator could be folded so that to allow the starch layer to be against the anode and the plain paper side to be against the cathode.
Alternatively, it has been learned that cell performance can still be satisfactory when the cell does not contain the separator layer but has only the electrolyte. This feature would eliminate the paper insertion station and process, thus reducing cell costs and making the assembly process simpler. Accordingly, a cell embodiment without the separator layer is also provided.
The inner surface of the upper laminate 12 is disposed on top of the lower laminate that contains all of the cell parts (such as by folding the laminate). Prior to applying the upper laminate, the contact holes 17 and 18 are punched out. After its application, these cutouts lie over the negative contact 15 and the positive contact 16 of the cell.
The laminated polymer package comprising the two layers 11 and 12 with the internal structure is heat sealed to form the cell seal 13. The first edge sealed is side C, which is the left hand side of the cell when the cell contacts are on the top and facing the holder as shown in
The measured thickness of the completed printed thin cell using the preferred laminated layers with a thickness of about 3 mils per layer depends on the method of measurement. Using a caliper, which allows the entrapped air to be displaced, the thickness will range from about 15 mils to about 26 mils depending on the cells capacity. At about 6 mAHr, the total cell thickness would be about 0.018″, whereas cells with capacities of about 20 mAHr, the thickness would be about 24 mils. If the cell is measured using a digital height gauge and/or a caliper with platens as large as the cell, the cell measured thickness would range from about 0.030″ to about 0.50″. It has also been found that if a thicker substrate (about 6 mils per layer) as described in this application are used, the amount of entrapped air is minimized, thus the total cell thickness increase is less than the increase in substrate thickness which was by about 6 mils.
To make these thin, printed flexible flat cells at high speeds and at a low cost, the invention provides a format and process for applying the components to the cell package container (laminated film) as well as to process the film with the applied cell components and automatically assemble them into cells. To facilitate this production process, some parts of cell construction described above are modified as shown in
In the embodiment of the battery cell 200 of
Referring back to the embodiment 200 of
In the previous description of the cell construction, double sided dry film adhesive is applied in the top seal area. This was done below the zinc foil/adhesive laminate as well above this laminate. This material is used to seal the cell contacts prior to them extending to the outside of the cell. In the high speed production construction, the dry film adhesive could be replaced by a printable adhesive/caulking type material 231, such as an asphalt solution or a heat sealable adhesive #PM040 made by Acheson Colloids. This material, in addition of being heat sealable, has good adhesion to the substrate, zinc foil, and printed ink cathode collector. In some instances it may be advantageous to use both the dry film adhesive and the printed adhesive together.
This printed pattern is printed through the contact seal area 231 as well in the bottom seal area 232 for the continuous anode strip. This Adhesive strip 232 could be of various lengths including extension in both directions across the entire bottom or similar in length to top adhesive strip 231. As shown in the
In the above description of the cell construction, double sided dry film adhesive is applied in the top seal area. This was done below the zinc foil/adhesive laminate 225 as well above this laminate. This material was used to seal the cell contacts prior to them extending to the outside of the cell. In the embodiment of
It has been further discovered that the above adhesive effectiveness can be increased with a specific geometry. This new geometry as shown in
In an alternative embodiment, the manufacturing process could be further improved by eliminating the zinc foil/adhesive laminate by instead printing the anode. This could be done in the following manners:
The first method would be to make a conductive zinc ink similar to the present conductive silver, conductive nickel, or carbon inks etc. This ink is then printed in patterns to match the cells cathode. A typical example of this cell construction 600 is shown in
This embodiment shown in
Referring to
Other materials that may be used for the anode collector include platinum, titanium or tantalum. The need for the anode collector is that zinc ink is very difficult to make conductive, thus when a substantially non conductive zinc ink is used for the electrochemical anode layer, the anode should have an anode current collector for the same reason that the cathode requires a cathode current collector. To make the anode even more conductive, a highly conductive anode contact 616 is printed on top of the anode collector. This could be an ink comprising silver or another highly conductive material could be used and printed at the same time and at the same station as the cathode contact 216. The use of the printed anode concept could have many advantages when compared the zinc foil/adhesive laminate. These are discussed in the following paragraphs.
The anode application can be done on-line and at the same time the other parts of the cell are printed, thus the off-line operations of zinc foil to adhesive lamination and the slitting of this zinc/adhesive laminate can be eliminated. Also the application (lamination) of the zinc foil/laminate on a special printing press station or in an off line operation is also eliminated. Additionally the anode shape and size can be easily changed by just changing the printing screen or printing plates.
The thickness of the printed material in the seal area, whether it is the collector or the anode, can be made much thinner than when using the zinc/adhesive laminate thus allowing for a better sealing condition that is the same or similar to the cathode collector.
The zinc foil/adhesive laminate is most easily applied in a continuous strip in the machine direction, and its geometry is limited to rectangles and with a width that is limited to the slitting capabilities. Also, because the anode strip is continuous, the laminate must be applied to the entire cell length even in the bottom seal area. This feature causes an increase in laminate usage as well as complicating the bottom seal area in terms of process and effectiveness. The printed anode could be of any geometry and printed easily in the machine direction as well as in the transverse direction.
Internal resistance in the cell can be further reduced by treating the cured/dried current collector, cathode, and/or anode ink deposits with corona or plasma prior to applying any subsequent layer. Reduced internal cell resistance will serve to increase the discharge current rate capability of the cell. This feature is achieved by two aspects of the surface treatments; a) increase surface tension and thereby improve wettability and intimate contact between conductive layers and, b) chemically or physically etch away the resinous (and electrically insulative) surface of the cured/dried conductive ink, thereby exposing more of the conductive particles for electrical connection to the subsequent layer.
Other contributing factors of corona or plasma treatment include removal of organic and inorganic contamination, increased inter-layer bond strength, and removal of residue. In this manner, the cathode layer will have better electrical contact with the current collector layer, the cathode layer and Zinc ink will have better electrical contact to the electrolyte.
A description of the effects of both treatments follow: Corona causes oxygen molecules in the discharge area to divide into their atomic form. These oxygen atoms are then available to bond with the molecules on the surface of the material being treated, thereby changing the surface molecular structure to one that is extremely receptive to inks, coatings, and various adhesives. Most film and sheet materials have a smooth, slippery surface (low surface tension). Corona treatment, in effect, chemically roughens the surface (raising the surface tension), allowing it to grab onto the ink, coating, or adhesive being applied. In reality, the resulting chemical bond that occurs is better than a simple mechanical bond with the surface.
Plasma is the fourth state of matter, created by charging a gas with a large amount of energy. While plasma behaves much like gas, it emits light and contains free ions and electrons. When plasma is projected at high speed towards an object, its surface reacts with the plasma.
Plasma treating is blasting the surface of an object on the microscopic level, using highly energized molecules and ions. Moreover, when using air as a plasma source, the oxygen reacts with contaminants such as carbohydrates on the surface of the object; it breaks up the chains and helps blast them away. On organic surfaces, polar groups and active radicals can be created, that help multiply surface adhesion. A useful side effect is that of neutralization and de-dusting of a treated surface.
Manufacturing Method
The high-speed high volume production process preferably uses web format 40, as shown in
The web format 50 for a nominal 1 sq. inch cathode with its edges already trimmed to size is shown for two wide is about 8.00″. The web could be easily modified to print any cell size and or geometry. In high speed/high volume production, the web format would contain at least four cells wide or about a total web width of about 18″ prior to trimming to final size of 16.0″.
The multiple rows of cells would be slit at slit line 41. This 4″ wide roll contains all of the cell components that are required for the cell assembly machine, which is chosen to be a horizontal pouch filler. This completed web 50 includes the zinc/adhesive laminate 42, which is spaced at about 0.050″ away from the cathode/cathode collector assembly 43.
On the other side of the fold line 44 the cell graphics 45 can be printed on the opposite side of the web using conventional graphic ink of any desired color combination. Part of the graphics 45 can also note the contact polarity shown in the box 46. Although not shown in the figure, the graphics layer could also include a code date on any part of the cell case, if desired.
Also on that part of the web are the negative contact cutout 17 as well as the positive contact cutout 18. When this part of the web is folded on the fold line 44, such as in the pouch filler cell assembly line, these cutouts will allow for external electrical contact to the cell anode and cathode.
The web can be processed on a multiple station continuous web based printing press. This could be done with a single pass on an eleven station printing press or multiple passes on a press with less stations which could have flat bed screen printing stations 300 such as manufactured by Klemm, as shown in
The first Klemm station of
Next is the printing station 302, which could use screens and/or stencils, for example. The choice would be based on the material to be printed, the print pattern, as well as the required print thickness.
After the ink is laid down, it should be dried and/or cured. This could be done by means of UV lights 303 and/or forced air drier 304. If more drying time is required, then a tower type drier 305 could also be used.
The entire manufacturing process uses print stations as well as other type stations, as shown in
The web 50 is then processed through a collector printing station 904, a cathode contact print station 905, a adhesive/caulking print station 906, and a cathode print station 907. Depending on the press design, ink to be printed and the required print thickness, the method of printing for the various stations could be rotary screen, flexography, gravure, stencil, etc. After all of the printing operations are completed, the web 50 is then processed in the next station 908. This station punches the contact holes 217 (negative contact) and 218 (positive contact) in the web 40. The web then moves to the anode application station 909.
Prior to the application of the anode 25 to the web 40, the zinc/adhesive laminate 225 is made on auxiliary equipment such as shown in
After the zinc foil/adhesive laminate 797 is formed, it is fed into a slitting station 704 that contains a set of slitting knives 705 (the number of knives depends on the web width as well as the required slit width). This laminate 797 is slit into individual rolls 735 at a rewind station 706 to form the anode laminate 725.
This individual roll of anode laminate 735 is then placed in the anode application station 909 of the multi-station manufacturing machine 900 shown in
The pressure rolls 712 apply the required force to this operation to ensure good bonding to the anode laminate 725 to the web 40. The processing of web 50 is completed when the rows of cells 49 are slit on lines 41 in station 910. The individual rows of cells 49 of web 50 are then wound on individual cores in station 911 as shown in
The cell material is then provided in web roll 400 to the pouch assembly machine in single unit wide with a length of several thousand units. The web as shown in
The web 400 is then placed in the unwind station 501 of a horizontal pouch filling machine 500 shown in
The web is unwound in the first Station 501 then folded in the middle (centerline of web 44) to provide even edges for sealing and proper location of the contact cutouts for connections to the battery by external connections. Folding begins to take place through a collar-guide fixture (Station 502) that aligns the two top edges or the former outside web edges to match for alignment, joining, and sealing. Folding and alignment is also provided by two (2) vertical bars (Station 503) that push the two (2) sides of the web together until they are heat sealed together in station 504.
The forming collar-guide 502 is a new innovation used on a horizontal Pouch Filling Machine. Conventionally, the folding operation is done with a plough. With the plough the inside layer of the web passes over the outside of the plough.
In typical filler pouch operations, where pouches are filled with various materials such as food products, the inside layer of the pouch is a smooth surface thus the abrasion between the plough and the web is not a problem. In the case of the unit cell according to the invention, the inside layer of the web 400 has printed patterns. It was discovered by the inventors that these printed patterns were abraded as they passed over the plough. To eliminate this detrimental condition, web forming was done with collar-guide 502, thus the abrasion of the web 400 and the forming tool was on the outside layer, thus the inside printed layers were not abraded.
Heat sealing (Station 504) at or near the folded edge 228 which is designated as cell side C in the orientation of the final cell or the bottom of the folded web 400 will prevent unfolding thus securing the fold in the proper location. Proper location of the two (2) top edges 229 is even with one another.
Next, the separator 23 is inserted between the open sides of the web in Station 505. The paper separator is pre-slit to the proper width and placed on a reel. Then just prior to insertion its length is cut to the proper size. Note that if the cell being manufactured is not using the separator layer, this step can be skipped.
Next, the vertical heat sealing is done in station 506 to both the leading and lagging seals of two (2) adjacent units in one heat seal operation. This allows for the cell to be cut in station 508 near the center of this double wide seal that provides the leading and lagging seal of two adjacent units. These cell seal sides are designated as sides A & B.
The draw rolls (Station 507) pulls the web from the unwind station to the knife station 508. This station cuts the leading cell pouch 550 from the web 400 which is then picked up by the next pouch clip of station 509. There are twenty-four cell clips (not shown) which are attached to a continuous chain of Station 509. This chain/clip assembly of station 509 moves the pouch through the remaining stations of the pouch filler.
Station 510 has three major components. These are an accurate pump 511, such as manufactured by Hibar of Canada, a nozzle with or without mechanical movement 512 such as manufactured by HMC Products of Illinois, and a pouch vacuum opening and closing mechanism (not shown). This combination permits for insertion of the nozzle in an opened pouch which results in a precise amount electrolyte 26 to be dispensed into an opened cell pouch 550.
In order to facilitate sanitary dispensing of the electrolyte solution in this production process, polymeric thickeners can be added to the electrolyte solution. The preferred material is carboxymethylcellulose in the amount of about 0.6% with a range of about 0.01%-1.2% of the total electrolyte by weight. Alternate classes of thickeners may also be used. These may be from the same class of materials as the cathode binders. Other less preferable classes of materials include the following: polyvinyl alcohol, classes of starches and modified starches including rice, potato, corn, and bean varieties; ethyl and hydroxyl-ethyl celluloses; methyl celluloses; polyethylene oxides; polyacryamides; as well as mixtures of the above materials.
The use of these electrolyte thickeners minimizes or eliminates contamination to the cell outside package. It also minimizes and/or eliminates contamination of the seal area prior to sealing. This in combination with the high viscosity electrolyte minimizes and/or eliminates cell leakage for the life of the cell. Due to this performance advantage, the use of this thickened electrolyte is also preferred when the cells are made in low volume made cells such as by hand or with simple slow speed equipment.
After dispensing, the sides are allowed to close in such a manner that the trapped air is bled out of the pouch prior to making the final heat seal (cell top—side D) in station 512.
The pouch (cell 200) is then heat sealed on all four sides and it contains all necessary components and materials. Before the completed cell 200 is removed from the clip, each cell could be code dated by means of stamping, ink jet printing, or other suitable means. Also prior to its removal, each cell could be voltage checked.
The completed cell including code dating and electrically checked are removed in station 513 and dropped into a container 514 for transport for later operations. This container contains only the good cells based on the electrical tests and/or the defective cells are marked and included in the same container.
The removal of the good cells can be accomplished using a number of alternative operations, including vacuum arm removal and placing in position on its application, placing in shipping container, placing on a roll of PSA adhesive to form a roll of “cell labels”, etc.
Furthermore, as discussed above, internal resistance in the cell can be further reduced by treating, at some appropriate point during the manufacturing process (such as during the printing operations, by adding an additional station), the cured/dried current collector, cathode, and/or anode ink deposits with corona or plasma prior to applying any subsequent layer.
Multi-Cell Batteries
Some applications may require 3 volts and/or higher current capabilities for proper operation, thus battery packs with series and/or parallel connections are desired to meet these higher voltage and current requirements. These battery packs could be made in many different constructions, some of which are described below.
Although these batteries have different voltages, they use the similar basic construction for the individual cells as described above. There are several basic constructions that could be used for a 3 volt battery 30 or 350.
As shown in
A second construction is also proposed, with a cross section drawing of such a construction shown in
Battery constructions could also be made by printing the unit cells together, as shown in
As in the printing of a unit cell described earlier, the first layer to be printed is the carbon cathode collector 822 and since a 9 volt battery is being made there will be six unit cells in the group that are electrically connected in the printing operations, thus there will be six cathode collectors 822 and six cathodes 821 etc. for each battery.
The next printed layer is the silver or other highly conductive material cathode contact 816. At the same time that the silver contact is being printed, the cell connectors 804 that connect the cell negative to the adjacent cells positive are also printed in five different locations.
The final items printed at the same time with the same ink are the battery contacts. These are the battery negative contact 815 and the battery positive contact 817. As in the unit cell sealing step, the anode and cathode collector in the seal areas can use an adhesive/caulking 831 that is heat activated while the seal is being made is printed on each of the six unit cells. A drop of conductive adhesive 805 is applied on top of the previously printed battery connector 804, which will be directly below the precut anode strips 825. These strips, which have been previously described, are the zinc/adhesive laminate which are applied to each cell using the same or similar techniques explained above for the unit cell construction, and on top of conductive adhesive 805. In this battery application the dry film PSA is not applied or it is removed in the area where the conductive adhesive is applied. This adhesive could be Acheson's 5810 silver conductive epoxy or Emerson and Cummings snap cure silver conductive adhesive, for example.
A further construction according to the invention is to integrate the cell/battery construction into the application device itself. This could be done as shown in
Finally are the contacts for the two unit cells to form the required 3 volt battery which define the locations of the 1.5 volt unit cells. Unit cell #1905 has a negative contact 906 and positive contact 907, unit cell 908 has a negative contact 909 and positive contact 911. A jumper bar 910 which is part of the printed circuit connects to the unit cell 905 positive contact 907 to the negative contact 909 of unit cell 908, thus forming a series connection and a 3.0 volt battery between unit cells 905 and 908. The unit cells could be connected to circuit 901 by mechanical means such as pressure clamps, clips or any other means to hold the unit cells contacts to the circuit. Also, the contacts could be fastened by solder, conductive adhesives etc. with or without through hole technology.
The printing of the anode and/or anode/anode collector will allow for the direct connection of unit cells into battery packs directly on the printing press, and without the use of conductive adhesives and/or solders etc. The printing of the cell/battery construction and connections is detailed later in this description.
The changes to the general construction are listed below and shown in battery 899 as shown in
Because the anode collector can be printed, the need for the conductive adhesive 805 as described in battery 800 construction of
The electronic application or similar device might also be manufactured using the technology of printed anode batteries described above. In this process, the printed battery (or a cell if the application requires 1.5 volts) is made as described in the above paragraphs. This process is then expanded to include the required operations to make the device on the same substrate using similar or additional method steps.
Thin printed flexible cells/batteries can have many potential applications. These include the following general categories as examples:
The invention has been described hereinabove using specific examples and embodiments; however, it will be understood by those skilled in the art that various alternatives may be used and equivalents may be substituted for elements and/or steps described herein, without deviating from the scope of the invention. Modifications may be necessary to adapt the invention to a particular situation or to particular needs without departing from the scope of the invention. It is intended that the invention not be limited to the particular implementations and embodiments described herein, but that the claims be given their broadest interpretation to cover all embodiments, literal or equivalent, disclosed or not, covered thereby.
This application claims the benefit of provisional patent applications 60/563,953, filed on Apr. 21, 2004, 60/607,938 filed on Sep. 8, 2004, and 60/632,913, filed on Dec. 3, 2004, all incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
629325 | Ashley | Jul 1899 | A |
629372 | Kennedy | Jul 1899 | A |
2154312 | MacCallum | Apr 1939 | A |
2480531 | Wilke | Aug 1949 | A |
2637757 | Wilke | May 1953 | A |
2688649 | Bjorksten | Sep 1954 | A |
2903498 | Sindel et al. | Sep 1959 | A |
2905738 | Di Pasquale et al. | Sep 1959 | A |
3006980 | Story | Oct 1961 | A |
3230115 | Tamminen | Jan 1966 | A |
3375136 | Biggar | Mar 1968 | A |
3655449 | Yamamoto et al. | Apr 1972 | A |
3770504 | Bergum | Nov 1973 | A |
3799808 | Hancock | Mar 1974 | A |
3847669 | Paterniti | Nov 1974 | A |
3901732 | Kalnoki Kis et al. | Aug 1975 | A |
3928077 | Sperandio et al. | Dec 1975 | A |
3954506 | Sullivan | May 1976 | A |
3967292 | Delahunt | Jun 1976 | A |
3980497 | Gillman et al. | Sep 1976 | A |
3988168 | Bruneau | Oct 1976 | A |
3993508 | Erlichman | Nov 1976 | A |
4001467 | Sullivan | Jan 1977 | A |
4006036 | Charkoudian | Feb 1977 | A |
4007472 | Land | Feb 1977 | A |
4028479 | Fanciullo et al. | Jun 1977 | A |
4042760 | Land | Aug 1977 | A |
4047289 | Wolff | Sep 1977 | A |
4060669 | Fanciullo | Nov 1977 | A |
4070528 | Bergum et al. | Jan 1978 | A |
4080728 | Buckler | Mar 1978 | A |
4086399 | Hyland et al. | Apr 1978 | A |
4086400 | Hyland et al. | Apr 1978 | A |
4098965 | Kinsman | Jul 1978 | A |
4105815 | Buckler | Aug 1978 | A |
4105831 | Plasse | Aug 1978 | A |
4112205 | Charkoudian | Sep 1978 | A |
4118860 | Buckler et al. | Oct 1978 | A |
4119770 | Land | Oct 1978 | A |
4124742 | Land et al. | Nov 1978 | A |
4125684 | Land | Nov 1978 | A |
4125685 | Bloom et al. | Nov 1978 | A |
4125686 | Kinsman | Nov 1978 | A |
4136236 | Ruetschi | Jan 1979 | A |
4137627 | Kinsman | Feb 1979 | A |
4145485 | Kinsman | Mar 1979 | A |
4150200 | Sullivan | Apr 1979 | A |
4152825 | Bruneau | May 1979 | A |
4172184 | Bloom et al. | Oct 1979 | A |
4172319 | Bloom et al. | Oct 1979 | A |
4175052 | Norteman, Jr. | Nov 1979 | A |
4177330 | Gordon et al. | Dec 1979 | A |
4177552 | Gordon et al. | Dec 1979 | A |
4181778 | Land | Jan 1980 | A |
4185144 | Ames et al. | Jan 1980 | A |
4194061 | Land et al. | Mar 1980 | A |
4195121 | Peterson | Mar 1980 | A |
4204036 | Cohen et al. | May 1980 | A |
4232099 | Sullivan | Nov 1980 | A |
4242424 | Buckler et al. | Dec 1980 | A |
4254191 | Kniazzeh | Mar 1981 | A |
4256813 | Kniazzeh | Mar 1981 | A |
4287274 | Ibbotson et al. | Sep 1981 | A |
4345954 | Panchu | Aug 1982 | A |
4361633 | Nel et al. | Nov 1982 | A |
4389470 | Plasse | Jun 1983 | A |
4400452 | Bruder | Aug 1983 | A |
4427748 | Land | Jan 1984 | A |
4429026 | Bruder | Jan 1984 | A |
4455358 | Graham et al. | Jun 1984 | A |
4466470 | Bruder | Aug 1984 | A |
4477544 | Bruder | Oct 1984 | A |
4502903 | Bruder | Mar 1985 | A |
4505996 | Simonton | Mar 1985 | A |
4525439 | Simonton | Jun 1985 | A |
4532193 | Kniazzeh et al. | Jul 1985 | A |
4539275 | Plasse | Sep 1985 | A |
4554226 | Simonton | Nov 1985 | A |
4604334 | Tarascon | Aug 1986 | A |
4608279 | Schumm, Jr. | Aug 1986 | A |
4609597 | Plasse | Sep 1986 | A |
4621035 | Bruder | Nov 1986 | A |
4623598 | Waki et al. | Nov 1986 | A |
4664993 | Sturgis et al. | May 1987 | A |
4756717 | Sturgis et al. | Jul 1988 | A |
4889777 | Akuto | Dec 1989 | A |
4916035 | Yamashita et al. | Apr 1990 | A |
4977046 | Bleszinski, Jr. et al. | Dec 1990 | A |
4997732 | Austin et al. | Mar 1991 | A |
5035965 | Sangyoji et al. | Jul 1991 | A |
5055968 | Nishi et al. | Oct 1991 | A |
5110696 | Shokoohi et al. | May 1992 | A |
5116701 | Kalisz | May 1992 | A |
5120785 | Walker et al. | Jun 1992 | A |
5217828 | Sangyoji et al. | Jun 1993 | A |
5259891 | Matsuyama et al. | Nov 1993 | A |
5326652 | Lake | Jul 1994 | A |
5330860 | Grot et al. | Jul 1994 | A |
5338625 | Bates et al. | Aug 1994 | A |
5350645 | Lake et al. | Sep 1994 | A |
5401590 | Chalilpoyil et al. | Mar 1995 | A |
5415888 | Banerjee et al. | May 1995 | A |
5424151 | Koksbang et al. | Jun 1995 | A |
5445856 | Chaloner-Gill | Aug 1995 | A |
5455127 | Olsen et al. | Oct 1995 | A |
5470357 | Schmutz et al. | Nov 1995 | A |
5514492 | Marincic et al. | May 1996 | A |
5547911 | Grot | Aug 1996 | A |
5565143 | Chan | Oct 1996 | A |
5578390 | Hughen | Nov 1996 | A |
5587254 | Kojima et al. | Dec 1996 | A |
5620580 | Okabe et al. | Apr 1997 | A |
5622652 | Kucherovsky et al. | Apr 1997 | A |
5624468 | Lake | Apr 1997 | A |
5637418 | Brown et al. | Jun 1997 | A |
5652043 | Nitzan | Jul 1997 | A |
5658684 | Lake | Aug 1997 | A |
5728181 | Jung et al. | Mar 1998 | A |
5735912 | Lake | Apr 1998 | A |
5735914 | Lake | Apr 1998 | A |
5747190 | Lake | May 1998 | A |
5747191 | Lake | May 1998 | A |
5759215 | Masuda | Jun 1998 | A |
5779839 | Tuttle et al. | Jul 1998 | A |
5811204 | Nitzan | Sep 1998 | A |
5865859 | Lake | Feb 1999 | A |
5897522 | Nitzan | Apr 1999 | A |
5906661 | Lake | May 1999 | A |
5930023 | Mitchell, Jr. et al. | Jul 1999 | A |
5941844 | Eckenhoff | Aug 1999 | A |
6025089 | Lake | Feb 2000 | A |
6030423 | Lake | Feb 2000 | A |
6030721 | Lake | Feb 2000 | A |
6045942 | Miekka et al. | Apr 2000 | A |
6078842 | Gross et al. | Jun 2000 | A |
6084380 | Burton | Jul 2000 | A |
RE36843 | Lake et al. | Aug 2000 | E |
6136468 | Mitchell, Jr. et al. | Oct 2000 | A |
6157858 | Gross et al. | Dec 2000 | A |
6186982 | Gross et al. | Feb 2001 | B1 |
6187475 | Oh et al. | Feb 2001 | B1 |
6200704 | Katz et al. | Mar 2001 | B1 |
6208524 | Tuttle | Mar 2001 | B1 |
6235422 | Kaplan et al. | May 2001 | B1 |
6243192 | Mitchell, Jr. et al. | Jun 2001 | B1 |
6273904 | Chen et al. | Aug 2001 | B1 |
6277520 | Moutsios et al. | Aug 2001 | B1 |
6278904 | Chen et al. | Aug 2001 | B1 |
6317630 | Gross et al. | Nov 2001 | B1 |
6369793 | Parker | Apr 2002 | B1 |
6379835 | Kucherovsky et al. | Apr 2002 | B1 |
6395043 | Shadle et al. | May 2002 | B1 |
6421561 | Morris et al. | Jul 2002 | B1 |
6458234 | Lake et al. | Oct 2002 | B1 |
6503658 | Klein et al. | Jan 2003 | B1 |
6569572 | Ochiai et al. | May 2003 | B1 |
6576364 | Mitchell, Jr. et al. | Jun 2003 | B1 |
6643532 | Axelgaard | Nov 2003 | B2 |
6653014 | Anderson et al. | Nov 2003 | B2 |
6664006 | Munshi | Dec 2003 | B1 |
6676021 | Luski et al. | Jan 2004 | B1 |
6676714 | Langan | Jan 2004 | B2 |
6697694 | Mogensen | Feb 2004 | B2 |
6708050 | Carim | Mar 2004 | B2 |
6709778 | Johnson | Mar 2004 | B2 |
6729025 | Farrell et al. | May 2004 | B2 |
6740451 | Christian et al. | May 2004 | B2 |
6743546 | Kaneda et al. | Jun 2004 | B1 |
6752842 | Luski et al. | Jun 2004 | B2 |
6757560 | Fischer et al. | Jun 2004 | B1 |
6816125 | Kuhns et al. | Nov 2004 | B2 |
6836215 | Laurash et al. | Dec 2004 | B1 |
6855441 | Levanon | Feb 2005 | B1 |
6884546 | Fujita et al. | Apr 2005 | B1 |
6888502 | Beigel et al. | May 2005 | B2 |
6899976 | Larson et al. | May 2005 | B2 |
6915159 | Kuribayashi et al. | Jul 2005 | B1 |
7017822 | Aisenbrey | Mar 2006 | B2 |
7022431 | Shchori et al. | Apr 2006 | B2 |
7031768 | Anderson et al. | Apr 2006 | B2 |
7043297 | Keusch et al. | May 2006 | B2 |
7049962 | Atherton et al. | May 2006 | B2 |
7224280 | Ferguson et al. | May 2007 | B2 |
RE39676 | Nitzan | Jun 2007 | E |
7238196 | Wibaux | Jul 2007 | B2 |
7244326 | Craig et al. | Jul 2007 | B2 |
7294209 | Shakespeare | Nov 2007 | B2 |
7320845 | Zucker | Jan 2008 | B2 |
7335441 | Luski et al. | Feb 2008 | B2 |
7340297 | Tamarkin et al. | Mar 2008 | B2 |
7340310 | Nitzan et al. | Mar 2008 | B2 |
7348096 | Schubert et al. | Mar 2008 | B2 |
7364896 | Schembri | Apr 2008 | B2 |
7368191 | Andelman et al. | May 2008 | B2 |
7383083 | Fischer et al. | Jun 2008 | B2 |
7394382 | Nitzan et al. | Jul 2008 | B2 |
7483738 | Tamarkin et al. | Jan 2009 | B2 |
7491465 | Nitzan et al. | Feb 2009 | B2 |
7501208 | Feddrix et al. | Mar 2009 | B2 |
7603144 | Jenson et al. | Oct 2009 | B2 |
7625664 | Schubert et al. | Dec 2009 | B2 |
7643874 | Nitzan et al. | Jan 2010 | B2 |
7652188 | Levanon et al. | Jan 2010 | B2 |
7727290 | Zhang et al. | Jun 2010 | B2 |
20020086215 | Tamura et al. | Jul 2002 | A1 |
20020095780 | Shadle et al. | Jul 2002 | A1 |
20020110733 | Johnson | Aug 2002 | A1 |
20020182485 | Anderson et al. | Dec 2002 | A1 |
20020192542 | Luski et al. | Dec 2002 | A1 |
20030014014 | Nitzan | Jan 2003 | A1 |
20030059673 | Langan et al. | Mar 2003 | A1 |
20030082437 | Sotomura | May 2003 | A1 |
20030165744 | Schubert et al. | Sep 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030219648 | Zucker | Nov 2003 | A1 |
20030232248 | Iwamoto et al. | Dec 2003 | A1 |
20040001998 | Hopkins et al. | Jan 2004 | A1 |
20040009398 | Dorfman | Jan 2004 | A1 |
20040018422 | Islam et al. | Jan 2004 | A1 |
20040170893 | Nakaishi et al. | Sep 2004 | A1 |
20040209160 | Luski et al. | Oct 2004 | A1 |
20040217865 | Turner | Nov 2004 | A1 |
20040267189 | Mavor et al. | Dec 2004 | A1 |
20040267190 | Tamarkin et al. | Dec 2004 | A1 |
20040267283 | Mavor et al. | Dec 2004 | A1 |
20050013783 | Perricone | Jan 2005 | A1 |
20050038473 | Tamarkin et al. | Feb 2005 | A1 |
20050085751 | Daskal et al. | Apr 2005 | A1 |
20050147880 | Takahashi et al. | Jul 2005 | A1 |
20050194454 | Ferber et al. | Sep 2005 | A1 |
20060001528 | Nitzan et al. | Jan 2006 | A1 |
20060007049 | Nitzan et al. | Jan 2006 | A1 |
20060012464 | Nitzan et al. | Jan 2006 | A1 |
20060131616 | Devaney et al. | Jun 2006 | A1 |
20060159899 | Edwards et al. | Jul 2006 | A1 |
20060211936 | Hu et al. | Sep 2006 | A1 |
20060216586 | Tucholski | Sep 2006 | A1 |
20060253061 | Anderson et al. | Nov 2006 | A1 |
20060264804 | Karmon et al. | Nov 2006 | A1 |
20070007661 | Burgess et al. | Jan 2007 | A1 |
20070011870 | Lerch et al. | Jan 2007 | A1 |
20070016277 | Karat et al. | Jan 2007 | A1 |
20070024425 | Nitzan et al. | Feb 2007 | A1 |
20070060862 | Sun et al. | Mar 2007 | A1 |
20070066930 | Tanioka et al. | Mar 2007 | A1 |
20070243459 | Jenson et al. | Oct 2007 | A1 |
20080007409 | Ferry et al. | Jan 2008 | A1 |
20080021436 | Wolpert et al. | Jan 2008 | A1 |
20080091095 | Heller et al. | Apr 2008 | A1 |
20080174380 | Nitzan et al. | Jul 2008 | A1 |
20080218345 | Nitzan et al. | Sep 2008 | A1 |
20080272890 | Nitzan et al. | Nov 2008 | A1 |
20100209756 | Bailey et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
19943961 | Jun 2000 | DE |
0678927 | Oct 1995 | EP |
0862227 | Sep 1998 | EP |
1026767 | Aug 2000 | EP |
1096589 | May 2001 | EP |
1107336 | Jun 2001 | EP |
55-133770 | Oct 1980 | JP |
58-206048 | Dec 1983 | JP |
59-228353 | Dec 1984 | JP |
S61-55866 | Mar 1986 | JP |
61-64077 | Apr 1986 | JP |
62-126557 | Jun 1987 | JP |
62-165875 | Jul 1987 | JP |
62-165876 | Jul 1987 | JP |
62-285954 | Dec 1987 | JP |
63-081762 | Apr 1988 | JP |
63-119155 | May 1988 | JP |
64-24364 | Jan 1989 | JP |
H02-273464 | Nov 1990 | JP |
H04-276665 | Oct 1992 | JP |
5-217587 | Aug 1993 | JP |
5-225989 | Sep 1993 | JP |
5-275087 | Oct 1993 | JP |
2000-164033 | Jun 2000 | JP |
2000-229128 | Aug 2000 | JP |
2000-319381 | Nov 2000 | JP |
2001-23695 | Jan 2001 | JP |
2001-521676 | Nov 2001 | JP |
2003-151634 | May 2003 | JP |
2003-282148 | Oct 2003 | JP |
2004-336240 | Nov 2004 | JP |
2005-39256 | Feb 2005 | JP |
540185 | Jul 2003 | TW |
9638867 | Dec 1996 | WO |
9717735 | May 1997 | WO |
9822987 | May 1998 | WO |
9848469 | Oct 1998 | WO |
0036672 | Jun 2000 | WO |
WO 03069700 | Aug 2003 | WO |
2006003648 | Jan 2006 | WO |
Entry |
---|
Linden, David; Handbook of Batteries and Fuel Cells; McGraw-Hill Book Company;1984; pp. 5-5 to 5-7. |
Linden, David; Handbook of Batteries Second Edition; McGraw-Hill, Inc; 1995, pp. 8.8 to 8.9. |
International Search Report and Written Opinion in PCT Application PCT/US08/87424, dated Aug. 6, 2009. |
Acheson Industries, “Acheson Electrical Materials,” from www.achesonindustries.com, dated Nov. 24, 2009. |
Acheson Colloids Company, “Sales Information Bulletin,” Port Huron, MI. |
Advanced Coatings and Chemicals, “Technical Data Sheet,” Temple City, CA. |
International Search Report and Written Opinion issued Jan. 30, 2009 in PCT Application Serial No. PCT/US2008/071549. |
Prosecution history for U.S. Appl. No. 11/378,520. |
Prosecution history for U.S. Appl. No. 11/379,816. |
Prosecution history for U.S. Appl. No. 12/669,067. |
Prosecution history for U.S. Appl. No. 12/669,068. |
Omnexus Adhesives & Sealant Solutions, “Ethylene Vinyl Acetate (EVA) and Other Hot Melts,” from http://www.omnexus4adhesives.com/bc/construction-channel/index.aspx?id=ethylene. |
Office action issued Jan. 16, 2011 in corresponding Israel Patent Application No. 178724. |
Office action issued Dec. 14, 2011 in corresponding Japanese patent application No. 2007-509672. |
Supplementary Partial European Search Report issued Apr. 20, 2012 in corresponding European Patent Application No. 05738396.0. |
Hartman, Lauren R., “Flexibles stay resilient,” Packaging Digest, Mar. 1, 2005. |
Toppan Printing Co., Ltd., Product Data Sheet: Barrier Properties of GL, dated Oct. 4, 2001. |
Toppan Printing Co., Ltd., Bulletin: Toppan's GL Family of Proprietary Environmental Barrier Films, last retrieved from http://www.toppan.co.jp/english/corporateinfo/r—and—d/bulletin/41/article4.html on Mar. 12, 2012. |
Impak Corporation, Comparison of Barrier Film Properties, last retrieved from http://www.sorbentsystems.com/barrier—film—properties.htm on Oct. 8, 2013. |
International Search Report and Written Opinion of the International Searching Authority in PCT Application PCT/US2008/070500, issued Dec. 31, 2008. |
Number | Date | Country | |
---|---|---|---|
20050260492 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60563953 | Apr 2004 | US | |
60607938 | Sep 2004 | US | |
60632913 | Dec 2004 | US |