Thin seat flex rest composite cushion extension

Information

  • Patent Grant
  • 9016783
  • Patent Number
    9,016,783
  • Date Filed
    Thursday, January 24, 2013
    11 years ago
  • Date Issued
    Tuesday, April 28, 2015
    9 years ago
Abstract
A vehicle seating assembly includes a seat defining a seating area and an actuation assembly. An elongate flexible member includes a first end pivotally coupled to the seat and a second end operably coupled with the actuation assembly. The elongate flexible member is pivotally moveable between raised and lowered positions and operable between a retracted position and an extended position. The elongate flexible member enlarges the effective seating area.
Description
FIELD OF THE INVENTION

The present invention generally relates to a vehicle seating assembly, and more particularly to a vehicle seat extension assembly with a thin seat flex rest composite cushion extension.


BACKGROUND OF THE INVENTION

Modern vehicle seats are becoming more and more comfortable as our understanding of human ergonomics, posture, and comfortability increases. Vehicle seating assemblies that include comfort components in the vehicle seat back and the vehicle seat can provide drivers and passengers with improved comfort and increased endurance for extensive vehicle rides. Additionally, accommodating the various sizes, shapes, and desired sitting style of drivers and passengers can prove challenging when providing vehicle seating assemblies. Accordingly, vehicle seating assemblies that include components to accommodate the different sizes and shapes of drivers and passengers, as well as the desired posture and sitting positions of those drivers and passengers, has become increasingly important.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, a vehicle seating assembly includes a seat defining a seating area and an actuation assembly. An elongate flexible member includes a first end pivotally coupled to the seat and a second end operably coupled with the actuation assembly. The elongate flexible member is pivotally moveable between raised and lowered positions and operable between a retracted position and an extended position. The elongate flexible member enlarges the effective seating area.


According to another aspect of the present invention, a vehicle seat extension assembly includes a seat defining a seating area and an actuation assembly. First and second elongate flexible elements are pivotally coupled to the seat and operably coupled with the actuation assembly. The first and second elongate flexible elements have an arcuate cross-section and are operable between a retracted position and an extended position that enlarges the effective seating area.


According to yet another aspect of the present invention, a seat extension assembly includes a seat defining a seating area and an actuation assembly. First and second elongate flexible elements have a top portion pivotally coupled to the seat and a bottom portion translatable between forward and rearward positions. The first and second elongate flexible elements are moveable between raised and lowered positions by the actuation assembly.


These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a top perspective view of one embodiment of a vehicle seating assembly of the present invention;



FIG. 2 is a top perspective view of the vehicle seating assembly of FIG. 1;



FIG. 3 is a top perspective view of one embodiment of a forward portion of a vehicle seating assembly of the present invention in a retracted position;



FIG. 3A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 3 in the retracted position;



FIG. 4 is a top perspective view of one embodiment of a forward portion of a vehicle seating assembly of the present invention in an extended position;



FIG. 4A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 4 in the extended position;



FIG. 5 is a front cross-sectional view taken at line V-V of FIG. 3A;



FIG. 5A is a front elevational cross-sectional view of area VA of FIG. 5;



FIG. 6 is a top perspective view of another embodiment of a forward portion of a vehicle seating assembly of the present invention in a retracted position;



FIG. 6A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 6 in the retracted position;



FIG. 7 is a top perspective view of another embodiment of a forward portion of a vehicle seating assembly of the present invention in an extended position;



FIG. 7A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 7 in the extended position;



FIG. 8 is a top perspective view of another embodiment of a forward portion of a vehicle seating assembly of the present invention in a retracted position;



FIG. 8A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 8 in the retracted position;



FIG. 9 is a top perspective view of another embodiment of a forward portion of a vehicle seating assembly of the present invention in an extended position;



FIG. 9A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 9 in the extended position;



FIG. 10 is a top perspective view of another embodiment of a forward portion of a vehicle seating assembly of the present invention in a retracted position;



FIG. 10A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 10 in the retracted position;



FIG. 11 is a top perspective view of another embodiment of a forward portion of a vehicle seating assembly of the present invention in an extended position;



FIG. 11A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 11 in the extended position;



FIG. 12 is a top perspective view of another embodiment of a forward portion of a vehicle seating assembly of the present invention in a retracted position;



FIG. 12A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 12 in the retracted position;



FIG. 13 is a top perspective view of another embodiment of a forward portion of a vehicle seating assembly of the present invention in an extended position;



FIG. 13A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 13 in the extended position;



FIG. 14 is a top perspective view of another embodiment of a forward portion of a vehicle seating assembly of the present invention in a retracted position;



FIG. 14A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 14 in the retracted position;



FIG. 15 is a top perspective view of another embodiment of a forward portion of a vehicle seating assembly of the present invention in an extended position; and



FIG. 15A is a side elevational view of the forward portion of the vehicle seating assembly of FIG. 15 in the extended position.





DETAILED DESCRIPTION OF THE EMBODIMENTS

For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIG. 1. However, it is to be understood that the invention may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


Referring to FIGS. 1-3A, reference numeral 10 generally designates a vehicle seating assembly for use in a vehicle 11 that includes a seat 12 defining a seating area 14 and an actuation assembly 16. An elongate flexible member 18 includes a first end 20 coupled to the seat 12 and a second end 24 operably coupled with the actuation assembly 16. The elongate flexible member 18 is pivotally moveable between a raised position and a lowered position (FIGS. 10-11) and operable between a retracted position and an extended position (FIGS. 3-9A). The elongate flexible member 18 is configured to enlarge the effective seating area 14.


Referring again to FIGS. 1 and 2, the vehicle seating assembly 10 generally includes a seat back 30 pivotally coupled to the seat 12 and operable between upright and reclined positions. The seat back 30 includes a headrest 32 extending from a top portion 34 thereof and configured to support the head of a driver or a passenger in the vehicle 11. The seat 12 may be positioned on legs 36 that are operably coupled with a floor 38 of the vehicle 11. In the illustrated embodiment of FIGS. 1 and 2, the legs 36 are coupled with a slide assembly 40 that allows for fore and aft translation of the vehicle seating assembly 10 to a variety of positions to accommodate varying sizes of drivers and passengers.


Referring again to FIGS. 3 and 3A, one embodiment of the present invention includes a seat frame 50 coupled to the legs 36. The seat frame 50 supports the seat 12, which defines the seating area 14. The seating area 14 is configured to be enlarged by the driver or passenger to accommodate the underside of the legs of a driver or a passenger near the underside of the knees. The elongate flexible member 18 is coupled to the seat 12 and abuts a forward portion of a seat base 52 that extends behind the elongate flexible member 18 proximate the seat back 30. The first end 20 of the elongate flexible member 18 is fixedly or pivotally coupled to the seat 12. The second end 24 of the elongate flexible member 18 is operably coupled to the actuation assembly 16. The actuation assembly 16 can be any of a variety of devices, as outlined in further detail below.


In the illustrated embodiment of FIGS. 3 and 3A, the actuation assembly 16 includes a roller 60 disposed below the seating area 14 in the seat 12 that is operably coupled with a drive shaft 62. The drive shaft 62 is coupled to a motor 64 that is activatable by the driver or passenger sitting on the seat 12. In the illustrated embodiment, the elongate flexible member 18 is operable between the retracted position and the extended position. In the extended position, the elongate flexible member 18 enlarges the effective seating area 14. The elongate flexible member 18 is illustrated in the refracted position in both FIGS. 3 and 3A. It is also contemplated that the elongate flexible member 18 may be pivotally moveable between raised and lower positions at a forward portion 66 of the seat 12. Specifically, the forward portion 66 of the seat 12 may be pivotally rotated upward such that the elongate flexible member 18 is pivotally moveable between raised and lowered positions, as disclosed further below. The movement of the elongate flexible member 18 between raised and lowered positions can be made regardless of the retracted or extended position of the elongate flexible member 18. Accordingly, the vehicle seating assembly 10 has exceptional versatility, thereby providing comfort to the driver or passenger.


As shown in FIGS. 4 and 4A, the elongate flexible member 18 is configured to be extended such that the forward portion 66 of the seat 12 is extended. As the forward portion 66 of the seat 12 extends, the effective seating area 14 of the seat 12 is enlarged. The elongate flexible member 18 is constructed to provide substantial support to the underside of the legs of the driver or passenger, while also providing flexibility to give a comfortable seating experience. It is contemplated that the motor 64 can be activated such that the roller 60 only rotates a minimal amount. Accordingly, the elongate flexible member 18 can be extended to a variety of positions forward of the seat 12. A coverstock 70 is positioned over the forward portion 66 of the seat 12 and the elongate flexible member 18 to provide an aesthetically pleasing appearance to the consumer and also to protect the elongate flexible member 18 as the elongate flexible member 18 moves from the retracted position to the extended position and from the lowered position to the raised position. Additionally, the forward portion 66 of the seat 12 includes a recess 72 generally designed to accommodate the motor 64 and the roller 60 therein. A forward slot 74 in the seat 12 allows for the elongate flexible member 18 to extend through the slot 74 and be retracted into the slot 74 during activation of the actuation assembly 16. Additionally, the elongate flexible member 18 may include a narrow rear portion (near the seat base 52) and a wide forward portion 66. This configuration helps provide a larger forward portion 66 of the seat 12 to accommodate drivers and passengers having different sized legs.


With reference now to FIGS. 5 and 5A, the illustrated embodiment shows the elongate flexible member 18 having first, second, and third elongate flexible elements 80, 82, 84 that have a substantially arcuate cross-section. The arcuate cross-section gives the elongate flexible elements 80, 82, 84 increased load bearing capacity as the elongate flexible member 18 transitions between the retracted and extended positions than if the elongate flexible elements 80, 82, 84 had a planar cross-section. It is also contemplated that the elongate flexible member 18 may have only one or only two elongate flexible elements. As noted above, three elongate flexible elements 80, 82, 84 are illustrated. However, it is also contemplated that two elongate flexible elements may be present and disposed in the seat 12 substantially below the likely position of the legs of the driver or passenger.


The embodiment of FIG. 5 illustrates the elongate flexible element 80 disposed on an inboard position in the seat 12, the elongate flexible element 82 in the middle of the seat 12, and the elongate flexible element 84 at an outboard position of the seat 12. These positions correspond with the elongate flexible element 80 being disposed at an inboard position of the legs of the driver or passenger, the elongate flexible element 82 being disposed at an intermediate position between the legs of the driver or passenger, and the elongate flexible element 84 being disposed at an outboard position of the legs of the driver or passenger. As shown in FIG. 5A, each elongate flexible element 80, 82, 84 is disposed in the elongate flexible member 18, surrounded by a foam 88 or other cushion support of the seat 12. The coverstock 70 is positioned over the foam 88. A top portion and a bottom portion of the elongate flexible elements 80, 82, 84 are covered and connected by the coverstock 70. The coverstock 70 may cover all or a substantial portion of the elongate flexible elements 80, 82, 84. It is also contemplated that the elongate flexible elements 80, 82, 84 may include a substantially planar cross-section and move through feeder channels 85 that allow smooth continuous movement of the elongate flexible elements 80, 82, 84 as the seat 12 moves to the extended and refracted positions. In this instance, the elongate flexible elements 80, 82, 84 will likely include a thicker cross-section as the overall strength and rigidity of the elongate flexible elements 80, 82, 84 may lessen by not including an arcuate cross-section. It is contemplated regardless of the configuration of the cross-section of the elongate flexible elements 80, 82, 84 that the materials from which the elongate flexible elements 80, 82, 84 are made can be a metal, a polymer, etc. Although shown in the embodiment of FIGS. 3-4A, the aforementioned configurations of the elongate flexible member 18 and the elongate flexible elements 80, 82, 84 may be utilized in any of the embodiments disclosed herein.


Referring now to FIGS. 6-7A, another embodiment of the vehicle seating assembly 10 is illustrated that includes a gear assembly 100. The gear assembly 100 is configured to move the elongate flexible member 18 between the retracted and extended positions to enlarge the effective seating area 14 of the seat 12. The vehicle seating assembly 10 of FIGS. 6-7A functions in much the same way as the vehicle seating assembly 10 described earlier with reference to FIGS. 3-4A. However, the embodiment illustrated in FIGS. 6-7A includes a motor 102 that is operably coupled to a gear 104 that rotates on a drive shaft 106. The gear 104 is in engagement with a slidable toothed member 107 that translates fore and aft and is operably coupled to the second end 24 of the elongate flexible member 18. As the second end 24 of the elongate flexible member 18 is forced outward, the effective seating area 14 increases. When the direction of the gear 104 is reversed, the second end 24 of the elongate flexible member 18 is drawn into the seat frame 50, thereby reducing the effective seating area 14 of the seat 12.


Referring now to FIGS. 8-9A, another embodiment of the vehicle seating assembly 10 is illustrated that includes one of a pneumatic cylinder and a hydraulic cylinder 120. The pneumatic or hydraulic cylinder 120 is configured to move the elongate flexible member 18 between the non-deployed and deployed positions that correspond with the retracted and extended positions of the seat 12. The vehicle seating assembly 10 of FIGS. 8-9A functions in much the same way as the vehicle seating assembly 10 described earlier with reference to FIGS. 3-4A and 6-7A. However, the embodiment illustrated in FIGS. 8-9A includes a motor 122 that is operably coupled to a pump 124 that pushes air to the pneumatic cylinder 120, which extends a drive shaft 128 operably coupled to the second end 24 of the elongate flexible member 18. The air for the pneumatic cylinder 120 may be ambient air or a stored air. As the second end 24 of the elongate flexible member 18 is forced outward, the effective seating area 14 increases. Similarly, when the air is withdrawn from the pneumatic cylinder 120, the second end 24 of the elongate flexible member 18 is drawn into the seat frame 50, thereby reducing the effective seating area 14 of the seat 12. In the event a hydraulic system is utilized, then a hydraulic fluid is pumped by the pump 124 by way of the motor 122. The hydraulic fluid forces the drive shaft 128, which is operably coupled to the second end 24 of the elongate flexible member 18, to an outward position. The hydraulic fluid for the hydraulic cylinder 120 would be stored in a hydraulic fluid container. As the second end 24 of the elongate flexible member 18 is forced outward, the effective seating area 14 increases. When the hydraulic fluid is withdrawn from the hydraulic cylinder 120, the second end 24 of the elongate flexible member 18 is drawn into the seat frame 50 to reduce the effective seating area 14 of the seat 12.


Referring now to FIGS. 10-11A, yet another embodiment of the present invention includes the vehicle seating assembly 10 having a lift bracket 140 configured to raise a portion of the seat frame 50. Specifically, the lift bracket 140 is operably coupled with a lateral support member 142 that extends forward in the seat base 52. The lateral support member 142 is connected with the remainder of the seat frame 50 by a living hinge 146 proximate the lift bracket 140. The lift bracket 140 is connected to and rotated by a motor 144 to raise and lower the lateral support member 142 to provide additional support to the legs of a driver or a passenger. As shown in FIGS. 10 and 10A, the elongate flexible member 18 is in the extended position. It is contemplated that the elongate flexible member 18 may be moved to the extended position or the retracted position by any of the devices disclosed above with reference to FIGS. 3-9A. After the driver or passenger has moved the elongate flexible member 18 to a desired position, additional support may be provided to the underside of the legs of the driver or passenger by automatic or manual activation of the lift bracket 140. As shown in FIGS. 10 and 10A, the lift bracket 140 is in a lowered position such that additional support is not provided to the legs of the driver or passenger.


In the illustrated embodiments depicted in FIGS. 11 and 11A, the motor 144 has been activated to rotate the lift bracket 140 clockwise. Consequently, the lateral support member 142 rotates upward, thereby flexing the lateral support member 142 upwardly. As the lateral support member 142 is flexed upwardly, so too are the cushion and coverstock 70, as is readily seen in FIGS. 11 and 11A. It is contemplated that the lift bracket 140 may be any of a variety of materials, including steel or a polymer, and that the motor 144 may be connected behind the lift bracket 140 or any of a variety of other positions relative to the lift bracket 140. It is contemplated that the lateral support member 142 may be connected to the remainder of the seat frame 50 via the living hinge 146, a piano hinge, or other hinge. The lateral support member 142 will be constructed from a flexible material that allows bending and deflection, as shown in FIGS. 11 and 11A.


Referring now to FIGS. 12 and 12A, another embodiment of a vehicle seating assembly 10 is illustrated. An internal flex member 160 is provided and disposed in the seat 12. An external flex member 162 is also provided and generally defines the forward portion 66 of the seat 12. First and second actuation assemblies 164, 166 are disposed in the seat 12. The first actuation assembly 164 is operably coupled to the internal flex member 160 and configured to raise a portion of the seat 12. In the illustrated embodiment, the first actuation assembly 164 includes a first roller 168 operably coupled to a drive shaft 170 that is coupled to a motor 172. The internal flex member 160 wraps around the first roller 168 and the motor 172 and connects with a rearward portion 173 of the seat frame 50. The second actuation assembly 166 is also disposed in the seat 12 and is configured to translate the external flex member 162 between a retracted position and an extended position that enlarges the effective seating area 14 of the seat 12. As illustrated, the second actuation assembly 166 includes a second roller 174 operably coupled to a drive shaft 176 that is coupled to a motor 178. As shown in FIGS. 12 and 12A, the vehicle seating assembly 10 is shown with the first actuation assembly 164 maintaining the internal flex member 160 in a lowered position. At the same time, the second actuation assembly 166 is maintaining the external flex member 162 in a retracted position such that the effective seating area 14 of the seat 12 is not enlarged. The internal flex member 160 and the external flex member 162 may include one or more flexible elements, such as those disclosed above with reference to FIGS. 5 and 5A.


With reference to FIGS. 13 and 13A, the illustrated embodiment shows the first actuation assembly 164 having been activated to rotate the first roller 168 in a clockwise direction, thereby extending the internal flex member 160. As the internal flex member 160 is unwrapped from the first roller 168, the internal flex member 160 raises the lateral support member disposed in the seat 12. The lateral support member 142 is connected to the seat frame 50 via the living hinge 146, proximate the rearward portion 173 of the internal flex member 160. As forces are applied to the lateral support member 142, the forward portion 66 of the seat 12 is elevated. At the same time, the second actuation assembly 166 has been activated such that the second roller 174 is rotated clockwise to extend the external flex member 162. When the external flex member 162 extends, the forward portion 66 of the seat 12 is enlarged. As a result, more seating area 14 is provided to the driver or passenger. Regardless of the position of the seat 12, the external flex member 162 is hidden from view by the coverstock 70. The coverstock 70 may cover the external flex member 162 or wrap around the external flex member 162.


Referring now to FIGS. 14 and 14A, the external flex member 162 is shown in the fully extended position, while the internal flex member 160 is shown in the lowered position. This particular configuration of the seat 12 is exemplary of the wide variety of potential positions a driver or passenger could choose. It is also contemplated that the driver or passenger could select the internal flex member 160 to be at the fully raised position, and that the external flex member 162 be in the fully retracted position. It will be understood by one having ordinary skill in the art that the actuation of the internal flex member 160 is independent of the actuation of the external flex member 162, such that a wide variety of positions are available to the driver or passenger.


Referring now to FIGS. 15 and 15A, yet another embodiment of the vehicle seating assembly 10 is illustrated. Specifically, the external flex member 162 is arranged in a similar fashion to that disclosed above with reference to FIGS. 13-14A. However, the internal flex member 160 does not extend over the first roller 168 and the motor 172 to connect with the rearward portion 173 of the seat frame 50. Instead, the internal flex member 160 extends forward around the lateral support member 142 and connects to a top portion of the seat frame 50. In the illustrated embodiment, the internal flex member 160 connects with a forward extending flange 180 on a top portion of the seat frame 50. The embodiment illustrated in FIGS. 15 and 15A may be used to provide simultaneous movement of the seat 12 to the extended position and the raised position. Again, the actuation of the internal flex member 160 and the external flex member 162 are independent, such that a multitude of positions may be utilized by a driver or passenger.


It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.


For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.


It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating positions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.


It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.


It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A vehicle seating assembly, comprising: a seat coupled with a seatback;an actuation assembly; anda flexible sheet member having a first end fixedly coupled to an internal structure of the seat, an intermediate section supporting a forward portion of the seat, and a second end operably coupled with the actuation assembly to move the second end between a retracted position and an extended position that enlarges an effective seating area wherein the intermediate section is cantilevered forward from the first and second ends.
  • 2. The vehicle seating assembly of claim 1, wherein the flexible sheet member includes first and second elongate flexible elements having a substantially planar cross-section.
  • 3. The vehicle seating assembly of claim 1, wherein the flexible sheet member includes first and second elongate flexible elements having a substantially arcuate cross-section.
  • 4. The vehicle seating assembly of claim 2, wherein the first and second elongate flexible elements are at least partially disposed in feeder channels disposed in the seat.
  • 5. The vehicle seating assembly of claim 1, further comprising: a seat frame of the seat, wherein the first end of the flexible sheet member couples with a forward portion of the seat frame.
  • 6. The vehicle seating assembly of claim 1, wherein the actuation assembly includes one of a hydraulic cylinder and a pneumatic cylinder that is operable between a retracted position and an extended position corresponding to the retracted and extended positions of the flexible sheet member.
  • 7. The vehicle seating assembly of claim 5, wherein the actuation assembly includes a roller extending across the seat base, and wherein at least a portion of the flexible sheet member is wrapped around the roller.
  • 8. The vehicle seating assembly of claim 1, further comprising: a coverstock; anda cushion support disposed at least partially between the flexible sheet member and the coverstock.
  • 9. A vehicle seat extension assembly, comprising: a seat coupled with a seatback;first and second elongate flexible elements having lower ends, upper ends fixedly coupled to the seat, and an intermediate section extending and cantilevering forward from the upper and lower ends; and an actuation assembly operably coupled with the lower ends moving them forward enlarging a seating area of the seat with the intermediate section supporting a forward portion of the seat.
  • 10. The vehicle seat extension assembly of claim 9, wherein the first and second elongate flexible elements are together at least partially encapsulated in a flexible sheet member that independently supports a forward portion of the seat.
  • 11. The vehicle seat extension assembly of claim 9, wherein the actuation assembly includes a motor operably coupled with a roller, and wherein the first and second elongate flexible elements are at least partially wrapped on the roller.
  • 12. The vehicle seat extension assembly of claim 9, wherein the first and second elongate flexible elements have an arcuate cross-section transverse to a length thereof.
  • 13. The vehicle seat extension assembly of claim 9, wherein the first and second elongate flexible elements support a flexible sheet member, and wherein a rear portion of the flexible sheet member proximate the upper ends of the elongate flexible elements is narrower laterally than a forward portion of the flexible sheet member proximate the intermediate section of the elongate flexible elements for independently supporting a forward portion of the seat that is wider than side bolsters of the seat.
  • 14. The vehicle seat extension assembly of claim 9, wherein the first and second elongate flexible elements are at least partially covered by a cushion support and a coverstock.
  • 15. A seat extension assembly, comprising: a seat defining a seating area and coupled with a seatback;an actuation assembly having a roller; andfirst and second elongate flexible elements having a top portion coupled to the seat and a bottom portion wrapped and unwrapped on the roller to move the first and second elongate flexible elements between rearward and forward positions by the actuation assembly to enlarge the seating area by an extendable intermediate portion curving forward between the top and bottom portions and supporting a forward cushion portion of the seat.
  • 16. The seat extension assembly of claim 15, further comprising: a coverstock disposed at least partially over the forward cushion portion of the seat, wherein the forward cushion portion is independently supported by the extendable intermediate portion of the first and second elongate flexible elements with the bottom portion translated to the forward position.
  • 17. The seat extension assembly of claim 15, wherein the first and second elongate flexible elements are together at least partially encapsulated in a flexible sheet member that extends between the top and bottom portions thereof.
  • 18. The seat extension assembly of claim 15, further comprising: a third elongate flexible element, wherein the first elongate flexible element is disposed at an inboard position in the seat, the second elongate flexible element is disposed at an intermediate position in the seat, and the third elongate flexible element is disposed at an outboard position in the seat.
  • 19. The seat extension assembly of claim 15, further comprising: a coverstock that wraps around a substantial portion of the first and second elongate flexible elements.
  • 20. The seat extension assembly of claim 15, wherein the actuation assembly includes a motor, and wherein the motor is configured to translate the bottom portion of the first and second elongate flexible elements between the forward and rearward positions.
US Referenced Citations (200)
Number Name Date Kind
2958369 Pitts et al. Nov 1960 A
3007738 Gardel et al. Nov 1961 A
3273877 Geller et al. Sep 1966 A
3403938 Cramer et al. Oct 1968 A
3813151 Cadiou May 1974 A
3883173 Shephard et al. May 1975 A
3929374 Hogan et al. Dec 1975 A
4324431 Murphy et al. Apr 1982 A
4334709 Akiyama et al. Jun 1982 A
4353595 Kaneko et al. Oct 1982 A
4541669 Goldner Sep 1985 A
4629248 Mawbey Dec 1986 A
4720141 Sakamoto et al. Jan 1988 A
4773703 Krugener et al. Sep 1988 A
4858992 LaSota Aug 1989 A
4915447 Shovar Apr 1990 A
5171062 Courtois Dec 1992 A
5174526 Kanigowski Dec 1992 A
5518294 Ligon, Sr. et al. May 1996 A
5560681 Dixon et al. Oct 1996 A
5588708 Rykken et al. Dec 1996 A
5647635 Aumond et al. Jul 1997 A
5755493 Kodaverdian May 1998 A
5769489 Dellanno Jun 1998 A
5826938 Yanase et al. Oct 1998 A
5836648 Karschin et al. Nov 1998 A
5902014 Dinkel et al. May 1999 A
5913568 Brightbill et al. Jun 1999 A
5951039 Severinski et al. Sep 1999 A
6024406 Charras et al. Feb 2000 A
6030040 Schmid et al. Feb 2000 A
6062642 Sinnhuber et al. May 2000 A
6145925 Eksin et al. Nov 2000 A
6155593 Kimura et al. Dec 2000 A
6179379 Andersson Jan 2001 B1
6189966 Faust et al. Feb 2001 B1
6196627 Faust et al. Mar 2001 B1
6206466 Komatsu Mar 2001 B1
6217062 Breyvogel et al. Apr 2001 B1
6220661 Peterson Apr 2001 B1
6224150 Eksin et al. May 2001 B1
6296308 Cosentino et al. Oct 2001 B1
6312050 Eklind Nov 2001 B1
6364414 Specht Apr 2002 B1
6375269 Maeda et al. Apr 2002 B1
6394546 Knoblock et al. May 2002 B1
6454353 Knaus Sep 2002 B1
6523892 Kage et al. Feb 2003 B1
6523902 Robinson Feb 2003 B2
6550856 Ganser et al. Apr 2003 B1
6565150 Fischer et al. May 2003 B2
6619605 Lambert Sep 2003 B2
6637818 Williams Oct 2003 B2
6682140 Minuth et al. Jan 2004 B2
6695406 Plant Feb 2004 B2
6698832 Boudinot Mar 2004 B2
6736452 Aoki et al. May 2004 B2
6758522 Ligon, Sr. et al. Jul 2004 B2
6808230 Buss et al. Oct 2004 B2
6811219 Hudswell et al. Nov 2004 B2
6824212 Malsch et al. Nov 2004 B2
6848742 Aoki et al. Feb 2005 B1
6860559 Schuster, Sr. et al. Mar 2005 B2
6860564 Reed et al. Mar 2005 B2
6866339 Itoh Mar 2005 B2
6869140 White et al. Mar 2005 B2
6890029 Svantesson May 2005 B2
6890030 Wilkerson et al. May 2005 B2
6938953 Håland et al. Sep 2005 B2
6955399 Hong Oct 2005 B2
6962392 O'Connor Nov 2005 B2
6988770 Witchie Jan 2006 B2
6997473 Tanase et al. Feb 2006 B2
7040699 Curran et al. May 2006 B2
7100992 Bargheer et al. Sep 2006 B2
7108322 Erker Sep 2006 B2
7131694 Buffa Nov 2006 B1
7159934 Farquhar et al. Jan 2007 B2
7185950 Pettersson et al. Mar 2007 B2
7213876 Stoewe May 2007 B2
7229118 Saberan et al. Jun 2007 B2
7261371 Thunissen et al. Aug 2007 B2
7325878 Dehli Feb 2008 B1
7341309 Penley et al. Mar 2008 B2
7344189 Reed et al. Mar 2008 B2
7350859 Klukowski Apr 2008 B2
7393005 Inazu et al. Jul 2008 B2
7425034 Bajic et al. Sep 2008 B2
7441838 Patwardhan Oct 2008 B2
7467823 Hartwich Dec 2008 B2
7478869 Lazanja et al. Jan 2009 B2
7488040 Dozsa-Farkas Feb 2009 B2
7506924 Bargheer et al. Mar 2009 B2
7506938 Brennan et al. Mar 2009 B2
7530633 Yokota et al. May 2009 B2
7543888 Kuno Jun 2009 B2
7578552 Bajic et al. Aug 2009 B2
7597398 Lindsay Oct 2009 B2
7614693 Ito Nov 2009 B2
7641281 Grimm Jan 2010 B2
7669928 Snyder Mar 2010 B2
7669929 Simon et al. Mar 2010 B2
7712833 Ueda May 2010 B2
7717459 Bostrom et al. May 2010 B2
7726733 Balser et al. Jun 2010 B2
7735932 Lazanja et al. Jun 2010 B2
7753451 Maebert et al. Jul 2010 B2
7775602 Lazanja et al. Aug 2010 B2
7784863 Fallen Aug 2010 B2
7802843 Andersson et al. Sep 2010 B2
7819470 Humer et al. Oct 2010 B2
7823971 Humer et al. Nov 2010 B2
7845729 Yamada et al. Dec 2010 B2
7857381 Humer et al. Dec 2010 B2
7871126 Becker et al. Jan 2011 B2
7891701 Tracht et al. Feb 2011 B2
7909360 Marriott et al. Mar 2011 B2
7931294 Okada et al. Apr 2011 B2
7931330 Itou et al. Apr 2011 B2
7946649 Galbreath et al. May 2011 B2
7963553 Huynh et al. Jun 2011 B2
7963595 Ito et al. Jun 2011 B2
7963600 Alexander et al. Jun 2011 B2
7971931 Lazanja et al. Jul 2011 B2
7971937 Ishii et al. Jul 2011 B2
8011726 Omori et al. Sep 2011 B2
8011728 Kohl et al. Sep 2011 B2
8016355 Ito et al. Sep 2011 B2
8029055 Hartlaub Oct 2011 B2
8038222 Lein et al. Oct 2011 B2
8075053 Tracht et al. Dec 2011 B2
8109569 Mitchell Feb 2012 B2
8123246 Gilbert et al. Feb 2012 B2
8128167 Zhong et al. Mar 2012 B2
8162391 Lazanja et al. Apr 2012 B2
8162397 Booth et al. Apr 2012 B2
8167370 Arakawa et al. May 2012 B2
8210568 Ryden et al. Jul 2012 B2
8210605 Hough et al. Jul 2012 B2
8210611 Aldrich et al. Jul 2012 B2
8226165 Mizoi Jul 2012 B2
8408646 Harper et al. Apr 2013 B2
20020113473 Knaus Aug 2002 A1
20040195870 Bohlender et al. Oct 2004 A1
20050184569 Penley et al. Aug 2005 A1
20050200166 Noh Sep 2005 A1
20060043777 Friedman et al. Mar 2006 A1
20070090673 Ito Apr 2007 A1
20070120401 Minuth et al. May 2007 A1
20080174159 Kojima et al. Jul 2008 A1
20080231099 Szczepkowski et al. Sep 2008 A1
20090066122 Minuth et al. Mar 2009 A1
20090195041 Ito et al. Aug 2009 A1
20090224584 Lawall et al. Sep 2009 A1
20090322124 Barkow et al. Dec 2009 A1
20100038937 Andersson et al. Feb 2010 A1
20100109401 Booth et al. May 2010 A1
20100140986 Sawada Jun 2010 A1
20100187881 Fujita et al. Jul 2010 A1
20100201167 Wieclawski Aug 2010 A1
20100207438 Inoue et al. Aug 2010 A1
20100231013 Schlenker Sep 2010 A1
20100270840 Tanaka et al. Oct 2010 A1
20100301650 Hong Dec 2010 A1
20100320816 Michalak Dec 2010 A1
20110018498 Soar Jan 2011 A1
20110074185 Nakaya et al. Mar 2011 A1
20110095513 Tracht et al. Apr 2011 A1
20110095578 Festag Apr 2011 A1
20110109127 Park et al. May 2011 A1
20110109128 Axakov et al. May 2011 A1
20110133525 Oota Jun 2011 A1
20110163574 Tame et al. Jul 2011 A1
20110163583 Zhong et al. Jul 2011 A1
20110186560 Kennedy et al. Aug 2011 A1
20110187174 Tscherbner Aug 2011 A1
20110254335 Pradier et al. Oct 2011 A1
20110260506 Kuno Oct 2011 A1
20110272548 Rudkowski et al. Nov 2011 A1
20110272978 Nitsuma Nov 2011 A1
20110278885 Procter et al. Nov 2011 A1
20110278886 Nitsuma Nov 2011 A1
20110298261 Holt et al. Dec 2011 A1
20120013161 Adams et al. Jan 2012 A1
20120063081 Grunwald Mar 2012 A1
20120080914 Wang Apr 2012 A1
20120091695 Richez et al. Apr 2012 A1
20120091766 Yamaki et al. Apr 2012 A1
20120091779 Chang et al. Apr 2012 A1
20120109468 Baumann et al. May 2012 A1
20120125959 Kucera May 2012 A1
20120127643 Mitchell May 2012 A1
20120129440 Kitaguchi et al. May 2012 A1
20120162891 Tranchina et al. Jun 2012 A1
20120175924 Festag et al. Jul 2012 A1
20120187729 Fukawatase et al. Jul 2012 A1
20120248833 Hontz et al. Oct 2012 A1
20120248839 Fujita et al. Oct 2012 A1
20120261974 Yoshizawa et al. Oct 2012 A1
20130320730 Aselage Dec 2013 A1
Foreign Referenced Citations (16)
Number Date Country
0754590 Jan 1997 EP
0926969 Jan 2002 EP
1266794 Mar 2004 EP
1123834 Oct 2004 EP
1050429 Oct 2005 EP
1084901 Jun 2006 EP
1674333 Aug 2007 EP
1950085 Dec 2008 EP
1329356 Nov 2009 EP
WO9511818 May 1995 WO
WO9958022 Nov 1999 WO
WO2006131189 Dec 2006 WO
WO2007028015 Aug 2007 WO
WO2008073285 Jun 2008 WO
WO2011021952 Feb 2011 WO
WO2012008904 Jan 2012 WO
Non-Patent Literature Citations (7)
Entry
M. Grujicic et al., “Seat-cushion and soft-tissue material modeling and a finite element investigation of the seating comfort for passenger-vehicle occupants,” Materials and Design 30 (2009) 4273-4285.
“Thigh Support for Tall Drivers,” http://cars.about.com/od/infiniti/ig/2009-Infiniti-G37-Coupe-pics/2008-G37-cpe-thigh-support.htm (1 page).
Mladenov, “Opel Insignia Receives Seal of Approval for Ergonomic Seats,” Published Aug. 27, 2008, http://www.automobilesreview.com/auto-news/opel-insignia-receives-seal-of-approval-for-ergonomic-seats/4169/ (2 pages).
Brose India Automotive Systems, “Adaptive Sensor Controlled Headrest,” http://www.indiamart.com/broseindiaautomotivesystems/products.html, Oct. 9, 2012 (12 pages).
eCOUSTICS.COM, “Cineak Motorized Articulating Headrest Preview,” http://www.ecoustics.com/ah/reviews/furniture/accessories/cineak-motorized-headrest, Oct. 9, 2012 (3 pages).
“‘Performance’ Car Seat Eliminates Steel,” Published in Plastics News—Indian Edition Plastics & Polymer News, (http://www.plasticsinfomart.com/performance-car-seat-eliminates-steel/), Jan. 2012, 3 pages.
“Frankfurt 2009 Trend—Light and Layered.” by Hannah Macmurray, Published in GreenCarDesign, (http://www.greencardesign.com/site/trends/00138-frankfurt-2009-trend-light-and-layered), Sep. 2009, 9 pages.
Related Publications (1)
Number Date Country
20140203606 A1 Jul 2014 US