Thin profile surface mount lighting apparatus

Information

  • Patent Grant
  • 11649938
  • Patent Number
    11,649,938
  • Date Filed
    Thursday, September 16, 2021
    2 years ago
  • Date Issued
    Tuesday, May 16, 2023
    a year ago
Abstract
An LED downlighting apparatus includes a housing with a sidewall having a front facing edge and a back facing edge positioned adjacent to a ceiling when the LED downlighting apparatus is installed in an opening of the ceiling. A depth of the sidewall is less than one inch and a thickness of at least a portion of the sidewall is less than three millimeters. An LED board and a lens are coupled to the housing. The lens is disposed with respect to the LED board such that the lens is illuminated from a back side. One or more mechanical couplers snap fit the apparatus to a junction box installed and positioned above the ceiling such that when the apparatus is snap fit to the junction box through the opening of the ceiling, the housing appears to be surface mounted to the ceiling.
Description
BACKGROUND

Some conventional surface mount LED downlights may be coupled to a junction box disposed behind a ceiling and may be employed in new construction or retrofit architectural projects. One such example is the “Disk Light” provided by Commercial Electric and manufactured by Cree (manufacturer model number CE-JB6-650L-27K-E26). The Disk Light can be installed in an existing recessed can or a four-inch junction box and includes a semi recessed lens. The Commercial Electric Disk Light may be used indoors and in an outdoor enclosed setting, and is generally intended for kitchens, hallways, bathrooms, closets, laundry, porches and garage work rooms. Another example is the Halo Surface Mount LED Downlight (SMD) series, which are low-profile surface mount luminaires designed for installation in many 3½″ and 4″ square, octagon, or round junction boxes.


SUMMARY

Various inventive concepts disclosed herein relate generally to a thin surface mount type of luminaire, wherein “thin” refers to the protruding portion of the luminaire below the line of the ceiling, for example. In various implementations, the luminaire can be installed from below the ceiling by a twist lock mechanism or by clips into a junction box that is installed in the ceiling. Some implementations include a test switch that is accessible from the portion of the luminaire that protrudes below the ceiling line. The lens of some implementations combines a total internal reflection lens with a conical structure buried at its center. In other implementations, the luminaire includes a plurality of light sources distributed evenly across a light producing portion of the luminaire. In such implementations, the light sources can comprise LEDs.


In sum, one inventive implementation is directed to an LED lighting apparatus, comprising: a housing comprising at least one sidewall having a front facing edge and a back facing edge positioned adjacent to a ceiling when the LED lighting apparatus is installed in an opening of the ceiling, wherein a depth of the at least one sidewall of the housing, between the front facing edge and the back facing edge, is less than one inch such that the apparatus does not visibly appear to protrude substantially from a surface of the ceiling when the apparatus is installed in the opening of the ceiling; an LED board coupled to the housing, the LED board comprising a plurality of LEDs; and a lens coupled to the housing, the lens having a back side facing the LED board and a front side opposite to the back side, wherein the front side of the lens provides a downward facing surface when the LED lighting apparatus is installed in the opening of the ceiling, the lens being disposed with respect to the LED board such that the plurality of the LEDs illuminate the back side of the lens. A first spacing of the plurality of the LEDs on the LED board causes resulting light from the downward facing surface of the lens to be substantially uniform during operation of the apparatus. The front side of the lens, providing the downward facing surface when the LED lighting apparatus is installed in the opening in the ceiling, is essentially flush with the front facing edge of the at least one sidewall of the housing.


Another inventive implementation is directed to an LED lighting apparatus, comprising: a housing; an LED board coupled to the housing, the LED board comprising a plurality of LEDs; and a lens coupled to the housing, the lens having a back side facing the LED board and a front side opposite to the back side, wherein the front side of the lens provides a downward facing surface when the LED lighting apparatus is installed in an opening of a ceiling, the lens being disposed with respect to the LED board such that the plurality of the LEDs illuminate the back side of the lens. A first spacing of the plurality of the LEDs on the LED board causes resulting light from the downward facing surface of the lens to be substantially uniform during operation of the apparatus.


Another inventive implementation is directed to a thin profile surface mount LED lighting apparatus, comprising: a housing comprising at least one sidewall having a front facing edge and a back facing edge positioned adjacent to a ceiling when the LED lighting apparatus is installed in an opening of the ceiling, wherein a depth of the at least one sidewall of the housing, between the front facing edge and the back facing edge, is less than one inch; an LED board coupled to the housing, the LED board comprising a plurality of LEDs; and a lens coupled to the housing, the lens having a back side facing the LED board, a front side opposite to the back side and an outer edge, wherein the front side of the lens provides a downward facing surface when the LED lighting apparatus is installed in the opening of the ceiling, the lens being disposed with respect to the LED board such that the plurality of the LEDs illuminate the back side of the lens. The front facing edge of the at least one sidewall forms a perimeter around the outer edge of the lens. The front side of the lens, providing the downward facing surface when the LED lighting apparatus is installed in the opening in the ceiling, is essentially flush with the front facing edge of the at least one sidewall of the housing forming the perimeter around the outer edge of the lens. The perimeter around the outer edge of the lens is significantly thin so as not to extend significantly beyond the outer edge of the lens.


It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The skilled artisan will understand that the drawings primarily are for illustrative purposes and are not intended to limit the scope of the inventive subject matter described herein. The drawings are not necessarily to scale; in some instances, various aspects of the inventive subject matter disclosed herein may be shown exaggerated or enlarged in the drawings to facilitate an understanding of different features. In the drawings, like reference characters generally refer to like features (e.g., functionally similar and/or structurally similar elements).



FIG. 1 is an assembly drawing of an example luminaire according to some inventive implementations.



FIGS. 2A, 2B, and 2C illustrate various aspects of a lens in the assembly of FIG. 1, according to some inventive implementations.



FIGS. 3A and 3B illustrate various aspects of a conical structure of the lens of FIGS. 2A through 2C, according to some inventive implementations.



FIGS. 4A and 4B illustrate aspects of mounting a luminaire in a junction box, according to some inventive implementations.



FIG. 5 is an assembly drawing of another example luminaire according to some inventive implementations.



FIG. 6 illustrates various emergency aspects of the example luminaire of FIG. 5 according to some inventive implementations.



FIG. 7 is an assembly drawing of another example luminaire according to some implementations.



FIG. 8A illustrates an example circular LED board that can be included in a luminaire such as that illustrated in FIG. 7, according to some inventive implementations.



FIG. 8B illustrates an example rectangular LED board that can be included in a luminaire according to some inventive implementations.



FIGS. 9A and 9B illustrate example aspects of installing a luminaire such as that shown in FIG. 7 into a junction box in a ceiling, according to some inventive implementations.



FIG. 9C is a partial side cross-sectional view of the luminaire of FIG. 7, illustrating an arrangement of an LED board and a lens disposed in a housing and example dimensions relating to same, according to some inventive implementations.



FIG. 10A is a side view of a luminaire similar to that shown in FIG. 7, according to some inventive implementations.



FIG. 10B is a front view (or downward facing view) of the luminaire shown in FIG. 10A.



FIG. 10C is a back view (or upward facing view) of the luminaire shown in FIG. 10A.



FIG. 10D is a back (or top) perspective view of the luminaire shown in FIG. 10A.



FIG. 10E is a front (or bottom) exploded perspective view of the luminaire shown in FIG. 10A.



FIG. 11A is a side view of a luminaire similar to that shown in FIG. 7, according to some inventive implementations, which includes a test button similar to that shown in FIG. 5.



FIG. 11B is a front view (or downward facing view) of the luminaire shown in FIG. 11A.



FIG. 11C is a back view (or upward facing view) of the luminaire shown in FIG. 11A.



FIG. 11D is a back (or top) perspective view of the luminaire shown in FIG. 11A.



FIG. 11E is a front (or bottom) exploded perspective view of the luminaire shown in FIG. 11A.



FIG. 12A is a front (or bottom) side perspective view of a rectangular-shaped luminaire according to some inventive implementations.



FIG. 12B is a back (or top) side perspective view of the luminaire of FIG. 12A according to some inventive implementations.





DETAILED DESCRIPTION

Following below are more detailed descriptions of various concepts related to, and implementations of, inventive thin profile surface mount lighting apparatus. It should be appreciated that various concepts introduced above and discussed in greater detail below may be implemented in numerous ways. Examples of specific implementations and applications are provided primarily for illustrative purposes so as to enable those skilled in the art to practice the implementations and alternatives apparent to those skilled in the art.


The figures and examples below are not meant to limit the scope of the present implementations to a single embodiment, but other implementations are possible by way of interchange of some or all of the described or illustrated elements. Moreover, where certain elements of the present implementations can be partially or fully implemented using known components, only those portions of such known components that are necessary for an understanding of the present implementations are described, and detailed descriptions of other portions of such known components are omitted so as not to obscure the present implementations. In the present specification, an implementation showing a singular component should not be considered limiting; rather, the present disclosure is intended to encompass other implementations including a plurality of the same component, and vice-versa, unless explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the specification or claims to be ascribed an uncommon or special meaning unless explicitly set forth as such.


According to certain aspects, the present applicants have recognized that it would be desirable to have a low cost but aesthetically pleasing and efficient LED downlight that is, or appears to be, surface mounted to a ceiling, and which includes a thin profile and uniform lighting distribution.


In fulfillment of these and other aspects, FIG. 1 is an assembly drawing of an example luminaire according to some implementations.


As shown, luminaire 100 is comprised of a housing 102 having an integrally formed flange portion 116 and fins 122. As further shown, luminaire 100 also includes driver 104, reflector 106, lens 108, cone 110, light source 112 and adapter bracket 114. As will be described in more detail below, the luminaire 100 is designed to be positioned behind a ceiling or a wall such that the flange portion 116 of housing 102 extends outside a hole in the ceiling or wall (not shown) and rests flush against the exposed surface of the ceiling or wall. As such, the flange portion 116, when assembled together with lens 108, helps the luminaire 100 appear to be “surface-mounted” on the ceiling or wall, although it is not actually mounted on the surface.


The driver 104, as will be described below in more detail below, is mounted within driver module cover 124 and contained inside the housing 102 behind reflector 106, lens 108 and cone 110. The lens 108 is attached to the flange portion 116 by a twist and lock mechanism built into the outer periphery of lens 108 and inner surface of flange portion 116 as will be described in more detail below. The lens 108 thus completely fills the opening defined by flange portion 116, and thus further helps the luminaire 100 appear to be mounted on the surface of the ceiling or wall. Despite these appearances however, the luminaire is not designed to be directly mounted to the surface of the ceiling or wall. Rather, the adapter bracket 114 allows the luminaire 100 to be installed within a junction box (not shown, for example via a twist and lock mechanism or a friction fit mechanism), the junction box being already installed within the ceiling or wall as described in more detail below. The housing 102 can be secured to bracket 114 by screws 118 and clips 120.


Housing 102, including integrally formed flange portion 116 and fins 122, may be composed of any thermally conductive material so as to help cool the luminaire during operation of light source 112. For example, housing 102 including integrally formed flange portion 116 and fins 122 may be comprised of injection molded thermally conductive plastic. In other implementations, housing 102, flange portion 116 and/or fins 122 may be made of aluminum alloys, copper, copper-tungsten pseudoalloy, AlSiC (silicon carbide in aluminum matrix), Dymalloy (diamond in copper-silver alloy matrix), E-Material (beryllium oxide in beryllium matrix), and/or other thermally conductive plastics or ceramics.


Driver 104 is an electronic circuit or device that supplies and/or regulates electrical energy to the light source 112 and thus powers the light source 112 to emit light. The driver 104 may be any type of power supply circuit, including one that includes power converters, rectifiers, power transistors and the like for delivering an appropriate alternating current (AC) or a direct current (DC) voltage to the light source 112. Upon receiving electricity, the driver 104 may regulate current or voltage to supply a stable voltage or current within the operating parameters of the light source 112. In implementations, the driver 104 receives an input current from an electrical power wiring network of the building or structure in which the luminaire 100 is installed and may drop the voltage of the input current to an acceptable level for the light source 112 (e.g., from 120V-277V to 36V-48V). In these and other implementations, ground wire 130, attached to housing 102 by screw 132, is electrically connected to the electrical power ground and wires 135 are electrically connected to a wiring network (e.g., the main house voltage of a building or other transformed voltage) and delivers power to the driver 104.


The light source 112 may be any electro-optical device or combination of devices for emitting light. For example, the light source 112 may have one or more light emitting diodes (LEDs, such as an XLamp LED from Cree), organic light-emitting diode (OLEDs), or polymer light-emitting diode (PLEDs). The light source 112 receives electricity from the driver 104, as described above, such that the light source 112 can emit a controlled beam of light toward cone 110 and lens 108, and thus into a room or surrounding area of the luminaire 100 (when installed behind a ceiling or wall) as will be described in more detail below.


Driver module cover 124 in implementations may be made of heat resistant or insulating plastic, for example plastic comprising materials selected from a group consisting of semi-crystalline polyamides, polyamide alloys, polycarbonate, polymers, minerals, glass, carbon, steel fibers, etc. In these and other implementations, insulator 124 may be formed by injection molding, extrusion or other means and dimensioned in accordance with driver 104, which is held into place inside insulator 124 via clips 126. In the illustrated embodiment, driver module cover 124 is attached to housing 102 by screws 128, which in turn aligns light source 112 with an opening in reflector 106 and thus an optical path between light source 112, lens 108 and cone 110 as will become more apparent from the descriptions below.


Example aspects of lens 108 and cone 110 according to implementations are shown in FIGS. 2A and 2B which provide side and cross-sectional views, respectively. FIG. 2C also provides a cross-sectional view of aspects of an operation of lens 108 and cone 110 together with light source 112 and reflector 106 when assembled and aligned together as designed. As shown in FIGS. 2A and 2B, the lens according to the present implementations is unusual. When assembled for operation according to implementations, it combines a total internal reflection lens 108 with a reflective conical structure 110 buried at its center. In implementations, cone 110 is sized and dimensioned to be held into place in a corresponding center depression 204 of lens 108 with a friction fit. In other implementations, cone 110 is held into place by an adhesive or other suitable means. In still other implementations, lens 108 and cone 110 are integrally formed together from a single unitary material, with the upper surface of cone 110 being machined or otherwise formed in the center of lens 108.


As further shown in FIG. 2C, according to operational aspects of an assembled luminaire 100, the light from light source 112 is projected toward the center of the lens and is mostly reflected by the cone 110 into the lens 108. From there it undergoes further total internal reflections within the lens forcing the light to travel downwards and out the exit side of the lens 108. Under normal conditions, the spot on the lens covered by the cone 110 would be dark because all the light would be reflected. According to the present implementations, however, the reflective surface of the cone 110 is not completely reflective. Rather, it is configured to allow about 10% of the light to pass through as will be described in more detail below. This prevents a dark spot from appearing at the exit side of lens 108 in the center portion occupied by the cone 110. It should be further noted that the total internal reflection features of lens 108 and the partially transmissive features of cone 110 allows for a uniform amount of light to be distributed across the entire surface of the exit side of lens 108, which starkly contrasts with conventional approaches, such as those having light sources arranged at a periphery of a lens. Still further, the arrangement of lens 108 and cone 110 allow for the use of only a single light source 112, which enables a low-cost design as opposed to other approaches requiring multiple light sources.


According to further aspects of some implementations, when assembled for operation together with reflector 106, any light from light source 112 that is reflected by cone 110 but which escapes from lens 108 back toward light source 112 is further reflected downward and back out the exit side of lens 108, thus increasing the operational lighting efficiency of light source 112.


Lens 108 may be made of any optically transmissive material, including glass and hard plastics. For example, lens 108 may be comprised of polycarbonate material. In one embodiment, the lens 108 also provides a protective barrier for the light source 112 and shields the light source 112 from moisture or inclement weather. As further shown in FIG. 2A, an embodiment of lens 108 includes twist and lock groove 202 formed on the outer periphery of lens 108. As such, lens 108 may be sized and shaped to be locked into position into flange portion 116 of housing 102, thereby covering the main opening at the bottom of the housing 102 and providing the shielding advantages as mentioned above. Moreover, the twist and lock mechanism allows for lens 108 to be removed from below a ceiling even when the luminaire 100 is installed, thereby allowing for components of luminaire 100 to be accessed for test, inspection, removal, replacement, etc., without having to remove the luminaire 100 from behind the ceiling or wall.


Reflector 106 may be made of any reflective material, or any material having a reflective coating. In implementations, reflector 106 is comprised of highly reflective (e.g. 98%) Valar 2.0 BRDF. In these and other implementations, reflector 106 is separately formed from lens 108 and held into place within housing 102 when lens 108 is twist and locked into flange portion 116.



FIGS. 3A and 3B illustrate example aspects of cone 110 according to implementations in more detail, providing top and cross-sectional views of cone 110, respectively.


In the illustrated implementations, cone 110 is made of a thermoplastic material such as polycarbonate, having a base portion 302 and cone portion 304. As shown, cone portion 304 is formed so as to extend at an angle of about 45 degrees from base portion 302. Cone 110 includes bottom surface 306, side surface 308 and cone surface 310. With reference to FIG. 2, when assembled together with lens 108, the bottom surface 306 abuts with a bottom portion of depression 204 in lens 108, while side surface abuts with a side portion of depression 204 in lens 108. In implementations, cone surface 310 is treated to cause light from light source 112 to reflect towards and into lens 108, while allowing some light to enter cone 110 and exit through bottom surface 306. Accordingly, bottom surface 306 is preferably treated in these and other implementations to allow for light to be transmitted through surface 306 and toward an exit side of lens 108. In non-limiting example implementations, cone surface 310 is vacuum metalized (e.g. aluminum) to be 90% reflective and 10% transmissive, and possibly further coated with a coating such as SiO, SiO2 or organic coatings having silicates. In these and other implementations, surface 306 and surface 308 are both surface treated with a texturing specification such as LDK-1002, however such texturing is not necessary in all implementations.



FIG. 4A illustrates aspects of how the present implementations provide aesthetically pleasing surface mounted appearances when luminaire 100 is used as a downlight in a ceiling.


Housing 102 is secured to junction box 402 via adapter 114 and a corresponding adapter ring 416, as will be described in more detail below. Junction box 402 is mounted above an opening of ceiling 404 and can be secured to a ceiling by two or more hanger arms 406. When housing 102 is thus secured to junction box 402, flange portion 116 is flush against the surface of ceiling 404, and flange portion 116 (as well as lens 108) is the only portion of the luminaire 100 that extends outward from the surface of ceiling 404. According to aspects, flange portion 116 is thin, for example less than an inch, such that luminaire 100 does not visibly appear to protrude substantially from the surface of ceiling 404. such that luminaire 100 does not visibly appear to protrude substantially from the surface of ceiling 404


In implementations, junction box 402 may be made of galvanized steel, injection molded plastic, aluminum or ceramic. Junction box 402 may be fire-resistant in that it has a fire rating of up to two hours without any need for modification, where the fire rating is described in the National Electrical Code (NEC) and by the Underwriters Laboratories (UL) such as specified in UL 263 Standard for Fire Tests of Building Construction and Materials. In other implementations, luminaire 100 may be attached to a standard 4.times.4 electrical junction box, which may or may not be fire rated.



FIG. 4B shows how adapter bracket 114 and adapter ring 416 are coupled together in a twist and lock fashion, thus allowing luminaire 100 to be easily mounted to junction box 402. As shown, slot portions 420 of structures on adapter ring 416 are dimensioned to receive corresponding structures on adapter bracket 114, which structures are then fixedly coupled to adapter ring 416 when the adapter 114 and adapter ring 416 are twisted clockwise with respect to each other. Example twist and lock mechanisms that are suitable for practice with the present implementations include those described in U.S. Patent Publ. No. 2016/0348860. By virtue of such mechanisms, luminaire 100 may be easily mounted, accessed, serviced, tested and possibly replaced from below ceiling 404.



FIG. 5 is an assembly drawing of another example luminaire 500 according to implementations.


As shown in this example, luminaire 500 includes many of the same components as luminaire 100, and so repeated descriptions thereof are not included here. Meanwhile, luminaire 500 further includes test button 502 and button housing 504. The button housing 504 in this example is mounted to the external surface of flange portion 116 of housing 102 via clip 120 and screws 506. Test button 502 can be attached to an electrical wire (not shown) and electrical signal source and can include any electrical and mechanical components so that, when test button 502 is depressed, an electrical signal is provided on the attached electrical wire. Many possible examples of such components are known to those skilled in the art, so further details thereof will be omitted here for sake of clarity of the invention.



FIG. 6 illustrates example emergency aspects of luminaire 500. In this example, luminaire 500 is attached to a junction box 402 behind a ceiling 404 as described above in connection with FIGS. 4A and 4B. As such, when luminaire 500 is so attached, button 502, by virtue of being attached to flange portion 116 of housing 102, is accessible from below ceiling 404. As further illustrated, when button 502 is pressed, an electrical signal is sent to power switch 602, which causes power to the luminaire 500 (e.g. via one or more wires 630) to be switched from regular power source 604 to an emergency power source 606. For example, regular power source 604 can be an electrical power wiring network of the building or structure in which the luminaire 500 is installed. In these and other implementations, emergency power source 606 can be a backup power supply including one or more batteries and power conditioning electronics. If the emergency power source 606 is sufficient, light from luminaire 500 will be produced, thereby allowing personnel to verify emergency power source 606 without having to remove luminaire 500 or otherwise gain direct access to emergency power source 600.


It should be noted that the arrangement of elements 602, 604 and 606 with respect to junction box 402 and luminaire 500 shown in FIG. 6 is for illustration purposes only and non-limiting to the present implementations. Many other arrangements are possible, as will be appreciated by those skilled in the art.



FIG. 7 is an assembly drawing of another example luminaire 700 according to some implementations pursuant to the concepts disclosed herein.


As shown in this example, luminaire 700 includes some of the same components as luminaire 100, and so repeated descriptions thereof are not included here. Meanwhile, differently from luminaire 100, luminaire 700 includes driver module cover 704 which can house a driver such as module 104 described above (although a driver 104 is not explicitly shown in FIG. 7, it should be appreciated that a driver may be included in some implementations based on FIG. 7, as discussed elsewhere herein in connection with other figures). not shown). A light source housing 708, similar in some respects to the flange portion 116 of the housing 102 shown in FIG. 1, houses an LED board 710 and lens 712, which are mounted in housing 708 using screws 714 and friction fit clips 716, respectively. Light source housing 708 is further attached to driver module cover 704 using screws 702.


Driver module cover 704 and/or light source housing 708 according to implementations may be made of thermally conducting material, for example plastic comprising materials selected from a group consisting of semi-crystalline polyamides, polyamide alloys, polymers, minerals, glass, and carbon, or other materials such as carbon fiber, aluminum, steel, etc. In these and other implementations, insulator 704 and/or housing 708 may be formed by injection molding, extrusion or other means and dimensioned in accordance with driver 104 and LED board 710, respectively. It should be noted that although light source housing 708 is shown as having a round shape in this example, that this is not limiting, and many other shapes are possible such as squares, rectangles, ovals, etc. (e.g., as discussed further below in connection with FIGS. 8B, 12A and 12B)).


LED board 710 comprises a plurality of LEDs and an example will be described in more detail below. Lens 712 may be made of any optically transmissive material, including glass and hard plastics. For example, lens 712 may be comprised of polycarbonate material, such as Covestro Makrolon® (e.g., see www.plastics.covestro.com/en/Products/Makrolon). In implementations, lens 712 causes light from LEDs on LED board 710 to be distributed evenly across its downward facing surface by at least one of two approaches. In a first approach, the spacing of the LEDs is controlled so as to cause the resulting light to be uniform. In a second approach, lens 712 is formed using a plastic that includes additives that result in a milky white diffusive polymer.


More generally, in one implementation based on FIG. 7 (as well as features from other figures described herein), an LED lighting apparatus 700 comprises a housing 708, an LED board 710 coupled to the housing, and a lens 712 coupled to the housing. The lens has a back side 712B facing the LED board, a front side 712F opposite to the back side, and an outer edge 712E. The front side 712F of the lens provides a downward facing surface when the LED lighting apparatus is installed in an opening of a ceiling, and the lens is disposed with respect to the LED board such that multiple LEDs disposed on the LED board illuminate the back side of the lens.


With reference for the moment to FIG. 9B, which shows a bottom or down-facing perspective view of the lighting apparatus 700 of FIG. 7 as it is installed in a junction box 902, the housing 708 of the lighting apparatus 700 comprises a sidewall 718 having a front facing edge 720 and a back facing edge 722 positioned adjacent to a ceiling when the LED lighting apparatus is installed in an opening of the ceiling. In one example implementation, a depth 724 of the sidewall 718, between the front facing edge 720 and the back facing edge 722, is less than one inch such that the apparatus does not visibly appear to protrude substantially from a surface of the ceiling when the apparatus is installed in an opening of the ceiling. In one aspect, the front side 712F of the lens, providing the downward facing surface when the LED lighting apparatus is installed in the opening in the ceiling, is essentially flush with the front facing edge 720 of the sidewall 718 of the housing 708. In another aspect, the front facing edge 720 of the sidewall 718 forms a perimeter around the outer edge 712E of the lens, wherein the perimeter around the outer edge of the lens is significantly thin so as not to extend significantly beyond the outer edge of the lens. In the foregoing manners, the lighting apparatus 700 has an appreciably thin profile (e.g., installed depth from the ceiling of less than one inch, and significantly thin perimeter around the outer edge of the lens) to provide an aesthetically pleasing architectural lighting component.



FIG. 9C is a partial side cross-sectional view of the luminaire of FIGS. 7 and 9B, illustrating an arrangement of the LED board 710 and the lens 712 disposed in the housing 708, and example dimensions relating to same, according to some inventive implementations. As shown in FIG. 9C, the outer edge 712E of the lens 712, when installed in the housing 708, is disposed in a rabbet 719 of the sidewall 718 of the housing that runs along the front facing edge 720 of the sidewall 718, such that an edge thickness 726 of the front facing edge 720 is smaller than a sidewall thickness 727 of the sidewall 718. In various examples, sidewall 718 may have a thickness 727 of less than 10 millimeters, in some examples less than 5 millimeters, and in other examples less than 3 millimeters. In other examples the front facing edge 720, forming the perimeter around the outer edge of the lens, may have a thickness 726 of less than two millimeters, and in some examples less than 1.5 millimeters. In one specific implementation, the thickness 726 is 1.2 millimeters and the thickness 727 is 2.1 millimeters.


As also shown in FIG. 9C, the housing 708 has a depth 724 between the front facing edge 720 and the back facing edge 722 of the sidewall 718, which in some inventive implementations is less than one inch, as discussed above. In another aspect, a lens thickness 736 of the lens 712 may be on the order of approximately 3 millimeters. In some implementations, a spacing 732 between the LED board 710 and the lens 712 may be particularly selected to cause the resulting light 750 from the downward facing surface of the lens (e.g., see FIG. 7) to be substantially uniform during operation of the apparatus. In yet another aspect, this spacing 732 may be approximately or equal to 8 millimeters.



FIG. 8A illustrates an example circular LED board 710 that can be included in a luminaire such as that illustrated in FIG. 7 according to some inventive implementations, and FIG. 8B illustrates an example rectangular LED board 710B that can be included in a luminaire according to other inventive implementations (e.g., as discussed further below in connection with FIGS. 12A and 12B). As a general premise for both of the LED boards shown respectively in FIGS. 8A and 8B, a spacing of the multiple LEDs 802 on the LED board causes the resulting light 750 from the downward facing surface of the lens (see FIG. 7) to be substantially uniform during operation of the apparatus. In another aspect, both the spacing of the LEDs 802 on the LED board, and the spacing 732 between the LED board 710 and the lens 712, contribute toward a substantially uniform distribution of the resulting light from the downward facing surface of the lens. In yet another aspect, the spacing of the LEDs 802 on the LED board, the spacing 732 between the LED board 710 and the lens 712, and the thickness 736 of the lens respectively contribute toward a substantially uniform distribution of the resulting light. In yet another aspect, the spacing of the LEDs on the LED board, the spacing 732 between the LED board 710 and the lens 712, the thickness 736 of the lens, and the type of material used in the lens (e.g., a milky white polycarbonate) respectively contribute toward a substantially uniform distribution of the resulting light.


In some inventive implementations, the LEDs are distributed uniformly on the LED board and spaced apart almost identically. With reference to FIG. 8A, the plurality of LEDs 802 are arranged on the LED board 710 as a plurality of concentric rings 804. In one aspect, a distance 806 between any two adjacent concentric rings of the plurality of concentric rings is the same or approximately the same. As shown in FIG. 8A, at least a first ring 804A of the plurality of concentric rings comprises a first group 802A of the plurality of LEDs, and respective LEDs of the first group are spaced substantially evenly around the first ring 804A. In some examples (e.g., as shown in FIG. 8A) each ring of the plurality of concentric rings may comprise a different group of the plurality of LEDs, and respective LEDs of each different group are spaced substantially evenly around a corresponding ring of the plurality of concentric rings. In one example, an LED-to-LED spacing of the plurality of LEDs on the LED board is in a range of from approximately 7.5 millimeters to 8.5 millimeters. In another example, a circular LED board 710 has a total of 165 LEDs 802.


With reference to FIG. 8B, the plurality of LEDs 802 on the rectangular LED board 710B are arranged substantially uniformly across an entire surface or substantially the entire surface of the LED board. In one example, an LED-to-LED distance between neighboring LEDs of the plurality of LEDs is in a range of from approximately 7.5 millimeters to 8.5 millimeters; in one example, a horizontal distance 844 between horizontally neighboring LEDS is 7.5 millimeters, and a vertical distance 842 between vertically neighboring LEDS is 8.1 millimeters. As also shown in FIG. 8B, the LED board 710B may also include one or more electrical traces terminating in electrical pads 850, which may be used, for example, in connection with the test button embodiments discussed above in connection with FIGS. 5 and 6, and discussed further below in connection with FIGS. 11A-E.


It should be noted that the number and spacing of LEDs 802 on the circular or rectangular LED boards shown in FIGS. 8A and 8B can depend on factors such as the amount of lumens produced by the LEDs, the type of lens 712, the desired overall light intensity of luminaire 700, etc. In other implementations, an excessive amount of lumens than necessary is produced by the LEDs. Each of LEDs 802 can be implemented by, for example an XLamp LED from Cree, OLEDs, or PLEDs.



FIGS. 9A and 9B illustrate aspects of how easily luminaire 700 according to implementations can be installed in an opening of a ceiling, for example.


As shown in FIG. 9A, first adapter ring 114 is attached to a junction box 902 using screws 904. The adapter ring 114 may include one or more cutouts 906 to facilitate coupling of the luminaire/lighting apparatus to the adapter ring, as discussed below in connection with FIG. 9B. The junction box 902 can be already installed above an opening in the ceiling. Although a standard 4×4 junction box is shown in FIG. 9A, it should be apparent that many other types of junction boxes can be used, such as a type of junction box similar to junction box 402 described above.


Next as shown in FIG. 9B, operating power can be connected to luminaire 700 using wires and connectors in the junction box 902 (not shown). Then luminaire 700 can be snapped into adapter ring 114 and held into place by friction fit clips 706. In one example, the friction fit clips 706 snap fit into the one or more cutouts 906 off the adapter ring 114. It should be noted that junction box 902 is preferably installed and positioned above the ceiling line such that, when luminaire 700 is snapped in place as described herein, light source housing 708 of luminaire 700 appears to be surface mounted to the ceiling, although luminaire 700 is actually held in place by clips 706 and adapter ring 114. Many other alternatives to friction fit clips are possible, such as spring clips, magnets, etc.



FIG. 10A is a side view of a luminaire similar to that shown in FIG. 7, according to some inventive implementations. The luminaire 700A is substantially similar in multiple respects to the luminaire described above in connection with FIGS. 7 through 9. In one different aspect, the driver module cover 704 may include multiple fins 740 which, in some implementations, may facilitate heat dissipation from the luminaire. As shown in FIG. 10A, a ground wire 730 may be coupled to one or both of the housing 708 or the adapter ring 714, and operating power may be coupled to the luminaire via wires 735, to provide for a substantially uniform distribution of resulting light 750 from the luminaire during operation. FIG. 10B is a front view (or downward facing view) of the luminaire shown in FIG. 10A, showing the appreciably thin perimeter formed by the front facing edge 720 of the sidewall 718 of the housing (e.g., having a thickness 726 on the order of less than 10 millimeters, or less than five millimeters, or less than three millimeters, or less than two millimeters, or less than 1.5 millimeters). FIG. 10C is a back view (or upward facing view) of the luminaire shown in FIG. 10A, while FIG. 10D is a back (or top) perspective view of the luminaire shown in FIG. 10A and FIG. 10E is a front (or bottom) exploded perspective view of the luminaire shown in FIG. 10A.


It should be noted that other implementations of luminaire 700 can include a test button such as described above in connection with FIGS. 5 and 6, for example attached to light source housing 708 and connected to electrical wires as described above. In particular, the luminaire may comprise a test button, coupled to the at least one sidewall of the housing and at least one electrical wire, to provide an electrical signal on the at least one electrical wire upon activation of the test button. To this end, FIG. 11A is a side view of a luminaire similar to that shown in FIG. 7, according to some inventive implementations, which includes a test button similar to that shown in FIG. 5. FIG. 11B is a front view (or downward facing view) of the luminaire shown in FIG. 11A, FIG. 11C is a back view (or upward facing view) of the luminaire shown in FIG. 11A, FIG. 11D is a back (or top) perspective view of the luminaire shown in FIG. 11A, and FIG. 11E is a front (or bottom) exploded perspective view of the luminaire shown in FIG. 11A.



FIG. 12A is a front (or bottom) side perspective view of a rectangular-shaped luminaire 700C according to some inventive implementations, and FIG. 12B is a back (or top) side perspective view of the luminaire of FIG. 12A according to some inventive implementations. The luminaire shown in FIGS. 12A and 12B may employ the rectangular LED board 710B as shown and discussed above in connection with FIG. 8B. In other aspects, the luminaire 700C may share one or more features or attributes as discussed above in connection with the circular luminaires; for example, the housing 708C of the luminaire may have a depth 724 of sidewalls 718 on the order of less than one inch, and a perimeter thickness 726 of the front facing edge 720 of the housing sidewalls, constituting a perimeter around the front face 712F of the lens 112, may be on the order of less than 10 millimeters, or less than 5 millimeters, or less than 3 millimeters, or less than 2 millimeters, or less than 1.5 millimeters.


Although the present implementations have been particularly described with reference to preferred ones thereof, it should be readily apparent to those of ordinary skill in the art that changes and modifications in the form and details may be made without departing from the spirit and scope of the present disclosure. It is intended that the appended claims encompass such changes and modifications.


CONCLUSION

Those skilled in the relevant arts will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations may depend upon the specific application or applications for which the inventive teachings is/are used. It is to be understood that the foregoing implementations are presented primarily by way of example and that, within the scope of the appended claims and equivalents thereto, inventive implementations may be practiced otherwise than as specifically described and claimed. Inventive implementations of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.


Also, the technology described herein may be embodied as a method. The acts performed as part of the method may be ordered in any suitable way. Accordingly, implementations may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative implementations.


All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims
  • 1. An LED downlighting apparatus, comprising: a housing including at least one sidewall, wherein the housing has a horizontal axis and a vertical axis;wherein the at least one sidewall of the housing has an interior surface and an exterior surface and a front facing edge and a back facing edge;an LED board coupled to the housing, the LED board comprising a plurality of LEDs;a lens coupled to the housing, the lens having a back side facing the LED board and a front side opposite to the back side, the lens being disposed with respect to the LED board such that the plurality of the LEDs illuminate the back side of the lens; wherein the vertical height of the housing between the front facing edge and the back facing edge is less than one inch;wherein the exterior surface of the sidewall is substantially perpendicular to the lens from the front facing edge to the back facing edge;wherein the thickness of the at least one sidewall, in a horizontal direction adjacent to the lens, is less than 10 millimeters;wherein the front side of the lens provides a downward facing surface when the LED lighting apparatus is installed in an opening of a ceiling;wherein the front side of the lens is essentially flat;wherein the plurality of LEDs are distributed uniformly on the LED board and spaced apart almost identically or identically and arranged across substantially the entire surface of the LED board; andwherein, during operation, the light from the LEDs is distributed evenly across the downward facing surface of the lens.
  • 2. The apparatus of claim 1, wherein the thickness of the at least one sidewall, in the horizontal direction adjacent to the lens, is less than 5 millimeters.
  • 3. The apparatus of claim 1, wherein the thickness of the at least one sidewall, in the horizontal direction adjacent to the lens, is less than 3 millimeters.
  • 4. The apparatus of claim 1, wherein the interior surface of the sidewall is substantially perpendicular or perpendicular to the lens.
  • 5. The apparatus of claim 1, wherein the front side of the lens is essentially flush with the front facing edge of the at least one sidewall of the housing.
  • 6. The apparatus of claim 1, wherein a spacing between the LED board and the lens is approximately or equal to eight millimeters.
  • 7. The apparatus of claim 1, wherein: the LED board has a circular perimeter; andthe plurality of LEDs is arranged on the LED board as a plurality of concentric rings.
  • 8. The apparatus of claim 7, wherein a distance between any two adjacent concentric rings of the plurality of concentric rings is the same or approximately the same.
  • 9. The apparatus of claim 7, wherein: at least a first ring of the plurality of concentric rings comprises a first group of the plurality of LEDs; andrespective LEDs of the first group are spaced substantially evenly around the first ring of the plurality of concentric rings.
  • 10. The apparatus of claim 7, wherein: each ring of the plurality of concentric rings comprises a different group of the plurality of LEDs; andrespective LEDs of each different group are spaced substantially evenly around a corresponding ring of the plurality of concentric rings.
  • 11. The apparatus of claim 1, wherein: the LED board is rectangular; andthe plurality of LEDs is arranged substantially uniformly across an entire surface or substantially the entire surface of the LED board.
  • 12. An LED downlighting apparatus, comprising: a housing including at least one sidewall, wherein the housing has a horizontal axis and a vertical axis;wherein the at least one sidewall of the housing has an interior surface and an exterior surface and a front facing edge and a back facing edge;an LED board coupled to the housing, the LED board comprising a plurality of LEDs;a lens coupled to the housing, the lens having a back side facing the LED board and a front side opposite to the back side, the lens being disposed with respect to the LED board such that the plurality of the LEDs illuminate the back side of the lens; wherein the thickness of the at least one sidewall, in a horizontal direction adjacent to the lens, is less than five millimeters;wherein the front side of the lens provides a downward facing surface when the LED lighting apparatus is installed in an opening of a ceiling;wherein the front side of the lens is essentially flat;wherein the plurality of LEDs are distributed uniformly on the LED board and spaced apart almost identically or identically and arranged across substantially the entire surface of the LED board; andwherein, during operation, the light from the LEDs is distributed evenly across the downward facing surface of the lens.
  • 13. The apparatus of claim 12, wherein the vertical height of the housing between the front facing edge and the back facing edge is less than one inch.
  • 14. The apparatus of claim 12, wherein the thickness of the at least one sidewall, in the horizontal direction adjacent to the lens, is less than 3 millimeters.
  • 15. The apparatus of claim 12, wherein the exterior surface of the sidewall is substantially perpendicular to the lens from the front facing edge to the back facing edge.
  • 16. The apparatus of claim 12, wherein the interior surface of the sidewall is substantially perpendicular or perpendicular to the lens.
  • 17. The apparatus of claim 12, wherein the front side of the lens is essentially flush with the front facing edge of the at least one sidewall of the housing.
  • 18. The apparatus of claim 12, wherein a spacing between the LED board and the lens is approximately or equal to eight millimeters.
  • 19. The apparatus of claim 12, wherein: the LED board has a circular perimeter; andthe plurality of LEDs is arranged on the LED board as a plurality of concentric rings.
  • 20. The apparatus of claim 12, wherein: the LED board is rectangular; andthe plurality of LEDs is arranged substantially uniformly across an entire surface or substantially the entire surface of the LED board.
  • 21. An LED downlighting apparatus, comprising: a housing including at least one sidewall, wherein the at least one sidewall of the housing has an interior surface and an exterior surface and a front facing edge and a back facing edge;an LED board coupled to the housing, the LED board comprising a plurality of LEDs;a lens coupled to the housing, the lens having a back side facing the LED board and a front side opposite to the back side, the lens being disposed with respect to the LED board such that the plurality of the LEDs illuminate the back side of the lens; wherein the thickness of the at least one sidewall is less than five millimeters;wherein the front side of the lens provides a downward facing surface when the LED lighting apparatus is installed in an opening of a ceiling;wherein the front side of the lens is essentially flat;wherein the plurality of LEDs are distributed uniformly on the LED board and spaced apart almost identically or identically and arranged across substantially the entire surface of the LED board; andwherein, during operation, the light from the LEDs is distributed evenly across the downward facing surface of the lens.
  • 22. The apparatus of claim 21, wherein the vertical height of the housing between the front facing edge and the back facing edge is less than one inch.
  • 23. The apparatus of claim 21, wherein the thickness of the at least one sidewall is less than 3 millimeters.
  • 24. The apparatus of claim 21, wherein the exterior surface of the sidewall is substantially perpendicular to the lens from the front facing edge to the back facing edge.
  • 25. The apparatus of claim 21, wherein the interior surface of the sidewall is substantially perpendicular or perpendicular to the lens.
  • 26. The apparatus of claim 21, wherein the front side of the lens is essentially flush with the front facing edge of the at least one sidewall of the housing.
  • 27. The apparatus of claim 21, wherein a spacing between the LED board and the lens is approximately or equal to eight millimeters.
  • 28. The apparatus of claim 21, wherein: the LED board has a circular perimeter; andthe plurality of LEDs is arranged on the LED board as a plurality of concentric rings.
  • 29. The apparatus of claim 21, wherein: the LED board is rectangular; andthe plurality of LEDs is arranged substantially uniformly across an entire surface or substantially the entire surface of the LED board.
  • 30. An LED downlighting apparatus, comprising: a housing including at least one sidewall, wherein the at least one sidewall of the housing has an interior surface and an exterior surface and a front facing edge and a back facing edge;an LED board coupled to the housing, the LED board comprising a plurality of LEDs;a lens coupled to the housing, the lens having a back side facing the LED board and a front side opposite to the back side, the lens being disposed with respect to the LED board such that the plurality of the LEDs illuminate the back side of the lens; wherein the vertical height of the housing between the front facing edge and the back facing edge is less than one inch;wherein the exterior surface of the sidewall is substantially perpendicular to the lens from the front facing edge to the back facing edge;wherein the thickness of the at least one sidewall is less than five millimeters;wherein the front side of the lens provides a downward facing surface when the LED lighting apparatus is installed in an opening of a ceiling;wherein the front side of the lens is essentially flat;wherein the plurality of LEDs are distributed uniformly on the LED board and spaced apart almost identically or identically and arranged across substantially the entire surface of the LED board; andwherein, during operation, the light from the LEDs is distributed evenly across the downward facing surface of the lens.
  • 31. The apparatus of claim 30, wherein the interior surface of the sidewall is substantially perpendicular or perpendicular to the lens.
  • 32. The apparatus of claim 30, wherein the front side of the lens is essentially flush with the front facing edge of the at least one sidewall of the housing.
  • 33. The apparatus of claim 30, wherein the thickness of the at least one sidewall is less than 3 millimeters.
  • 34. The apparatus of claim 30, wherein a spacing between the LED board and the lens is approximately or equal to eight millimeters.
  • 35. The apparatus of claim 30, wherein: the LED board has a circular perimeter; andthe plurality of LEDs is arranged on the LED board as a plurality of concentric rings.
  • 36. The apparatus of claim 30, wherein: the LED board is rectangular; andthe plurality of LEDs is arranged substantially uniformly across an entire surface or substantially the entire surface of the LED board.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of application Ser. No. 16/881,686. Application Ser. No. 16/881,686 was filed on May 22, 2020 and is titled “Thin Profile Surface Mount Lighting Apparatus.” application Ser. No. 16/881,686 was filed as a continuation application of application Ser. No. 16/653,497. Application Ser. No. 16/653,497 was filed on Oct. 15, 2019 and is titled, “Thin Profile Surface Mount Lighting Apparatus.” Application Ser. No. 16/653,497 was filed as a continuation of application Ser. No. 16/016,040. Application Ser. No. 16/016,040 was filed on Jun. 22, 2018 and is titled, “Thin Profile Surface Mount Lighting Apparatus.” Application Ser. No. 16/016,040 was filed as a continuation-in-part of Design Application No. 29/648,046 under 35 U.S.C. § 120. Design Application No. 29/648,046 was filed on May 17, 2018 and is titled “Light Fixture.” application Ser. No. 16/016,040 also claimed the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional Application No. 62/523,640, which was filed on Jun. 22, 2017 and is titled “Surface Mounted Ceiling Lamp;” and U.S. Provisional Application No. 62/552,126, which was filed on Aug. 30, 2017 and is titled “Surface Mounted Ceiling Lamp.” Priority is claimed to each of the aforementioned applications and each of the aforementioned applications is incorporated by reference herein in its entirety.

US Referenced Citations (770)
Number Name Date Kind
1133535 Cain et al. Mar 1915 A
1471340 Knight Oct 1923 A
1856356 Owen May 1932 A
2038784 Ghadiali Apr 1936 A
2179161 Rambusch et al. Nov 1939 A
2197737 Appleton Apr 1940 A
2352913 Parker Jul 1944 A
2528989 Ammells Nov 1950 A
2597595 Ordas May 1952 A
2642246 Larry Jun 1953 A
2670919 Esoldi Mar 1954 A
2697535 Olson Dec 1954 A
2758810 Good Aug 1956 A
D180844 Poliakoff Aug 1957 S
2802933 Broadwin Aug 1957 A
2998512 Duchene et al. Aug 1961 A
3023920 Cook et al. Mar 1962 A
3057993 Gellert Oct 1962 A
3104087 Budnick et al. Sep 1963 A
3214126 Roos Oct 1965 A
3422261 McGinty et al. Jan 1969 A
3460299 Wilson Aug 1969 A
3650046 Skinner Mar 1972 A
3675807 Lund et al. Jul 1972 A
3700885 Mitchell Oct 1972 A
3711053 Drake Jan 1973 A
D227989 Geisei Jul 1973 S
3773968 Copp Nov 1973 A
3812342 McNamara May 1974 A
3836766 Auerbach Sep 1974 A
3874035 Schuplin Apr 1975 A
3913773 Copp et al. Oct 1975 A
D245905 Taylor Sep 1977 S
4088827 Kohaut May 1978 A
4154218 Hulet May 1979 A
4154219 Gupta et al. May 1979 A
4176758 Glick Dec 1979 A
4280169 Allen Jul 1981 A
4399497 Druffel Aug 1983 A
4450512 Kristofek May 1984 A
4460948 Malola Jul 1984 A
4520435 Baldwin May 1985 A
4539629 Poppenheimer Sep 1985 A
4601145 Wilcox Jul 1986 A
4667840 Lindsey May 1987 A
4723747 Karp et al. Feb 1988 A
4729080 Fremont et al. Mar 1988 A
4754377 Wenman Jun 1988 A
4770311 Wang Sep 1988 A
4880128 Jorgensen Nov 1989 A
4910651 Montanez Mar 1990 A
4919292 Hsu Apr 1990 A
4929187 Hudson et al. May 1990 A
4930054 Krebs May 1990 A
5044582 Walters Sep 1991 A
D326537 Gattari May 1992 S
5216203 Gower Jun 1993 A
5222800 Chan et al. Jun 1993 A
5239132 Bartow Aug 1993 A
5250269 Langer Oct 1993 A
5266050 O'Neil et al. Nov 1993 A
5303894 Deschamps et al. Apr 1994 A
5382752 Reyhan et al. Jan 1995 A
5420376 Rajecki et al. May 1995 A
5444606 Barnes et al. Aug 1995 A
5465199 Bray et al. Nov 1995 A
5505419 Gabrius Apr 1996 A
5544870 Kelley et al. Aug 1996 A
5562343 Chan et al. Oct 1996 A
5571993 Jones et al. Nov 1996 A
5580158 Aubrey et al. Dec 1996 A
5588737 Kusmer Dec 1996 A
D377843 Schering Feb 1997 S
5603424 Bordwell et al. Feb 1997 A
5609408 Targetti Mar 1997 A
5613338 Esposito Mar 1997 A
D381111 Lecluze Jul 1997 S
5662413 Akiyama Sep 1997 A
D386277 Lecluze Nov 1997 S
5690423 Hentz et al. Nov 1997 A
D387466 Lecluze Dec 1997 S
5738436 Cummings et al. Apr 1998 A
D400281 Kerr Oct 1998 S
5836678 Wright et al. Nov 1998 A
5942726 Reiker Aug 1999 A
5944412 Janos et al. Aug 1999 A
5957573 Wedekind et al. Sep 1999 A
5975323 Turan Nov 1999 A
6082878 Doubek et al. Jul 2000 A
6095669 Cho Aug 2000 A
6098945 Korcz Aug 2000 A
6105334 Monson et al. Aug 2000 A
6161910 Reisenauer et al. Dec 2000 A
6170685 Currier Jan 2001 B1
6170965 Kotovsky Jan 2001 B1
6174076 Petrakis et al. Jan 2001 B1
6176599 Farzen Jan 2001 B1
6267491 Parrigin Jul 2001 B1
6332597 Korcz et al. Dec 2001 B1
6350043 Gloisten Feb 2002 B1
6350046 Lau Feb 2002 B1
6364511 Cohen Apr 2002 B1
6375338 Cummings et al. Apr 2002 B1
6402112 Thomas et al. Jun 2002 B1
D461455 Forbes Aug 2002 S
D465061 Guthrie Oct 2002 S
6461016 Jamison et al. Oct 2002 B1
6474846 Kelmelis et al. Nov 2002 B1
6491413 Benesohn Dec 2002 B1
D468697 Straub, Jr. Jan 2003 S
D470970 Huang Feb 2003 S
6515313 Ibbetson et al. Feb 2003 B1
6521833 Defreitas Feb 2003 B1
D471657 Huang Mar 2003 S
6583573 Bierman Jun 2003 B2
D477104 Wang Jul 2003 S
6585389 Bonazzi Jul 2003 B2
6600175 Baretz et al. Jul 2003 B1
D478872 Heggem Aug 2003 S
6632006 Rippel et al. Oct 2003 B1
6657236 Thibeault et al. Dec 2003 B1
6666419 Vrame Dec 2003 B1
D487600 Fickas Mar 2004 S
D488583 Benghozi Apr 2004 S
6719438 Sevack et al. Apr 2004 B2
6758578 Chou Jul 2004 B1
6777615 Gretz Aug 2004 B1
6779908 Ng Aug 2004 B1
6827229 Dinh et al. Dec 2004 B2
6838618 Newbold et al. Jan 2005 B2
6906352 Edmond et al. Jun 2005 B2
D509314 Rashidi Sep 2005 S
6948829 Verdes et al. Sep 2005 B2
6958497 Emerson et al. Oct 2005 B2
6964501 Ryan Nov 2005 B2
6967284 Gretz Nov 2005 B1
D516235 Rashidi Feb 2006 S
7025476 Leadford Apr 2006 B2
7025477 Blessing et al. Apr 2006 B2
7064269 Smith Jun 2006 B2
D528673 Maxik et al. Sep 2006 S
7102172 Lynch et al. Sep 2006 B2
D531740 Maxik Nov 2006 S
D532532 Maxik Nov 2006 S
7148420 Johnson et al. Dec 2006 B1
7148632 Berman et al. Dec 2006 B2
7152985 Benitez et al. Dec 2006 B2
7154040 Tompkins Dec 2006 B1
7170015 Roesch et al. Jan 2007 B1
D536349 Humber et al. Feb 2007 S
D537039 Pincek Feb 2007 S
7181378 Benitez et al. Feb 2007 B2
D539229 Murphey Mar 2007 S
7186008 Patti Mar 2007 B2
7190126 Paton Mar 2007 B1
7211833 Slater, Jr. et al. May 2007 B2
7213940 Ven et al. May 2007 B1
7234674 Rippel et al. Jun 2007 B2
D547889 Huang Jul 2007 S
D552969 Bobrowski et al. Oct 2007 S
D553267 Yuen Oct 2007 S
D555106 Pape et al. Nov 2007 S
D556144 Dinh Nov 2007 S
7297870 Sartini Nov 2007 B1
7312474 Emerson et al. Dec 2007 B2
D558908 Waedeled Jan 2008 S
7320536 Petrakis et al. Jan 2008 B2
D561372 Yan Feb 2008 S
D561373 Yan Feb 2008 S
7335920 Denbaars et al. Feb 2008 B2
D563896 Greenslate Mar 2008 S
7347580 Blackman et al. Mar 2008 B2
D570012 Huang May 2008 S
7374308 Sevack et al. May 2008 B2
D570504 Maxik et al. Jun 2008 S
D570505 Maxik et al. Jun 2008 S
7399104 Rappaport Jul 2008 B2
7429025 Gretz Sep 2008 B1
D578677 Huang Oct 2008 S
7431482 Morgan et al. Oct 2008 B1
7432440 Hull et al. Oct 2008 B2
7442883 Jolly et al. Oct 2008 B2
7446345 Emerson et al. Nov 2008 B2
7470048 Wu Dec 2008 B2
7473005 O'Brien Jan 2009 B2
7488097 Reisenauer et al. Feb 2009 B2
7488098 Dumont Feb 2009 B2
7494258 McNaught Feb 2009 B2
7503145 Newbold et al. Mar 2009 B2
7524089 Park et al. Apr 2009 B2
D591894 Flank May 2009 S
7534989 Suehara et al. May 2009 B2
D596154 Rivkin Jul 2009 S
7566154 Gloisten et al. Jul 2009 B2
D599040 Alexander et al. Aug 2009 S
D600836 Hanley et al. Sep 2009 S
7588359 Coushaine et al. Sep 2009 B2
7592583 Page et al. Sep 2009 B2
D601744 Sakuma Oct 2009 S
D606696 Chen et al. Dec 2009 S
7625105 Johnson Dec 2009 B1
7628513 Chiu Dec 2009 B2
7651238 O'Brien Jan 2010 B2
7654705 Czech et al. Feb 2010 B2
D611650 Broekhoff Mar 2010 S
7670021 Chou Mar 2010 B2
7673841 Wronski Mar 2010 B2
7677766 Boyer Mar 2010 B2
7692182 Bergmann et al. Apr 2010 B2
7704763 Fujii et al. Apr 2010 B2
D616118 Thomas et al. May 2010 S
7722208 Dupre et al. May 2010 B1
7722227 Zhang et al. May 2010 B2
D617035 Sabernig Jun 2010 S
7735795 Wronski Jun 2010 B2
7735798 Kojima Jun 2010 B2
7748887 Zampini et al. Jul 2010 B2
D622443 Huang Aug 2010 S
7766518 Piepgras et al. Aug 2010 B2
7769192 Takagi et al. Aug 2010 B2
7771082 Peng et al. Aug 2010 B2
7771094 Goode Aug 2010 B2
7784754 Nevers et al. Aug 2010 B2
D624691 Zhang et al. Sep 2010 S
D624692 Mackin et al. Sep 2010 S
D625847 Maglica Oct 2010 S
D625876 Chen et al. Oct 2010 S
D627507 Lai et al. Nov 2010 S
D627727 Alexander et al. Nov 2010 S
7828465 Roberge et al. Nov 2010 B2
D628739 Lu Dec 2010 S
D629366 Ericson et al. Dec 2010 S
7845393 Kao et al. Dec 2010 B2
7857275 de la Borbolla Dec 2010 B2
7871184 Peng Jan 2011 B2
7874539 Wright et al. Jan 2011 B2
7874703 Shastry et al. Jan 2011 B2
7874709 Beadle Jan 2011 B1
D632839 Kim et al. Feb 2011 S
D633224 Lee Feb 2011 S
D633644 Sprengers Mar 2011 S
D633645 Verelst Mar 2011 S
7909487 Venetucci et al. Mar 2011 B1
D636903 Torenbeek Apr 2011 S
D637339 Hasan et al. May 2011 S
D637340 Hasan et al. May 2011 S
7950832 Tanaka et al. May 2011 B2
D639499 Choi et al. Jun 2011 S
D640819 Pan Jun 2011 S
7956546 Hasnain Jun 2011 B2
7959332 Tickner et al. Jun 2011 B2
7967480 Pickard et al. Jun 2011 B2
D642317 Rashidi Jul 2011 S
7972035 Boyer Jul 2011 B2
7972043 Schutte Jul 2011 B2
D642536 Robinson Aug 2011 S
D643970 Kim et al. Aug 2011 S
3002425 Russo et al. Aug 2011 A1
D646011 Rashidi Sep 2011 S
8013243 Korcz et al. Sep 2011 B2
8038113 Fryzek et al. Oct 2011 B2
D648476 Choi et al. Nov 2011 S
D648477 Kim et al. Nov 2011 S
D650115 Kim et al. Dec 2011 S
8070328 Knoble et al. Dec 2011 B1
8096670 Trott et al. Jan 2012 B2
D654205 Rashidi Feb 2012 S
D656262 Yoshinobu et al. Mar 2012 S
D656263 Ogawa et al. Mar 2012 S
8142057 Roos et al. Mar 2012 B2
8152334 Krogman Apr 2012 B2
D658788 Dudik et al. May 2012 S
D658802 Chen May 2012 S
D659862 Tsai May 2012 S
D659879 Rashidi May 2012 S
D660814 Wilson May 2012 S
8182116 Zhang et al. May 2012 B2
8201968 Maxik et al. Jun 2012 B2
D663058 Pan Jul 2012 S
D663466 Rashidi Jul 2012 S
D664274 Visser et al. Jul 2012 S
D664705 Kong et al. Jul 2012 S
8215805 Cogliano et al. Jul 2012 B2
8220970 Khazi et al. Jul 2012 B1
8226270 Yamamoto et al. Jul 2012 B2
8235549 Gingrich et al. Aug 2012 B2
8238050 Minano et al. Aug 2012 B2
8240630 Wronski Aug 2012 B2
D667155 Rashidi Sep 2012 S
8262255 Rashidi Sep 2012 B1
D668372 Renshaw et al. Oct 2012 S
D668809 Rashidi Oct 2012 S
D669198 Qiu Oct 2012 S
D669199 Chuang Oct 2012 S
D669620 Rashidi Oct 2012 S
8277090 Fryzek et al. Oct 2012 B2
D671668 Rowlette, Jr. et al. Nov 2012 S
8308322 Santiago et al. Nov 2012 B2
D672899 Ven et al. Dec 2012 S
D673869 Yu Jan 2013 S
D676263 Birke Feb 2013 S
D676814 Paul Feb 2013 S
8376593 Bazydola et al. Feb 2013 B2
D677417 Rashidi Mar 2013 S
D677634 Korcz et al. Mar 2013 S
D679044 Jeswani et al. Mar 2013 S
D679047 Tickner et al. Mar 2013 S
8403533 Paulsel Mar 2013 B1
8403541 Rashidi Mar 2013 B1
8405947 Green et al. Mar 2013 B1
D681259 Kong Apr 2013 S
8408759 Rashidi Apr 2013 B1
D681867 Wegger et al. May 2013 S
D682459 Gordin et al. May 2013 S
D683063 Lopez et al. May 2013 S
D683890 Lopez et al. Jun 2013 S
D684269 Wang et al. Jun 2013 S
D684287 Rashidi Jun 2013 S
D684719 Rashidi Jun 2013 S
D685118 Rashidi Jun 2013 S
D685120 Rashidi Jun 2013 S
8454204 Chang et al. Jun 2013 B1
D685507 Sun Jul 2013 S
D687586 Rashidi Aug 2013 S
D687587 Rashidi Aug 2013 S
D687588 Rashidi Aug 2013 S
D687980 Gravely et al. Aug 2013 S
D688405 Kim et al. Aug 2013 S
8506127 Russello et al. Aug 2013 B2
8506134 Wilson et al. Aug 2013 B2
D690049 Rashidi Sep 2013 S
D690864 Rashidi Oct 2013 S
D690865 Rashidi Oct 2013 S
D690866 Rashidi Oct 2013 S
D691314 Rashidi Oct 2013 S
D691315 Samson Oct 2013 S
D691763 Hand et al. Oct 2013 S
8550669 Macwan et al. Oct 2013 B2
D693043 Schmalfuss et al. Nov 2013 S
D693517 Davis Nov 2013 S
D694456 Rowlette, Jr. et al. Nov 2013 S
8573816 Negley et al. Nov 2013 B2
D695441 Lui et al. Dec 2013 S
D695941 Rashidi Dec 2013 S
D696446 Huh Dec 2013 S
D696447 Huh Dec 2013 S
D696448 Huh Dec 2013 S
8602601 Khazi et al. Dec 2013 B2
D698067 Rashidi Jan 2014 S
D698068 Rashidi Jan 2014 S
8622361 Wronski Jan 2014 B2
8632040 Mass et al. Jan 2014 B2
D698985 Lopez et al. Feb 2014 S
D699384 Rashidi Feb 2014 S
D699687 Baldwin et al. Feb 2014 S
D700387 Snell Feb 2014 S
8641243 Rashidi Feb 2014 B1
8659034 Baretz et al. Feb 2014 B2
D700737 Campagna Mar 2014 S
D700991 Johnson et al. Mar 2014 S
D701175 Baldwin et al. Mar 2014 S
D701466 Clifford et al. Mar 2014 S
8672518 Boomgaarden et al. Mar 2014 B2
D702867 Kim et al. Apr 2014 S
D703843 Cheng Apr 2014 S
8684569 Pickard et al. Apr 2014 B2
D705472 Huh May 2014 S
D705481 Zhang et al. May 2014 S
8727582 Brown et al. May 2014 B2
D707386 McKenzie et al. Jun 2014 S
D708381 Rashidi Jul 2014 S
8777449 Ven et al. Jul 2014 B2
D710529 Lopez et al. Aug 2014 S
8801217 Oehle et al. Aug 2014 B2
8820985 Tam et al. Sep 2014 B1
8833013 Harman Sep 2014 B2
8845144 Davis et al. Sep 2014 B1
D714989 Rowlette, Jr. et al. Oct 2014 S
8870426 Biebl et al. Oct 2014 B2
8888332 Martis et al. Nov 2014 B2
8890414 Rowlette, Jr. et al. Nov 2014 B2
D721845 Lui et al. Jan 2015 S
8926133 Booth Jan 2015 B2
8939418 Green et al. Jan 2015 B2
D722296 Taylor Feb 2015 S
D722977 Hagarty Feb 2015 S
D722978 Hagarty Feb 2015 S
8950898 Catalano Feb 2015 B2
D723781 Miner Mar 2015 S
D723783 Miner Mar 2015 S
D725359 Miner Mar 2015 S
8967575 Gretz Mar 2015 B1
D726363 Danesh Apr 2015 S
D726949 Redfern Apr 2015 S
9004435 Wronski Apr 2015 B2
9039254 Danesh May 2015 B2
D731689 Bernard et al. Jun 2015 S
9062866 Christ et al. Jun 2015 B1
9065264 Cooper et al. Jun 2015 B2
9068719 Van De Ven et al. Jun 2015 B2
9068722 Wronski et al. Jun 2015 B2
D734525 Gordin et al. Jul 2015 S
D735012 Cowie Jul 2015 S
D735142 Hagarty Jul 2015 S
9078299 Ashdown Jul 2015 B2
D735933 Campagna Aug 2015 S
9109760 Shum et al. Aug 2015 B2
D739355 D'Aubeterre Sep 2015 S
D739590 Redfern Sep 2015 S
9140441 Goelz et al. Sep 2015 B2
D741538 Ghasabi Oct 2015 S
9151457 Pickard et al. Oct 2015 B2
9151477 Pickard et al. Oct 2015 B2
D742325 Leung Nov 2015 S
D743079 Adair Nov 2015 S
D744723 Yoo Dec 2015 S
9217560 Harbers et al. Dec 2015 B2
9222661 Kim et al. Dec 2015 B2
9239131 Wronski et al. Jan 2016 B1
D748842 Sakurai et al. Feb 2016 S
D750317 Lui et al. Feb 2016 S
9285103 Van De Ven et al. Mar 2016 B2
9291319 Kathawate et al. Mar 2016 B2
9301362 Dohn et al. Mar 2016 B2
D754078 Baldwin et al. Apr 2016 S
D754079 Baldwin et al. Apr 2016 S
D754605 McMillan Apr 2016 S
9303812 Green et al. Apr 2016 B2
9310038 Athalye Apr 2016 B2
9310052 Shum Apr 2016 B1
9322543 Hussell et al. Apr 2016 B2
D756025 Wronski et al. May 2016 S
9347655 Boomgaarden et al. May 2016 B2
9360190 Shum et al. Jun 2016 B1
9366418 Gifford Jun 2016 B2
9371966 Rowlette, Jr. et al. Jun 2016 B2
D762181 Lin Jul 2016 S
9395051 Hussell et al. Jul 2016 B2
D762906 Jeswani et al. Aug 2016 S
D764079 Wu Aug 2016 S
9404639 Bailey et al. Aug 2016 B2
9417506 Tirosh Aug 2016 B1
D766185 Hagarty Sep 2016 S
D767199 Wronski et al. Sep 2016 S
9447917 Wronski et al. Sep 2016 B1
9447953 Lawlor et al. Sep 2016 B2
D768325 Xu Oct 2016 S
D768326 Guzzini Oct 2016 S
D769501 Jeswani et al. Oct 2016 S
D770065 Tittle Oct 2016 S
D770076 Li et al. Oct 2016 S
D770084 Salomon Oct 2016 S
9476552 Richard et al. Oct 2016 B2
D770673 Hasan et al. Nov 2016 S
9488324 Shum et al. Nov 2016 B2
D774676 Ng Dec 2016 S
D776324 Gierl et al. Jan 2017 S
D777967 Redfern Jan 2017 S
9534751 Maglica et al. Jan 2017 B2
D778241 Holbrook et al. Feb 2017 S
D778484 Guzzini Feb 2017 S
D778487 Salomon Feb 2017 S
D779100 Redfern Feb 2017 S
D779105 Krueckeberg et al. Feb 2017 S
D779711 Salomon Feb 2017 S
9581302 Danesh et al. Feb 2017 B2
9599315 Harpenau et al. Mar 2017 B1
9605842 Davis Mar 2017 B1
9605910 Swedberg et al. Mar 2017 B2
D785228 Guzzini Apr 2017 S
D785852 Doust May 2017 S
D786472 Redfern May 2017 S
D786473 Dean May 2017 S
D786474 Fujisawa May 2017 S
D788330 Johnson et al. May 2017 S
D790102 Guzzini Jun 2017 S
9673597 Lee Jun 2017 B2
9689541 Wronski et al. Jun 2017 B2
D791709 Holton Jul 2017 S
D791711 Holton Jul 2017 S
D791712 Holton Jul 2017 S
9696021 Wronski Jul 2017 B2
9702516 Vasquez et al. Jul 2017 B1
D795820 Wengreen Aug 2017 S
9732904 Wronski Aug 2017 B1
9732947 Christ et al. Aug 2017 B1
9739464 Wronski et al. Aug 2017 B2
D796733 LaDuca Sep 2017 S
D799105 Eder et al. Oct 2017 S
D800957 Eder et al. Oct 2017 S
9791111 Huang et al. Oct 2017 B1
9797562 Dabiet et al. Oct 2017 B2
9803839 Visser et al. Oct 2017 B2
D805660 Creasman et al. Dec 2017 S
D809176 Partington Jan 2018 S
9860961 Chemel et al. Jan 2018 B2
9863619 Mak Jan 2018 B2
D809465 Keirstead Feb 2018 S
9903569 OBrien et al. Feb 2018 B2
9964266 Danesh et al. May 2018 B2
D820494 Cohen Jun 2018 S
D821615 Trice Jun 2018 S
D821627 Ko Jun 2018 S
9995439 Shum et al. Jun 2018 B1
9995441 Power et al. Jun 2018 B2
D822505 Gibson et al. Jul 2018 S
D824089 Dupras Jul 2018 S
D824494 Martins et al. Jul 2018 S
D824566 Santoro et al. Jul 2018 S
D825829 Guo Aug 2018 S
10041638 Vasquez et al. Aug 2018 B2
10054274 Athalye et al. Aug 2018 B2
D827903 Wu Sep 2018 S
D827917 Botti Sep 2018 S
D832218 Wronski et al. Oct 2018 S
D833977 Danesh et al. Nov 2018 S
D834235 Gambrel et al. Nov 2018 S
10125959 Cohen Nov 2018 B2
10139059 Danesh et al. Nov 2018 B2
D836811 Shundong Dec 2018 S
D836976 Reese et al. Jan 2019 S
D841869 Mou Feb 2019 S
D843642 Mathews et al. Mar 2019 S
D847414 Danesh et al. Apr 2019 S
D847415 Danesh et al. Apr 2019 S
10247390 Kopitzke Apr 2019 B1
D848047 Santoro et al. May 2019 S
D848375 Danesh et al. May 2019 S
10281131 Cohen May 2019 B2
10295163 Cohen May 2019 B1
D850695 Dabiet et al. Jun 2019 S
D851046 Peng et al. Jun 2019 S
10349472 Deng et al. Jul 2019 B2
10408395 Danesh et al. Sep 2019 B2
10408396 Wronski et al. Sep 2019 B2
10408436 Wronski et al. Sep 2019 B2
D863661 Tian et al. Oct 2019 S
D864467 Mizobe Oct 2019 S
D864468 Behnke et al. Oct 2019 S
D864877 Danesh et al. Oct 2019 S
D864885 Kobayashi et al. Oct 2019 S
D867653 Gorman Nov 2019 S
D867654 Berry Nov 2019 S
10488000 Danesh et al. Nov 2019 B2
D870357 Hu Dec 2019 S
10551044 Peng et al. Feb 2020 B2
10563850 Danesh et al. Feb 2020 B2
10591120 Bailey et al. Mar 2020 B2
D880733 Lo et al. Apr 2020 S
D883562 Hu May 2020 S
D885648 Zeng May 2020 S
D885649 McLaughlin, III et al. May 2020 S
10663127 Danesh et al. May 2020 B2
10663153 Nikooyan et al. May 2020 B2
D888313 Xie et al. Jun 2020 S
10683994 Wronski et al. Jun 2020 B2
10684003 Wronski et al. Jun 2020 B2
D890410 Stanford et al. Jul 2020 S
D890411 Bai et al. Jul 2020 S
10753558 Danesh et al. Aug 2020 B2
10816148 Danesh Oct 2020 B2
D901398 Danesh et al. Nov 2020 S
D901745 Yang Nov 2020 S
D902160 Cohen Nov 2020 S
D902871 Danesh et al. Nov 2020 S
D903605 Danesh et al. Dec 2020 S
D905327 Williams et al. Dec 2020 S
20020172047 Ashley Nov 2002 A1
20030006353 Dinh et al. Jan 2003 A1
20030016532 Reed Jan 2003 A1
20030021104 Tsao Jan 2003 A1
20030161153 Patti Aug 2003 A1
20040001337 Defouw et al. Jan 2004 A1
20040120141 Beadle Jun 2004 A1
20040156199 Rivas et al. Aug 2004 A1
20050078474 Whitfield et al. Apr 2005 A1
20050225966 Hartmann et al. Oct 2005 A1
20050227536 Gamache et al. Oct 2005 A1
20050231962 Koba et al. Oct 2005 A1
20050237746 Newman Oct 2005 A1
20060005988 Jorgensen Jan 2006 A1
20060158873 Newbold et al. Jul 2006 A1
20060198126 Jones et al. Sep 2006 A1
20060215408 Lee et al. Sep 2006 A1
20060221620 Thomas Oct 2006 A1
20060237601 Rinderer Oct 2006 A1
20060243877 Rippel et al. Nov 2006 A1
20060250788 Hodge et al. Nov 2006 A1
20060262536 Nevers Nov 2006 A1
20060262545 Piepgras et al. Nov 2006 A1
20070012847 Tai Jan 2007 A1
20070035951 Tseng Feb 2007 A1
20070121328 Mondloch et al. May 2007 A1
20070131827 Nevers et al. Jun 2007 A1
20070185675 Papamichael et al. Aug 2007 A1
20070200039 Petak Aug 2007 A1
20070206374 Petrakis et al. Sep 2007 A1
20080002414 Miletich et al. Jan 2008 A1
20080019138 Otte et al. Jan 2008 A1
20080112168 Pickard et al. May 2008 A1
20080112170 Trott et al. May 2008 A1
20080112171 Patti et al. May 2008 A1
20080130308 Behr et al. Jun 2008 A1
20080137347 Trott et al. Jun 2008 A1
20080165545 O'Brien Jul 2008 A1
20080170404 Steer et al. Jul 2008 A1
20080224008 Dal et al. Sep 2008 A1
20080232116 Kim Sep 2008 A1
20080247181 Dixon Oct 2008 A1
20080285271 Roberge et al. Nov 2008 A1
20090003009 Tessnow et al. Jan 2009 A1
20090034261 Grove Feb 2009 A1
20090080189 Wegner Mar 2009 A1
20090086484 Johnson Apr 2009 A1
20090097262 Zhang et al. Apr 2009 A1
20090135613 Peng May 2009 A1
20090141500 Peng Jun 2009 A1
20090141506 Lan Jun 2009 A1
20090141508 Peng et al. Jun 2009 A1
20090147517 Li et al. Jun 2009 A1
20090161356 Negley et al. Jun 2009 A1
20090237924 Ladewig Sep 2009 A1
20090280695 Sekela et al. Nov 2009 A1
20090283292 Lehr Nov 2009 A1
20090290343 Brown et al. Nov 2009 A1
20100002320 Minano et al. Jan 2010 A1
20100014282 Danesh Jan 2010 A1
20100033095 Sadwick Feb 2010 A1
20100061108 Zhang et al. Mar 2010 A1
20100110690 Hsu et al. May 2010 A1
20100110698 Harwood et al. May 2010 A1
20100110699 Chou May 2010 A1
20100148673 Stewart et al. Jun 2010 A1
20100149822 Cogliano et al. Jun 2010 A1
20100165643 Russo et al. Jul 2010 A1
20100244709 Steiner et al. Sep 2010 A1
20100246172 Liu Sep 2010 A1
20100259919 Khazi et al. Oct 2010 A1
20100270903 Jao et al. Oct 2010 A1
20100277905 Janik et al. Nov 2010 A1
20100284185 Ngai et al. Nov 2010 A1
20100302778 Dabiet et al. Dec 2010 A1
20110043040 Porter et al. Feb 2011 A1
20110063831 Cook Mar 2011 A1
20110068687 Takahasi et al. Mar 2011 A1
20110069499 Trott et al. Mar 2011 A1
20110080750 Jones et al. Apr 2011 A1
20110116276 Okamura et al. May 2011 A1
20110121756 Thomas et al. May 2011 A1
20110134634 Gingrich et al. Jun 2011 A1
20110134651 Berman Jun 2011 A1
20110140633 Geoffrey Jun 2011 A1
20110170294 Mier-Langner et al. Jul 2011 A1
20110194299 Crooks et al. Aug 2011 A1
20110216534 Tickner et al. Sep 2011 A1
20110226919 Fryzek et al. Sep 2011 A1
20110241557 Grotkowski et al. Oct 2011 A1
20110255292 Shen Oct 2011 A1
20110267828 Bazydola et al. Nov 2011 A1
20110285314 Carney et al. Nov 2011 A1
20120020104 Biebl et al. Jan 2012 A1
20120074852 Delnoij Mar 2012 A1
20120106176 Lopez et al. May 2012 A1
20120113642 Catalano May 2012 A1
20120140442 Woo et al. Jun 2012 A1
20120140465 Rowlette, Jr. et al. Jun 2012 A1
20120162994 Wasniewski et al. Jun 2012 A1
20120182744 Santiago et al. Jul 2012 A1
20120188762 Joung et al. Jul 2012 A1
20120243237 Toda et al. Sep 2012 A1
20120262921 Boomgaarden et al. Oct 2012 A1
20120266449 Krupa Oct 2012 A1
20120268688 Sato Oct 2012 A1
20120287625 Macwan et al. Nov 2012 A1
20120305868 Callahan et al. Dec 2012 A1
20120314429 Plunk Dec 2012 A1
20130009552 Page Jan 2013 A1
20130010476 Pickard et al. Jan 2013 A1
20130016864 Ivey et al. Jan 2013 A1
20130033872 Randolph et al. Feb 2013 A1
20130051012 Oehle et al. Feb 2013 A1
20130077307 Yamamoto Mar 2013 A1
20130083529 Gifford Apr 2013 A1
20130141913 Sachsenweger et al. Jun 2013 A1
20130155681 Nall et al. Jun 2013 A1
20130163254 Chang et al. Jun 2013 A1
20130170232 Park et al. Jul 2013 A1
20130170233 Nezu et al. Jul 2013 A1
20130227908 Gulbrandsen et al. Sep 2013 A1
20130258677 Fryzek et al. Oct 2013 A1
20130265750 Pickard et al. Oct 2013 A1
20130271989 Hussell et al. Oct 2013 A1
20130294084 Kathawate et al. Nov 2013 A1
20130301252 Hussell et al. Nov 2013 A1
20130322062 Danesh et al. Dec 2013 A1
20130322084 Ebisawa Dec 2013 A1
20130335980 Nakasuji et al. Dec 2013 A1
20140029262 Maxik et al. Jan 2014 A1
20140036497 Hussell et al. Feb 2014 A1
20140049957 Goelz et al. Feb 2014 A1
20140056026 Boomgaarden et al. Feb 2014 A1
20140063776 Clark et al. Mar 2014 A1
20140063818 Randolph et al. Mar 2014 A1
20140071679 Booth Mar 2014 A1
20140071687 Tickner et al. Mar 2014 A1
20140140490 Roberts et al. May 2014 A1
20140159616 Wang et al. Jun 2014 A1
20140233246 Lafreniere et al. Aug 2014 A1
20140254177 Danesh Sep 2014 A1
20140265933 Melanson et al. Sep 2014 A1
20140268836 Thompson Sep 2014 A1
20140268869 Blessitt et al. Sep 2014 A1
20140299730 Green et al. Oct 2014 A1
20140313775 Richard et al. Oct 2014 A1
20140321122 Domagala et al. Oct 2014 A1
20140347848 Pisavadia et al. Nov 2014 A1
20150009676 Danesh et al. Jan 2015 A1
20150029732 Hatch Jan 2015 A1
20150078008 Wang Mar 2015 A1
20150085500 Cooper et al. Mar 2015 A1
20150138779 Livesay et al. May 2015 A1
20150176823 Leshniak et al. Jun 2015 A1
20150184837 Zhang et al. Jul 2015 A1
20150198324 O'Brien et al. Jul 2015 A1
20150204491 Yuan et al. Jul 2015 A1
20150219317 Littman Gatof et al. Aug 2015 A1
20150233556 Danesh et al. Aug 2015 A1
20150241039 Fryzek et al. Aug 2015 A1
20150263497 Korcz et al. Sep 2015 A1
20150276185 Bailey et al. Oct 2015 A1
20150308662 Vice et al. Oct 2015 A1
20150345761 Lawlor et al. Dec 2015 A1
20150362159 Ludyjan Dec 2015 A1
20160084488 Wu et al. Mar 2016 A1
20160126860 Summerland et al. May 2016 A1
20160209007 Belmonte et al. Jul 2016 A1
20160218626 Del Carmen Jul 2016 A1
20160238225 Rashidi Aug 2016 A1
20160308342 Witherbee et al. Oct 2016 A1
20160312987 Danesh et al. Oct 2016 A1
20160348860 Bailey et al. Dec 2016 A1
20160348861 Bailey et al. Dec 2016 A1
20160366738 Boulanger et al. Dec 2016 A1
20170003007 Wronski Jan 2017 A1
20170005460 Lee Jan 2017 A1
20170045213 Williams et al. Feb 2017 A1
20170059135 Jones Mar 2017 A1
20170138576 Peng et al. May 2017 A1
20170138581 Rashidi May 2017 A1
20170167672 Stauner et al. Jun 2017 A1
20170167699 Schubert et al. Jun 2017 A1
20170198896 May et al. Jul 2017 A1
20170284616 Coakley et al. Oct 2017 A1
20170307188 Oudina et al. Oct 2017 A1
20180112857 Wronski et al. Apr 2018 A1
20180142871 Morales May 2018 A1
20180216809 Cohen Aug 2018 A1
20180224095 Cohen Aug 2018 A1
20180231197 Danesh et al. Aug 2018 A1
20180283677 Cohen Oct 2018 A1
20180372284 Danesh et al. Dec 2018 A1
20190032874 Bonnetto et al. Jan 2019 A1
20190041050 Cairns et al. Feb 2019 A1
20190049080 Danesh et al. Feb 2019 A1
20190063701 Lotfi et al. Feb 2019 A1
20190093836 Danesh Mar 2019 A1
20200182420 Cohen et al. Jun 2020 A1
20200291652 Shen Sep 2020 A1
20200393118 Danesh et al. Dec 2020 A1
20210010647 Danesh et al. Jan 2021 A1
Foreign Referenced Citations (74)
Number Date Country
2243934 Jun 2002 CA
2502637 Sep 2005 CA
2561459 Mar 2007 CA
2734369 Sep 2011 CA
2691480 Apr 2012 CA
2815067 Nov 2013 CA
2848289 Oct 2014 CA
2998173 Jul 2018 CA
2182475 Nov 1994 CN
201059503 May 2008 CN
201259125 Jun 2009 CN
101498411 Aug 2009 CN
101608781 Dec 2009 CN
201636626 Nov 2010 CN
102062373 May 2011 CN
202014067 Oct 2011 CN
202392473 Aug 2012 CN
202733693 Feb 2013 CN
103154606 Jun 2013 CN
103307518 Sep 2013 CN
103322476 Sep 2013 CN
203202661 Sep 2013 CN
203215483 Sep 2013 CN
203273663 Nov 2013 CN
203297980 Nov 2013 CN
103712135 Apr 2014 CN
203628464 Jun 2014 CN
203641919 Jun 2014 CN
204300818 Apr 2015 CN
104654142 May 2015 CN
204513161 Jul 2015 CN
204611541 Sep 2015 CN
204786225 Nov 2015 CN
204829578 Dec 2015 CN
205606362 Sep 2016 CN
201720305884 Mar 2017 CN
206130742 Apr 2017 CN
206222112 Jun 2017 CN
107013845 Aug 2017 CN
107084343 Aug 2017 CN
206943980 Jan 2018 CN
9109828 Feb 1992 DE
19947208 May 2001 DE
1589289 Oct 2005 EP
1672155 Jun 2006 EP
1688663 Aug 2006 EP
2095938 Sep 2009 EP
2306072 Apr 2011 EP
2453169 May 2012 EP
2193309 Jul 2012 EP
2735787 May 2014 EP
3104024 Dec 2016 EP
2325728 Dec 1998 GB
2427020 Dec 2006 GB
2466875 Jul 2010 GB
2471929 Jan 2011 GB
2509772 Jul 2014 GB
H02113002 Apr 1990 JP
2007091052 Apr 2007 JP
2007265961 Oct 2007 JP
2011060450 Mar 2011 JP
2012064551 Mar 2012 JP
2015002027 Jan 2015 JP
2015002028 Jan 2015 JP
2016219335 Dec 2016 JP
2017107699 Jun 2017 JP
20110008796 Jan 2011 KR
20120061625 Jun 2012 KR
2011002947 Sep 2011 MX
474382 Jan 2002 TW
2013128896 Jan 2014 WO
2014015656 Jan 2014 WO
2015000212 Jan 2014 WO
2016152166 Sep 2016 WO
Non-Patent Literature Citations (303)
Entry
Thiele, Plastic Electrical Boxes Pros and Cons. Dated Jul. 1, 2019. Accessed at found at https://www.thespruce.com/plastic-electrical-boxes-pros-and-cons-1 152405. 1 page.
Underwriters Laboratories Inc. Standard for Safely. UL 1598. Luminaires Jan. 11, 2020. 12 pages.
Van Giel, B. V. et al., “Design of axisymmetrical tailored concentrators for LED light source applications”, Proc. SPIE 6196, Photonics in Multimedia, 619603 (Apr. 21, 2006); doi: 10.1117/12.660115; https://doi.org/10.1117/12.660115, 11 pages.
Zhen, Y. et al., “The optimal design of TIR lens for improving LED illumination uniformity and efficiency”, Proc. SPIE 6834, Optical Design and Testing III, 68342K (Nov. 28, 2007); doi: 10.1117/12.756101, 9 pages.
Zou, H. et al., “58.1: Single-Panel LCOS Color Projector with LED Light Sources”, SID Symposium, vol. 36, Issue 1, 4 pages (May 2005).
Control No. 90/014,601, Response, Sep. 14, 2021.
Cooper Lighting Halo ML56 LED System Product Sheet. Mar. 2, 2015. Accessed at http://www.cooperindustries.com/content/dam/public/lighting/products/documents/halo/spec_sheets/halo-ml56600-80cri-141689-sss.pdf. 8 pages.
Corrected Notice of Allowability dated Oct. 25, 2018 from U.S. Appl. No. 14/183,424, 3 pages.
Corrected Notice of Allowance dated Apr. 28, 2021 from U.S. Appl. No. 16/725,606, 2 pages.
Corrected Notice of Allowance dated Oct. 10, 2019 from U.S. Appl. No. 16/016,040, 2 pages.
Corrected Notice of Allowance dated Sep. 11, 2020 from U.S. Appl. No. 16/719,361, 2 pages.
Corrected Notice of Allowance dated Sep. 14, 2020 from U.S. Appl. No. 16/522,275, 2 pages.
Corrected Notice of Allowance dated Sep. 27, 2019 from U.S. Appl. No. 15/167,682, 2 pages.
Corrected Notice of Allowance dayted Sep. 11, 2020 from U.S. Appl. No. 16/719,361, 2 pages.
Cree LED Lamp Family Sales Sheet—Better light is beautiful light, Apr. 24, 2017, 2 pages.
Cree LMH2 LED Modules Design Guide. Cree 2011-2015, 23 pages.
Cree LMH2 Led Modules Product Family Data Sheet. Cree 2011-2014, 18 pages.
Cree® LMR2 LED Module. Product Family Data Sheet Cree 2011. 3 pages.
CS&E PCT Collaborative Search and Examination Pilot Upload Peer Contribution in International Patent Application No. PCT/US18/62868 dated Mar. 14, 2019, 61 pages.
CS&E PCT Collaborative Search and Examination Pilot Upload Peer Contribution in International Patent Application No. PCT/US18/67614 dated Apr. 24, 2019, 53 pages.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 9,964,266 in IPR2019-01500 dated Mar. 17, 2020. 21 pages.
Declaration of Colby Chevalier from Central District of California Civil Docket for Case # 2:18-cv-07090-CAS-GJC filed Jun. 3, 2019, signed Jun. 3, 2019. 2 pages.
Declaration of Eric Bretschneider, Ph.D in Support of Amp Plus, Inc.'s Opposition to Dmf, Inc.'s Motion for Partial Summary Judgment in Civil Action No. 2:18-cv-07090-CAS-GJS filed Feb. 10, 2020. 210 pages.
Declaration of James R. Benya in Support of Plaintiff DMF's Motion for Summary Judgment in Civil Action No. 2:18-cv-07090-CAS-GJS filed Feb. 3, 2020. 193 pages.
Defendant AMP Plus, Inc. D/B/A Elco Lighting's Supplemental Responses to Plaintiff DMF, Inc.'s First Set of Interrogatories (Nos. 1-16) in Civil Action No. 2:19-CV-4519-CAS, Redacted. 13 pages.
Defendant AMP Plus, Inc.'s Initial Disclosure and Designation of Expert Witnesses in Civil Action No. 2:19-CV-4519-CAS. 37 pages.
Defendant AMP Plus, Inc.'s Opposition to DMF's Motion for Summary Judgement in Civil Action No. 2:18-cv-07090-CAS-GJS filed Feb. 10, 2020. 32 pages.
Defendants' Notice of Prior Art Pursuant to 35 U.S.C. § 282 in Civil Action No. 2:18-cv-07090-CAS-GJS dated Feb. 28, 2020. 7 pages.
Delhi Rehab & Nursing Facility ELM16-70884. Vertex Innovative Solutions Feb. 25, 2016. 89 pages.
DLEI3 3″ Recessed LED New Construction, IC. DMF Light. Issued Nov. 30, 2011. 2 pages.
DLEI411 4″ Recessed LED New Construction, IC. DMF Light. Issued Nov. 30, 2011. 1 page.
DLEIR411 4″ Recessed LED Remodel, IC. DMF Light. Issued Jun. 15, 2011. 1 page.
DME Series Installation Instructions, Oct. 18, 2011, 2 pages.
Dmf DRD2 Recessed LED Downlight General New Construction 4″, 5″, 6″ Aperture Dated: Aug. 31, 2016 Downloaded Jul. 28, 2018, from https://www. cansandfans.com/sites/default/files/DRD2-General-New-Construction-Spec-Sheet_7_0 .pdf, 9 pages.
Dmf DRD2 Recessed LED Downlight General Retrofit Junction Box Dated: Dec. 18, 2015 Downloaded Jul. 28, 2018, from https://www.a Iconlighting.com/specsheets/DMF/DRD2-Junction-Box-Retrafil-Spec-Sheet .pdf, 6 pages.
DMF, Inc., “dmfLIGHTING: LED Recessed Downlighting,” DRD2 Product Brochure, Oct. 23, 2014, 50 pages.
DMF, Inc., “dmfLIGHTING: LED Recessed Downlighting,” Product Catalog, Aug. 2012, 68 pages.
DMF, Inc., “dmfLIGHTING: LED Recessed Lighting Solutions,” Info sheets, Mar. 15, 2012, 4 pages.
Docket Listing in Civil Action No. 2:18-cv-07090. DMF, Inc. v. AMP Plus, Inc. d/b/a ELCO Lighting et al. CDCA-2-18-cv-07090. Downloaded on Mar. 25, 2020. 39 pages.
Docket Listing in Civil Action No. 2:19-cv-4519. DMF Inc v. AMP Plus, Inc. d/b/a ELCO Lighting et al. CDCA-2-19-cv-04519. Downloaded on Mar. 25, 2020. 3 pages.
Docket Listing in Inter Partes Review of U.S. Pat. No. 9,964,266 . AMP Plus, Inc. d/b/a ELCO Lighting et al. v. DMF, Inc. PTAB-IPR2019-01500. Downloaded Mar. 25, 2020. 3 pages.
Docket Listing in Inter Partes Review of U.S. Pat. No. 9,964,266. Docket Navegator AMP Plus, Inc. d/b/a Elco Lighting et al. v. DMF, Inc. PTAB-IPR2019-01094. Downloaded Mar. 25, 2020. 4 pages.
DRD5S Surface Mount LED Downlight Vimeo Mar. 28, 2018. Accessed at https://vimeo.com/262251260. 4 pages.
Dross, O. et al., “Review of SMS design methods and real-world applications”, Proc. SPIE 5529, Nonimaging Optics and Efficient Illumination Systems, (Sep. 29, 2004); doi: 10.1117/12.561336; https://doi.org/10.1117/12.561336, 14 pages.
Ex Parte Quayle Office Action dated Oct. 16, 2018 for U.S. Appl. No. 29/663,037, 7 pages.
Ex Parte Reexamination Interview Summary in Reexam Control No. 90/014,557 dated Aug. 17, 2020, 3 pages.
Exceptional LED Lighting Technology Product Portfolio. LightingScience 2012. 11 pages.
Ex-Parte Quayle Action dated Jun. 27, 2019 from U.S. Appl. No. 29/683,730, 5 pages.
Final Office Action dated Apr. 2, 2015 from U.S. Appl. No. 13/484,901, 13 pages.
Final Office Action dated Apr. 27, 2016 from U.S. Appl. No. 14/184,601, 19 pages.
Final Office Action dated Feb. 5, 2021 from U.S. Appl. No. 16/200,393, 7 pages.
Final Office Action dated Jan. 11, 2021 from U.S. Appl. No. 15/688,266, 7 pages.
Final Office Action dated Jan. 29, 2016 from U.S. Appl. No. 14/183,424, 21 pages.
Final Office Action dated Jul. 26, 2017 from U.S. Appl. No. 14/184,601, 18 pages.
Final Office Action dated Jun. 23, 2016 from U.S. Appl. No. 13/484,901, 18 pages.
Final Office Action dated Jun. 6, 2019 from U.S. Appl. No. 15/688,266, 7 pages.
Final Office Action dated Mar. 15, 2019 from U.S. Appl. No. 15/132,875, 15 pages.
Final Office Action dated Mar. 17, 2020 for U.S. Appl. No. 29/653,142, 13 pages.
Final Office Action dated Oct. 3, 2019 from U.S. Appl. No. 29/678,482, 6 pages.
Final Office Action dated Sep. 27, 2019 from U.S. Appl. No. 16/200,393, 34 pages.
Final Office Action dated Mar. 17, 2020 for U.S. Appl. No. 29/653,142, 13 pp.
Final Written Decision in IPR2019-01094 dated Nov. 19, 2020, 58 pages.
Halo, H7 LED Downlight Trims 49x Series, 6-inch LED Trims for Use with MI7x LED Modules, Cooper Lighting, ADV110422, rev. Aug. 12, 2011, 15 pages.
Halo, Halo LED H4 H7 Collection, SustainabLEDesign, Cooper Lighting, (emphasis on p. 18 “H7 Collection LED Modules—Halo LED H7 Module Features,”) Mar. 28, 2012, 52 pages.
Halo, LED Module ML706x, Cooper Lighting, General Installation for All Modules/p. 1; Tether Installation/pp. 2-3; Installation into Halo H750x Series LED—only (Non-Screw Based), Recessed Fixture, p. 4, Oct. 20, 2009, 4 pages.
HiBay LED Heat Sink. Wakefield-vette. Dec. 11, 2017. 1 pages.
https://www.zhagastandard.org/books/book18/, Mar. 2017, 5 pages. Accessed on May 14, 2018.
IC1 JB Housing 4″ 1C-Rated New Construction Junction Box Housing. AcuityBrands. Accessed at https://www.acuitybrands.com/en/products/detail/845886/juno/ic1jb-housing/4-ic-rated-new-construction-junction-box-housing on Jun. 27, 2019.
Image of Elco E347/247 module identified by Elco in response to DMF's Request for Production in Civil Action No. 2:18-cv-07090-CAS-GJS on Aug. 28, 2019. 1 page.
Imtra Marine Lighting 2008 Catalog. 40 pages.
Imtra Marine Lighting 2009 Catalog. 32 pages.
Imtra Marine Lighting Fall 2007 Catalog. 32 pages.
Imtra Marine Lighting Spring 2007 Catalog. 36 pages.
Innofit 8″Commercial Downlight. Greencreative. Accessed at https://greencreative.com/products/luminaires/commercial-downlighting/innofit-cdl-8-inch-12-19-27w/ on Apr. 28, 2020. 6 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/39048 dated Dec. 14, 2018. 24 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/62868 dated Mar. 14, 2019, 13 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/67614 dated Apr. 25, 2019, 20 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US19/14847 dated Jun. 6, 2019, 24 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US19/32281 dated Aug. 2, 2019, 18 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US2019/036477 dated Oct. 17, 2019, 15 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US2019/036477 dated Oct. 17, 2019, 5 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US2019/054220 dated Feb. 24, 2020, 23 pages.
International Search Report and Written Opinion in PCT/US2018/048357 dated Nov. 14, 2018, 13 pages.
International Search Report and Written Opinion in PCT/US2020/017331 dated Jun. 22, 2020, 16 pages.
International Search Report and Written Opinion in PCT/US2020/050767 dated Dec. 9, 2020, 25 pages.
IPR2019-01094 Exhibit 1001. U.S. Pat. No. 9,964,266 (“the 266 Patent”). 14 pages.
IPR2019-01094 Exhibit 1002. Declaration of Eric Bretschneider, Ph.D. (“Bretschneider”). 107 pages.
IPR2019-01094 Exhibit 1003. Curriculum Vitae of Dr. Bretschneider. 11 pages.
IPR2019-01094 Exhibit 1004. Excerpts from the File History of U.S. Pat. No. 9,964,266. 105 pages.
IPR2019-01094 Exhibit 1005. Imtra 2011 Marine Lighting Catalog—Advanced LED Solutions (“Imtra 2011”). 40 pages.
IPR2019-01094 Exhibit 1006. Imtra 2007 Marine Lighting Catalog (“Imtra 2007”). 36 pages.
IPR2019-01094 Exhibit 1007. U.S. Pat. No. 9,366,418 (“Gifford”). 9 pages.
IPR2019-01094 Exhibit 1008. Declaration of Colby Chevalier (“Chevalier”). 89 pages.
IPR2019-01094 Exhibit 1009. U.S. Pat. No. 7,102,172 (“Lynch”). 41 pages.
IPR2019-01094 Exhibit 1010. Illuminating Engineering Society, ANSI RP-16-10, Nomenclature and Definitions for Illuminating Engineering (approved as an American National Standard Jul. 15, 2005, approved by the IES Board of Directors Oct. 15, 2005). 4 pages.
IPR2019-01094 Exhibit 1011. Underwriters Laboratories Inc. Standard for Safety, Standard UL-8750, entitled Light Emitting Diode (LED) Equipment for Use in Lighting (1st ed. 2009). 5 pages.
IPR2019-01094 Exhibit 1012. Celanese CoolPoly® D5502 Thermally Conductive Liquid Crystalline Polymer Specification (“CoolPoly”). 1 page.
IPR2019-01094 Exhibit 1013. Illuminating Engineering Society of North America, IES Lighting Handbook (John E. Kaufman and Howard Haynes eds., Application vol. 1981) (“Lighting Handbook”) 5 pages.
IPR2019-01094 Exhibit 1014. California Energy Commission, PIER Lighting Research Program: Project 2.3 Low-profile LED Luminaires Final Report (Prepared by Lighting Research Center, Jan. 2005) (“PIER LRP”). 70 pages.
IPR2019-01094 Exhibit 1015. Jim Sinopoli, Using DC Power to Save Energy and End the War on Currents, GreenBiz (Nov. 15, 2012), https://www.greenbiz.com/news/2012/11/15/using-dc-power-save-energy-end-war-currents (“Sinopoli”). 6 pages.
IPR2019-01094 Exhibit 1016. Robert W. Johnson, “Thought Leadership White Paper: AC Versus DC Power Distribution” (Nov. 2012) (“Johnson”). 10 pages.
IPR2019-01094 Exhibit 1017. Lumileds, Luxeon Rebel General Purpose Product Datasheet, Specification DS64 (2016) (“Luxeon Rebel”). 26 pages.
IPR2019-01094 Exhibit 1018. U.S. Pat. No. 8,454,204 (“Chang”). 11 pages.
“Advanced LED Solutions,” Imtra Marine Lighting. Jun. 17, 2011. 39 pages.
“Cree LMH2 LED Module with TrueWhite Technology,” Cree Product Family Data Sheet. Dec. 21, 2011. 3 pages.
“Cree LMH2 LED Modules Design Guide,” Cree Product Design Guide. 2011. 20 pages.
“Cree LMH2 LED Modules,” Mouser Electronics. Accesssed at www.mouser.com/new/cree/creelmh2 on Sep. 9, 2012. 2 pages.
“Cree LMH2 LED Modules,” Mouser Electronics. Sep. 9, 2012. 4 pages.
“Electrical Box” reference dated Mar. 23, 2021. Accessed at https://www.zoro.com/cantex-electrical-box-3-12-in-rouond-20-cu-in-ez2Ocnr-/i/G1823376/. 1 page.
“Electrical Boxes Volume and Fill Calculations” accessed at http://electrical-inspector.blogspot.eom/2013/06/electrical-boxes-Volume-and-Fill-Calculations.html Jun. 22, 2013 retrieved from Wayback Machine Archinve.org on Jan. 25, 2021. 8 pages.
“LED Undercabinet Pocket Guide,” ELCO Lighting. Nov. 2, 2016. 12 pages.
“Membrane Penetrations in Fire-Resistance Rated Walls,” https://www.ul.com/wp-content/uploads/2014/04/ul_MembranePenetrations.pdf, Issue 1, 2009, published Feb. 26, 2010, 2 pages.
“Metallic and Non-metallic Outlet Boxes Used in Fire-rated Assembly,” https://iaeimagazine.org/magazine/2000/09/16/metallic-and-non-metallic-outlet-boxes-used-in-fire-rated-assembly/, Sep. 16, 2000, 5 pages.
“Outlet Boxes for Use in Fire Rated Assemblies,” https://www.ul.com/wp-content/uploads/2014/04/UI_outletboxes.pdf, Apr. 2007, 2 pages.
“Portland Bi-Color, Warm White/Red,” item:ILIM30941.Imtra Marine Products. 2012. 3 pages. Accessed athttp://www.imtra.com:80/0ade25fb-3218-4cae-a926-6abe64ffd93a/lighting-light-fixtures-downlights-3-to-4-inches-detail.htm on Jan. 25, 2013.
“Undercabinet Pucks, Xyris Mini LED Puck Light,” ELCO Lighting. Sep. 2018. 1 page.
“Versi LED Mini Flush,” Lithonia Lghting. Sep. 2013. 6 pages.
20 cu. in. Blue Polycarbonate Round New Work Ceiling Electrical Box. Carlon. Accessed at https://www.homedepot.com/p/Carlon-20-cu-in-Blue-Polycarbonate-Round-New-Work-Ceiling-Electrical-Box-B520P-UPC/202592617?MERCH=REC-_-pipsem-_-100404124-_-202592617-_-N on May 15, 2020. 14 pages.
2006 International Building Code, Section 712 Penetrations, Jan. 2006, 4 pages.
3 & 4″ DLE Series LED Sample Case Now Available. DMF Light. Issued Jan. 6, 2012. 1 page.
4″ Octagon Concrete Boxes and Back Plates. Appleton. Accessed at www.appletonelec.com on May 6, 2019. 1 page.
Access Lighting Installation Instructions. No. 20870LEDD/20871LEDD/20872LEDD. Dec. 16, 2019. 2 pages.
Acrich COB Zhaga Module, Product Description, Seoul Semiconductor, Nov. 11, 2016, 39 pages.
Be seen in the best light. Lightolier by signify. Comprehensive 2019 Lighting Catalog. 114 pages.
Bortz, J. C. et al., “Optimal design of a nonimaging TIR doublet lens for an illumination system using an LED source”, Proc. SPIE 5529, Nonimaging Optics and Efficient Illumination Systems, (Sep. 29, 2004); doi: 10.1117/12.562598; https://doi.org/10.1117/12.562598, 10 pages.
Brochure of Elco EL49A, EL49ICA, EL49RA modules. ELCO Lighting Nov. 25, 2009. 1 page.
BXUV.GuideInfo, Fire Resistance Ratings—ANSI/UL 263, UL Online Certifications Directory, last updated Nov. 3, 2016, 27 pages.
Canadian Office Action dated Aug. 11, 2017 from Canadian Application No. 2,941,051, 4 pages.
Canadian Office Action dated Dec. 23, 2013 from Canadian Application No. 2,778,581, 3 pages.
Canadian Office Action dated Dec. 6, 2016 from Canadian Application No. 2,879,629, 3 pages.
Canadian Office Action dated Feb. 1, 2016 from Canadian Application No. 2,879,486, 5 pages.
Canadian Office Action dated Jun. 12, 2017 from Canadian Application No. 2,927,601, 4 pages.
Canadian Office Action dated Mar. 22, 2016 from Canadian Application No. 2,879,629, 4 pages.
Canadian Office Action dated Mar. 9, 2017 from Canadian Application No. 2,931,588, 5 pages.
Canadian Office Action in Application No. 2931588 dated Aug. 13, 2020, 5 pages.
Canadian Office Action in Application No. 2941051 dated Dec. 8, 2020, 5 pages.
Carlon® Zip Box® Blue™ Switch and Outlet Boxes, Product Brochure, http://www.carionsales.com/brochures.php, Jun. 20, 2006, 22 pages.
CEYY.GuideInfo, Outlet Boxes and Fittings Certified for Fire Resistance, UL Online Certifications Directory, last updated May 16, 2013, 2 pages.
Civil Action No. 2:18-cv-07090. Complaint for Infringement and Unfair Competition. DMF, Inc. v. AMP Plus, Inc. d/b/a ELCO Lighting. 52 pages. Dated Aug. 15, 2018.
Civil Action No. 2:19-cv-4519.Complaint for Patent Infringement. DMF, Inc. v. AMP Plus, Inc. d/b/a ELCO Lighting. 52 pages. Dated May 22, 2019. 23 pages.
Control No. 90/014,557, Declaration of Michael D. Danesh and exhiibts, Jun. 17, 2021.
Control No. 90/014,557, Declaration of Michael S. Garner, Jun. 17, 2021.
Control No. 90/014,557, Interview Summary and appendices, May 13, 2021.
Control No. No. 90/014,557, Notice of Intent to Issue a Reexamination Certificate, Jul. 29, 2021.
Control No. 90/014,557, Office Action, dated Jul. 13, 2021.
Control No. 90/014,557, Reexamination Certificate, Aug. 18, 2021.
Control No. 90/014,557, Response, Jul. 15, 2021.
Control No. 90/014,557, Response, Jun. 17, 2021.
Control No. 90/014,557, Second Supplemental Amendment, Jul. 2, 2021.
Control No. 90/014,557, Supplemental Amendment, Jun. 29, 2021.
Control No. 90/014,601, Notice of Intent to Issue Reexam Certificate, Sep. 27, 2021.
Control No. 90/014,601, Office Action, dated Jul. 14, 2021.
Control No. 90/014,601, Reexamination Certificate, Oct. 25, 2021.
Notice of Allowance dated May 5, 2021 from U.S. Appl. No. 17/085,636, 8 pages.
Notice of Allowance dated Nov. 10, 2020 from U.S. Appl. No. 29/688,143, 6 pages.
Notice of Allowance dated Nov. 10, 2020 from U.S. Appl. No. 29/688,172, 6 pages.
Notice of Allowance dated Nov. 15, 2018 from U.S. Appl. No. 29/663,040, 5 pages.
Notice of Allowance dated Nov. 19, 2018 from U.S. Appl. No. 29/663,037, 5 pages.
Notice of Allowance dated Nov. 27, 2018 from U.S. Appl. No. 15/167,682, 11 pages.
Notice of Allowance dated Oct. 1, 2019 from U.S. Appl. No. 14/942,937, 7 pages.
Notice of Allowance dated Oct. 16, 2019 from U.S. Appl. No. 15/132,875, 12 pages.
Notice of Allowance dated Oct. 21, 2016 from U.S. Appl. No. 13/484,901, 7 pages.
Notice of Allowance dated Oct. 27, 2020 from U.S. Appl. No. 29/648,046, 5 pages.
Notice of Allowance dated Oct. 27, 2020 from U.S. Appl. No. 29/694,475, 5 pages.
Notice of Allowance dated Oct. 4, 2018 from U.S. Appl. No. 15/947,065, 9 pages.
Notice of Allowance dated Oct. 9, 2018 from U.S. Appl. No. 29/653,142, 7 pages.
Notice of Allowance dated Sep. 11, 2019 from U.S. Appl. No. 29/653,142, 6 pages.
Notice of Allowance dated Sep. 19, 2018 from U.S. Appl. No. 15/167,682, 7 pages.
Notice of Allowance dated Sep. 19, 2019 from U.S. Appl. No. 16/016,040, 7 pages.
Notice of Allowance dated Sep. 21, 2018 from U.S. Appl. No. 29/645,941, 5 pages.
Notice of Allowance dated Sep. 22, 2020 from U.S. Appl. No. 29/653,142, 6 pages.
Notice of Allowance dated Sep. 22, 2020 from U.S. Appl. No. 29/683,730, 6 pages.
Notice of Allowance dated Sep. 8, 2020 from U.S. Appl. No. 29/678,482, 5 pages.
Notice of Streamlined Reexamination Request Filing Date in Reexam Control No. 90/014,557 dated Aug. 5, 2020, 2 page.
Notice of Streamlined Reexamination Request Filing Date in Reexam Control No. 90/014,601 dated Nov. 4, 2020, 2 pages.
Notice ot Allowance dated Apr. 1, 2019 from U.S. Appl. No. 15/167,682, 7 pages.
Octagon Concrete Box Cover with (3) ½ in. & (2) ¾ in. Conduit Knockouts. Garvin. Accessed at https://www.garvinindustries.com/covers-and-device-rings/concrete-slab-box-covers-adaptor-rings/flat-covers-all-styles/cbp?gclid=Cj0KCQjw9b_4BRCMARIsADMUIypJc0K80UHdDTI9C5m4BDzR3U87PRYV1NdQIBFxEWQ21_3otTCTqEkaAi_DEALw_wCB on Jul. 20, 2020. 1 page.
OneFrame Recessed LED Downlight. Dmflighting.com. Published Jun. 6, 2018. Retrieved at https://www.dmflighting.com/product/oneframe on Jun. 6, 2018. 11 pages.
Order Granting Request for Ex Parte Reexamination in Reexam Control No. 90/014,557 dated Aug. 25, 2020, 10 pages.
Order Granting Request for Ex Parte Reexamination in Reexam Control No. 90/014,601 dated Nov. 16, 2020, 11 pages.
Parkyn, W. A. et al., “New TIR lens applications for light-emitting diodes”, Proc. SPIE 3139, Nonimaging Optics: Maximum Efficiency Light Transfer IV, (Oct. 3, 1997); doi: 10.1117/12.290217, 7 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,964,266 Pursuant to 37 C.F.R. § 42.100 et seq. AMP Plus Inc. dbd ELCO Lighting v. DMF, Inc, IPR2019-01094 filed May 17, 2019. 108 pages.
Taintiff DMF's Reply in Support of Motion for Partial Summary Judgment in Civil Action No. 2:18-cv-07090-CAS-GJS filed Feb. 18, 2020. 33 pages.
RACO 4 in. Octagon Welded Concrete Ring, 3-½ in. Deep with ½ and ¾ in. Knockouts and ilcludes 890 cover (20-Pack). Model # 280. Accessed at https://www.homedepot.com/p/RACO-4-in-Octagon-Welded-Concrete-Ring-3-1-2-in-Deep-with-1-2-and-3-4-in-Knockouts-and-ilcludes-890-cover-20-Pack-280/203638679 on Jan. 18, 2019. 3 pages.
RACO 4 in. Octagon Welded Concrete Ring, 6 in. Deep with ½ and ¾ in. Knockouts (10-Pack). Model # 276. Accessed at https://www.homedepot.com/p/RACO-4-in-Octagon-Welded-Concrete-Ring-6-in-Deep-with-1-2-and-3-4-in-Knockouts-10-Pack-276/203638675 on Jan. 16, 2019. 4 pages.
RACO Commercial, Industrial and Residential Electrical Products. Hubbell. Accessed at www.Hubbell-RTB.com on May 6, 2019. 356 pages.
Request for Ex Parte Reexamination of U.S. Pat. No. 10,488,000 filed Oct. 30, 2020, Reexam Control No. 90/014,601, 27 pages.
Request for Ex Parte Reexamination of U.S. Pat. No. 10,663,127 filed Aug. 3, 2020, Reexam Control No. 90/014,557, 615 pages.
Response to Non-Final Office Action in Reexam Control No. 90/014,557 dated Feb. 5, 2021, 366 pages.
Response to Non-Final Office Action in Reexam Control No. 90/014,601 dated May 24, 2021, 367 pages.
Ridgway-Barnes, SlimSurface LED Downlight: One of the thinnest LED surface mount downlights in the market. Philips Lighting Blog. Oct. 28, 2014. Accessed at http://applications.nam.lighting.philips.com/blog/index.php/2014/10/28/slimsurface-led-downlight-one-of-the-thinnest-led-surface-mount-downlights-in-the-market/. 3 pages.
Schreiber, P. et al., “Microoptics for homogeneous LED-illumination”, Proc. SPIE 6196, Photonics in Multimedia, 61960P (Apr. 21, 2006); doi: 10.1117/12.663084; https://doi.org/10.1117/12.663084, 11 pages.
Screenshots from the Deposition of Brandon Cohen in Civil Action No. 2:18-cv-07090-CAS-GJS. Conducted Sep. 2, 2020. 8 pages.
Slim Line Disc. Eye LEDs Specification Sheet 2012. 2 pages.
SlimSurface LED S5R, S7R & S10R Round 5″, 7″ and 10″ Apertures. Lightolier by Signify. Nov. 2018. 9 pages.
SlimSurface surface mount downlighting. Philips Lightolier 2018. 8 pages.
Specification & Features 4″ Octagonal Concrete Box Covers. Orbit Industries, Inc. Accessed at https://www.orbitelectric.com on May 6, 2019. 1 page.
Supplemenatal Notice of Allowance dated Aug. 5, 2019 from U.S. Appl. No. 15/947,065, 2 pages.
Supplemental Notice of Allowance dated Mar. 10, 2021 from U.S. Appl. No. 16/886,365, 2 pages.
Switch and Outlet Boxes and Covers Brochure. Appelton 2010. 77 pages.
Taiwan Office Action and translation thereof dated Jun. 12, 2020 from Taiwan Application No. 108116564, 8 pages.
Thermal Management of Cree® XLamp® LEDs. Cree Application Note. 2004. 19 pages.
IPR2019-01094 Exhibit 1019. U.S. Department of Energy, CALiPER Benchmark Report: Performance of Incandescent A-Type and Decorative Lamps and LED Replacements (prepared by Pacific National Laboratory, Nov. 2008) (“CALiPER 2008”). 25 pages.
IPR2019-01094 Exhibit 1020. U.S. Pat. No. 3,836,766 (“Auerbach”). 13 pages.
IPR2019-01094 Exhibit 1021. U.S. Department of Energy, CALiPER Application Summary Report 16: LED BR30 and R30 Lamps (prepared by Pacific Northwest National Laboratory, Jul. 2012) (“CALiPER 2012”). 26 pages.
IPR2019-01094 Exhibit 1022. Sandia National Laboratories, Sandia Report: “The Case for a National Research Program on Semiconductor Lighting” (Jul. 2000) (“Haitz”). 24 pages.
IPR2019-01094 Exhibit 1023. Sylvania, Post Top Street Light LED Retrofit Kit Specification, LED40POST (2009) (“Sylvania”). 4 pages.
IPR2019-01094 Exhibit 1024. Webster's New Collegiate Dictionary (1973) (“Webster's”). 2 pages.
IPR2019-01094 Exhibit 1025. 3M Wire Connectors and Tools Catalog 2013 (“3M Catalog”). 22 pages.
IPR2019-01094 Exhibit 1026. Wakefield Semiconductor Heat Sinks and Thermal Products 1974 Catalog (“Wakefield”). 3 pages.
IPR2019-01094 Exhibit 1027. U.S. Department of Energy, Solid-State Lighting Research and Development Portfolio: Multi-Year Program Plan FY'07-FY'12 (prepared by Navigant Consulting, Inc., Mar. 2006) (“DOE 2006”). 129 pages.
IPR2019-01094 Exhibit 1028. U.S. Department of Energy, Solid-State Lighting Research and Development: Multi-Year Program Plan (Apr. 2013) (“DOE 2013”) 89 pages.
KwikBrace® New Construction Braces for Lighting Fixtures or Ceiling Fans 1-1/2 in. Depth. Hubbel. Accessed at https://hubbellcdn.com/specsheet/926.pdf on Jun. 27, 2019. 1 page.
LED Book Pr ice Guide 2012. DMF Light. Issued Jun. 26, 2013. 3 pages.
LED modules advance in performance, standardization questions persist (Magazine). LEDs Magazine. Oct. 29, 2013. Accessed at https://www.ledsmagazine.com/leds-ssl-design/modular-light-engines/article/16695073/led-modules-advance-in-performance-standardization-questions-persist-magazine. 9 pages.
Mar. 5, 2016—The DMF Lighting DRD2 Recessed LED Downlight General Retrofit Junction Box—Wet Location Rated is the ideal solution for Commercial LED recessed lighting retrofit applications, web cache https://www.alconlighting.com/dmf-drd2m.html (downloaded Jul. 28, 2018), 6 pages.
Maxim Convert Fixture. LMXCAT1805 Maxim Main Catalog 2018 p. 639.
Maxim Lighting International, “Convert LED Flush Mount”, undated.
Maxim Lighting International, “Product/Drawing Specification Sheet”, undated.
Maxim Lighting International, “Views of the Wafer Flush Mount”, undated.
Maxim Lighting International, “Wafer LED 7″ RD 3000K Wall/Flush Mount”, undated.
Maxim Lighting International, “Wafer LED Product Brochure”, undated, 2 pages.
Maxim Lighting Trim Trifold LMXBR01905 2019. Accessed at https://www.maximlighting.com/Upload/download/brochure/pdf/LMXBRO1905.pdf on Feb. 13, 2020. 2 pages.
Maxim Lighting Wafer Trifold Brochure LMXBR01711 2017. Accessed at https://www.maximlighting.com/Upload/download/brochure/pdf/LMXBRO1711.pdf on Feb. 13, 2020. 2 pages.
Maxim Wafer. LMXCAT1805 Maxim Main Catalog 2018 pp. 636-638.
Medvedev, V. et al., “Uniform LED illuminator for miniature displays,” Proc. SPIE 3428, Illumination and Source Engineering, (Oct. 20, 1998); doi: 10.1117/12.327957;https://doi.org/10.1117/12.327957, 13 pages.
ML56 Led Lighting System 600 / 900 / 1200 Series Halo. Cooper Lighting Brochure 2015. Accessed at https://images.homedepot-static.com/catalog/pdfImages/06/06d28193-4bf6-45be-a35a-a0239606f227.pdf. 41 pages.
Model No. 20870LEDD-WH/ACR Infinite Specification Sheet. Access Lighting. Apr. 9, 2020. 1 page.
Non-Final Office Action dated Apr. 12, 2018 for U.S. Appl. No. 29/638,259, 5 pages.
Non-Final Office Action dated Apr. 12, 2021 from U.S. Appl. No. 29/694,475, 11 pages.
Non-Final Office Action dated Apr. 2, 2020 for U.S. Appl. No. 16/522,275, 21 pages.
Non-Final Office Action dated Apr. 30, 2010 from U.S. Appl. No. 12/173,232, 13 pages.
Non-Final Office Action dated Apr. 4, 2019 from U.S. Appl. No. 29/678,482, 8 pages.
Non-Final Office Action dated Aug. 19, 2020 for U.S. Appl. No. 16/886,365, 16 pages.
Non-Final Office Action dated Dec. 15, 2016 from U.S. Appl. No. 14/184,601, 18 pages.
Non-Final Office Action dated Dec. 16, 2020 from U.S. Appl. No. 17/080,080, 28 pages.
Non-Final Office Action dated Dec. 30, 2019 from U.S. Appl. No. 16/653,497, 8 pages.
Non-Final Office Action dated Dec. 5, 2018 from U.S. Appl. No. 14/942,937, 13 pages.
Non-Final Office Action dated Feb. 6, 2018 from U.S. Appl. No. 15/167,682, 9 pages.
Non-Final Office Action dated Feb. 7, 2019 from U.S. Appl. No. 16/200,393, 32 pages.
Non-Final Office Action dated Jan. 11, 2021 from U.S. Appl. No. 16/725,606, 7 pages.
Non-Final Office Action dated Jan. 13, 2021 from U.S. Appl. No. 17/085,636, 14 pages.
Non-Final Office Action dated Jan. 19, 2021 from U.S. Appl. No. 17/099,650, 15 pages.
Non-Final Office Action dated Jul. 20, 2015 from U.S. Appl. No. 14/184,601, 16 pages.
Non-Final Office Action dated Jul. 24, 2018 from U.S. Appl. No. 29/638,259, 5 pages.
Non-Final Office Action dated Jun. 11,2019 from U.S. Appl. No. 15/901,738, 6 pages.
Non-Final Office Action dated Jun. 2, 2015 from U.S. Appl. No. 14/183,424, 20 pages.
Non-Final Office Action dated Jun. 25, 2018 for U.S. Appl. No. 29/541,565, 10 pages.
Non-Final Office Action dated Mar. 15, 2010 from U.S. Appl. No. 12/100,148, 8 pages.
Non-Final Office Action dated May 16, 2018 for U.S. Appl. No. 15/132,875, 18 pages.
Non-Final Office Action dated May 17, 2017 from U.S. Appl. No. 14/183,424, 20 pages.
Non-Final Office Action dated May 20, 2020 for U.S. Appl. No. 15/688,266, 6 pages.
Non-Final Office Action dated May 26, 2020 for U.S. Appl. No. 16/719,361, 10 pages.
Non-Final Office Action dated Nov. 30, 2020 from U.S. Appl. No. 17/000,702, 7 pages.
Non-Final Office Action dated Oct. 16, 2014 from U.S. Appl. No. 13/484,901, 11 pages.
Non-Final Office Action dated Oct. 24, 2018 for U.S. Appl. No. 15/688,266, 14 pages.
Non-Final Office Action dated Sep. 15, 2015 from U.S. Appl. No. 13/484,901, 16 pages.
Non-Final Office Action dated Sep. 5, 2014 from U.S. Appl. No. 13/791,087, 8 pages.
Non-Final Office Action dated Sep. 6, 2017 from U.S. Appl. No. 14/726,064, 8 pages.
Non-Final Office Action in Reexam Control No. 90/014,557 dated Mar. 17, 2021, 51 pages.
Non-Final Office Action in Reexam Control No. 90/014,601 dated Feb. 23, 2021, 20 pages.
Notice of Allowance dated Apr. 1, 2019 from U.S. Appl. No. 15/167,682, 7 pages.
Notice of Allowance dated Apr. 13, 2021 from U.S. Appl. No. 16/725,606, 7 pages.
Notice of Allowance dated Apr. 17, 2019 from U.S. Appl. No. 29/678,478, 7 pages.
Notice of Allowance dated Apr. 26, 2021 from U.S. Appl. No. 17/080,080, 11 pages.
Notice of Allowance dated Apr. 6, 2021 from U.S. Appl. No. 16/200,393, 11 pages.
Notice of Allowance dated Apr. 8, 2019 from U.S. Appl. No. 29/653,142, 8 pages.
Notice of Allowance dated Apr. 9, 2020 from U.S. Appl. No. 16/653,497, 7 pages.
Notice of Allowance dated Aug. 23, 2017 from Canadian Application No. 2,879,629, 1 page.
Notice of Allowance dated Dec. 2, 2020 from U.S. Appl. No. 29/746,262, 6 pages.
Notice of Allowance dated Feb. 15, 2019 from U.S. Appl. No. 15/947,065, 9 pages.
Notice of Allowance dated Feb. 5, 2020 from U.S. Appl. No. 15/901,738, 8 pages.
Notice of Allowance dated Feb. 5, 2020 from U.S. Appl. No. 29/678,482, 13 pages.
Notice of Allowance dated Feb. 8, 2019 from U.S. Appl. No. 29/541,565, 5 pages.
Notice of Allowance dated Jan. 15, 2021 from U.S. Appl. No. 17/000,702, 7 pages.
Notice of Allowance dated Jan. 16, 2015 from U.S. Appl. No. 29/467,026, 9 pages.
Notice of Allowance dated Jan. 2, 2019 from U.S. Appl. No. 29/541,565, 6 pages.
Notice of Allowance dated Jan. 22, 2021 from U.S. Appl. No. 16/886,365, 7 pages.
Notice of Allowance dated Jan. 22, 2021 from U.S. Appl. No. 17/080,080, 14 pages.
Notice of Allowance dated Jan. 28, 2019 from U.S. Appl. No. 29/664,471, 8 pages.
Notice of Allowance dated Jan. 30, 2015 from U.S. Appl. No. 13/791,087, 9 pages.
Notice of Allowance dated Jul. 10, 2020 from U.S. Appl. No. 29/694,475, 6 pages.
Notice of Allowance dated Jul. 20, 2020 from U.S. Appl. No. 29/648,046, 5 pages.
Notice of Allowance dated Jul. 28, 2020 from U.S. Appl. No. 16/719,361, 8 pages.
Notice of Allowance dated Jul. 29, 2020 from U.S. Appl. No. 16/522,275, 8 pages.
Notice of Allowance dated Jul. 31, 2019 from U.S. Appl. No. 15/167,682, 7 pages.
Notice of Allowance dated Jun. 1, 2021 from U.S. Appl. No. 16/719,361, 7 pages.
Notice of Allowance dated Jun. 12, 2019 from U.S. Appl. No. 16/016,040, 8 pages.
Notice of Allowance dated Mar. 24, 2016 from U.S. Appl. No. 14/247,149, 8 pages.
Notice of Allowance dated Mar. 26, 2018 for U.S. Appl. No. 14/184,601, 10 pages.
Notice of Allowance dated May 10, 2018 from U.S. Appl. No. 14/726,064, 7 pages.
Notice of Allowance dated May 17, 2021 from U.S. Appl. No. 15/688,266, 9 pages.
Notice of Allowance dated May 18, 2020 from U.S. Appl. No. 15/901,738, 7 pages.
Notice of Allowance dated May 22, 2018 from U.S. Appl. No. 14/183,424, 9 pages.
Notice of Allowance dated May 24, 2021 from U.S. Appl. No. 29/688,143, 6 pages.
Notice of Allowance dated May 24, 2021 from U.S. Appl. No. 29/688,172, 6 pages.
Notice of Allowance dated May 27, 2021 from U.S. Appl. No. 16/779,865, 9 pages.
Notice of Allowance dated May 28, 2021 from U.S. Appl. No. 16/779,824, 11 pages.
Corrected Brief of Appellant, No. 2021-1595, No. 2021-1636, Doc. 18 (Fed. Cir. Aug. 4, 2021).
Brief of Cross-Appellant, No. 2021-1595, No. 2021-1636, Doc. 34 (Fed. Cir. Jan. 27, 2022).
Response and Reply Brief of Appellant, No. 2021-1595, No. 2021-1636, Doc. 36 (Fed. Cir. Jan. 28, 2022).
Reply Brief of Cross-Appellant, No. 2021-1595, No. 2021-1636, Doc. 43 (Fed. Cir. Mar. 21, 2022).
AMP Plus, Inc., et al. v. DMF, Inc., No. 2021-1595, No. 2021-1636, slip op. (Fed. Cir. Nov. 10, 2022).
Related Publications (1)
Number Date Country
20220003367 A1 Jan 2022 US
Provisional Applications (2)
Number Date Country
62552126 Aug 2017 US
62523640 Jun 2017 US
Continuations (3)
Number Date Country
Parent 16881686 May 2020 US
Child 17477503 US
Parent 16653497 Oct 2019 US
Child 16881686 US
Parent 16016040 Jun 2018 US
Child 16653497 US
Continuation in Parts (1)
Number Date Country
Parent 29648046 May 2018 US
Child 16016040 US