This invention relates generally to the field of silicon processing, and more particularly to a method and system for creating a thin silicon layer.
Silicon is the key to today's information society. As demand for devices based on silicon increase, the processing techniques continually improve.
Semiconductor devices are generally fabricated from wafers of monocrystalline silicon. Various procedures for preparing monocrystalline silicon wafers have been described in the prior art. A monocrystalline billet is provided, which must be sawed into slices and further processed by lapping, polishing, and/or etching to produce wafers suitable for the production of semiconductor devices.
With the present increasing demand for photovoltaic cells, large amounts of semiconductor material, preferably monocrystalline silicon, will be required. If such systems are to reduce in cost, a necessary factor to lead to ubiquity and energy independence, such silicon must be attainable at a cost far less than present costs for silicon wafers.
Therefore, attempts have been made to overcome the cost problems by creating silicon sheets. It is known that such sheets have been made by melting pure silicon powder and processing it into free standing sheets, such as by drawing or deposition on a substrate. While these methods produce sheets that are suitable for certain purposes, there remains a need in the art for improved methods resulting in pure and defect free crystalline silicon.
A method of making a silicon sheet is disclosed. The method includes forming a thin glass sheet at semi-molten state. The glass sheet is exposed, at a semi-molten state, to a voltage across the thickness of the sheet. Impurities are cleaned at the surface, thereby leaving a silicon oxide sheet. The silicon oxide sheet is exposed to a reducing gas at a semi-molten temperature to reduce the oxide.
The foregoing summary as well as the following detailed description of preferred embodiments of the invention will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings, where:
A method and system for manufacturing silicon sheets or ribbon is being proposed. As described herein, the method and system has the ability to produce pure sheets of silicon oxide, polycrystalline silicon, and even monocrystalline silicon in sheet form or even ribbon form (
Referring to
This glass sheet must be purified to obtain stoichiometric SiO2. This is accomplished as shown schematically in
The resulting sheet 10″ is shown in
Referring now to
Thereafter, and referring now to
The pure Si sheet may become monocrystalline due to the high processing temperatures. The sheet may anneal during the above processing, or may be subject to a separate annealing step. Preferably, if the sheet or film is thin enough, the grains of the structure may self orient to assume the lowest energy level.
Further, in an alternative embodiment, a sheet 30 of pure Si obtained as described above may be created into a monocrystalline structure with a seed. For example, referring now to
Still further, and referring now to
While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60.674,256 filed on Apr. 22, 2005 entitled “Thin Silicon Layer and Method of Manufacturing Thereof”, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60674256 | Apr 2005 | US |