The present disclosure relates to a pump, more particularly to a thin pump.
As computer technology progresses, computer system can provide higher performance and, hence, more heat than lower performance devices. In order to prevent an overly high working temperature to damage internal electronic/electronic components, there is provided a passive heat exchanger, such as a heatsink, for absorbing heat generated by the electronic/electronic components. However, the heat dissipation efficiency of the heatsinks are very limited and sometimes not sufficient to catch the heat dissipation requirement of the electronic components nowadays. An alternative option is a liquid-cooling system. The liquid-cooling system is known for having a better heat dissipation performance than heatsink. A typical liquid-cooling system may include a radiator, a liquid plate, and a pump, where the radiator and the liquid plate are in fluid communication with each other, and the working fluid is pumped through the radiator and the liquid plate by the pump to form a circulation. The liquid plate can be mounted on a heat source (e.g., processor), the working fluid flowing through the liquid plate can absorb heat generated from the heat source and can be pumped to the radiator for heat dissipation.
In recent years, in order to satisfy demands for lightweight and small, designs of electronic products are developed toward being light, thin, short, and small. Some manufactures believed that to reduce the size of the pump is a solution to make the electronic products become thinner, however, in fact, the typical small-sized pumps are unable to offer sufficient hydraulic head to maintain the original function. In other words, a pump that has sufficient hydraulic head is, typically, large in size and therefore does not fit the trend. Typically, a pump is worked with an external tank to prevent noise caused by bubbles flowing through the impeller therein. The external tank makes the whole cooling system large in size, but the cooling system without it would affect the performance. Therefore, how to make a balance among small size, performance, and low noise of a pump is an important topic in the field.
The present disclosure provides a thin pump that is beneficial to reach a balance among small volume, high performance, and low noise.
According to one aspect of the present disclosure, a thin pump including a case, a rotor, and a stator. The case has a bottom surface, a lower chamber, an upper chamber, and an accommodation space. The upper chamber is located further away from the bottom surface than the lower chamber. The upper chamber has two opposite ends respectively in fluid communication with the lower chamber and the accommodation space. The rotor includes an impeller and a magnet. The impeller is rotatably disposed in the lower chamber of the case. The magnet is disposed on the impeller. The stator is disposed in the case. The stator corresponds to the magnet of the rotor so as to drive the rotor to rotate with respect to the case.
According to the thin pump discussed above, the accommodation space existing at the upstream side of the upper chamber and the lower chamber can be served as a tank for the impeller of the thin pump, thus the accommodation space is beneficial to eliminate the bubbles in the working fluid before the working fluid flows into the impeller. As such, there will be no bubbles flowing into the impeller and thus noise that resulted from the bubbles and the impeller is significantly reduced or prevented. In other words, the arrangement of the accommodation space respect to the lower chamber in which the impeller is located makes the thin pump have the functions of both a pump and a tank and therefore achieve a balance among small size, high performance, and low noise. Accordingly, the thin pump is suitable for a computer system (or an electronic apparatus) with limited internal space while maintaining required cooling performance.
The present disclosure will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only and thus are not intending to limit the present disclosure and wherein:
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
Please refer to
As shown in
As shown in
In addition, the top part 120 has an upper chamber Su, a plurality of through holes O, an inlet channel Si, a ramp St, and an outlet channel So. The upper chamber Su is surrounded by the outer surface 122. The upper chamber Su is located further away from the bottom surface 121 of the top part 120 than the lower chamber Sd. The upper chamber Su and the lower chamber Sd are connected via the through holes O. One end of the inlet channel Si is located on the outer surface 122 of the top part 120, and the inlet channel Si is served as an inlet for a working fluid. The ramp St has a first portion St1, a second portion St2, and a middle portion St3. The first portion St1 is connected to the second portion St2 via the middle portion St3. The first portion St1 of the ramp St is connected to the inlet channel Si, and the second portion St2 of the ramp St is connected to the upper chamber Su. That is, the inlet channel Si is connected to the upper chamber Su via the ramp St. The working fluid is allowed to flow into the inlet channel Si and flow to the upper chamber Su via the first portion St1, the middle portion St3, and the second portion St2 of the ramp St.
A first surface St11 of the first portion St1 of the ramp St is located closer to the bottom surface 121 of the top part 120 than a second surface St21 of the second portion St2 of the ramp St. As shown in
In this embodiment, the quantity of the through holes O of the top part 120 are plural, but the present disclosure is not limited thereto. In some embodiments, the top part 120 may have only one through hole O.
As shown in
One end of the outlet channel So is located on the outer surface 122. The outlet channel So is connected to the lower chamber Sd, such that the working fluid in the lower chamber Sd can flow out of the thin pump 10 via the outlet channel So.
As shown in
In addition, in this embodiment, one end of the inlet channel Si and one end of the outlet channel So are respectively located at two opposite sides of the outer surface 122, but the present disclosure is not limited thereto. In some embodiments, one end of the inlet channel and one end of the outlet channel may be respectively located at two adjacent sides of the outer surface.
The cover 130 is disposed on the top surface 123 of the top part 120 via, for example, adhesive. The cover 130 is able to cover the upper chamber Su and the ramp St.
The shaft 400 and the rotor 200 are located in the lower chamber Sd. The shaft 400 is fixed between the bottom part 110 and the top part 120 of the casing 100. The rotor 200 includes an impeller 210, a magnetic component 220, and an iron plate 230. The impeller 210 is fixed on the shaft 400 so that the impeller is rotatably disposed in the casing 100. The magnetic component 220 is disposed on the impeller 210 via the iron plate 230. That is, the iron plate 230 is located between the impeller 210 and the magnetic component 220. The iron plate 230 is configured to reduce magnetic flux leakage so as to increase excitation efficiency.
The washers 500 are sleeved on the shaft 400 and are respectively located at two opposite sides of the impeller 210. The washers 500 are respectively clamped between the impeller 210 and the bottom part 110 and between the impeller 210 and the top part 120, such that the impeller 210, the bottom part 110, and the top part 120 are spaced apart from one another to prevent them from hitting each other during rotation of the impeller 210. In addition, the washers 500 has a wear resistance greater than the casing 100 and therefore can improve the durability and life span of the thin pump 10.
Please refer to
Please refer to
The stator 300 is disposed in the casing 100. The stator 300 corresponds to the magnetic component 220 of the rotor 200 so as to drive the rotor 200 to rotate with respect to the casing 100. Specifically, the bottom part 110 has an accommodating space 112 which is a recess formed on the bottom surface 111. The stator 300 is located in the accommodating space 112. As shown in
As shown in
Note that the position of the inlet channel Si is not restricted. In some embodiments, defining a base line L equidistant from the upper surface 211 and the lower surface 310, a distance between the center line C1 of the inlet channel Si and the base line L may be less than 5 percent of a distance between the upper surface 211 and the lower surface 310. In some other embodiments, the inlet channel may be located between a plane where the upper surface of the impeller is located and a plane where the bottom surface of the top part is located.
As shown in
In this embodiment, the inlet channel Si and the outlet channel So are located on the outer surface 122 instead of located on the top surface 123 or the bottom surface 121; that is, the inlet channel Si and the outlet channel So are located at radial sides instead of located at axial sides of the impeller 210. As such, the thickness of the thin pump 10 along the rotation axis AA of the rotor 200 has no need to consider the inlet channel Si and the outlet channel So and thus can be designed to be small. In addition, as mentioned, the working fluid flows along the ramp St, which can reduce the flow resistance of the working fluid to increase the driving efficiency of the thin pump 10. Furthermore, the working fluid flowing down to the impeller 210 from the upper chamber Su can create an impact force due to the height of the ramp St, and the centrifugal force generated by the rotation of the impeller 210 can pressure the working fluid in the lower chamber Sd. As the working fluid flows out of the thin pump 10 from the outlet channel So, the working fluid is pressurized to have a hydraulic head the same as or greater than the conventional axial flow pump (e.g., more than 2 meters).
Note that the description of the location of the inlet channel Si is defined by the bottom surface 121 of the top part 120, but it can be also defined by the bottom surface 111 of the bottom part 110, since the bottom surface 121 of the top part 120 and the bottom surface 111 of the bottom part 110 are substantially coplanar. In some embodiments, the bottom surface of the top part and the bottom surface of the bottom part may not be coplanar. In such case, the one of the two bottom surfaces which is located further away from the top surface of the top part than the other one would be used to define and describe the location of the inlet channel.
Please refer to
Please refer to
Another embodiment of the disclosure provides a thin pump 10a including a case 100a, a rotor 200a, and a stator 300a. The case 100a includes a housing part 110a, a base 120a, an upper cover 130a, and a lower cover 140a. The housing part 110a has a bottom surface 111a, a top surface 112a, an outer surface 113a, a lower chamber Sd, an upper chamber Su, an accommodation space Sw, an inlet channel Si, and an outlet channel So. Moreover, the housing part 110a has a first connection hole O1 and a second connection hole O2. The top surface 112a faces away from the bottom surface 111a, and the outer surface 113a is connected to and located between the bottom surface 111a and the top surface 112a. The upper chamber Su is located further away from the bottom surface 111a than the lower chamber Sd. The upper chamber Su is in fluid communication with the accommodation space Sw via the first connection hole O1, and the upper chamber Su is in fluid communication with the lower chamber Sd via the second connection hole O2. A distance (indicated by D5 in
The base 120a is disposed on the housing part 110a and seals the lower chamber Sd. Moreover, the base 120a has a plurality of recesses 121a that are not in fluid communication with the lower chamber Sd. The upper cover 130a is disposed on the housing part 110a and seals the upper chamber Su. The lower cover 140a is disposed on the housing part 110a and seals the accommodation space Sw.
The rotor 200a includes an impeller including a first impeller body 210a and a second impeller body 220a. The rotor 200a includes a magnet 230a. The first impeller body 210a and the second impeller body 220a overlap with each other and are rotatably disposed in the lower chamber Sd of the housing part 110a. The magnet 230a (e.g., a permanent magnet) is disposed on the first impeller body 210a. Note that the impeller in some other embodiments of the disclosure may be an integrally formed single piece. It is also noted that the magnet in some other embodiments of the disclosure may be disposed on the second impeller body.
The stator 300a includes a driving board 310a and a plurality of stator coils 320a. The driving board 310a abuts on the base 120a of the case 100a. The stator coils 320a are disposed on and electrically connected to the driving board 310a. The stator coils 320a are respectively located in the recesses 121a. The stator coils 320a of the stator 300a corresponds to the magnet 230a of the rotor 200a, and the interaction between the stator coils 320a and magnet 230a can cause the rotor 200a to rotate with respect to the case 100a.
In this embodiment, the thin pump 10a further includes a sealing plug 400a. The case 100a further has an opening O3 in fluid communication with the accommodation space Sw. The sealing plug 400a is configured to be inserted into the opening O3. When the sealing plug 400a is removed, the accommodation space Sw is exposed to the outside via the opening O3 so that working fluid (not shown in the drawings) is permitted to flow into the accommodation space Sw via the opening O3. When the sealing plug 400a is inserted into the opening O3, the working fluid in the accommodation space Sw is prevented from flowing out of the housing part 110a.
Please refer to
Please refer to
Further, the difference between the distance D5 (the distance between the bottom surface 111a and the side of the upper chamber Su located close to the second connection hole O2) and the distance D4 (the distance between the bottom surface 111a and the side of the upper chamber Su located close to the first connection hole O1) creates a height difference at the upstream side of the lower chamber Sd, thus the working fluid can flow into the lower chamber Sd from a relatively high altitude and thereby helping increase the hydraulic head of the thin pump 10a.
According to the thin pump discussed above, the accommodation space existing at the upstream side of the upper chamber and the lower chamber can be served as a tank for the impeller of the thin pump, thus the accommodation space is beneficial to eliminate the bubbles in the working fluid before the working fluid flows into the impeller. As such, there will be no bubbles flowing into the impeller and thus noise that resulted from the bubbles and the impeller is significantly reduced or prevented. In other words, the arrangement of the accommodation space respect to the lower chamber in which the impeller is located makes the thin pump have the functions of both a pump and a tank and therefore achieve a balance among small size, high performance, and low noise. Accordingly, the thin pump is suitable for a computer system (or an electronic apparatus) with limited internal space while maintaining required cooling performance.
Further, the difference between the distance between the bottom surface and the side of the upper chamber located close to the second connection hole and the distance between the bottom surface and the side of the upper chamber located close to the first connection hole creates a height difference at the upstream side of the lower chamber, thus the working fluid can flow into the lower chamber from a relatively high altitude and thereby helping increase the hydraulic head of the thin pump.
The embodiments are chosen and described in order to best explain the principles of the present disclosure and its practical applications, to thereby enable others skilled in the art best utilize the present disclosure and various embodiments with various modifications as are suited to the particular use being contemplated. It is intended that the scope of the present disclosure is defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
109111160 | Apr 2020 | TW | national |
This application is a continuation-in-part application of earlier non-provisional application Ser. No. 17/017,389 filed on Sep. 10, 2020, which claims priority under 35 U.S.C. § 119(a) on Patent Application No(s). 109111160 filed in Taiwan, R.O.C. on Apr. 1, 2020, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
20050249609 | Ito | Nov 2005 | A1 |
20050265833 | Tomioka | Dec 2005 | A1 |
20140205480 | Nakano | Jul 2014 | A1 |
20210301826 | Horng | Sep 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
20230035497 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17017389 | Sep 2020 | US |
Child | 17961360 | US |