The present invention relates to submerged entry nozzles for the continuous casting of metal or metal alloy thin slabs, hereinafter referred to as “thin slab nozzles”. In particular, it concerns thin slab nozzles with a particular geometry allowing a better control of very high flow rates of molten metal into a thin slab mould. The present invention also concerns a metal casting installation, with or without subsequent rolling, comprising such a thin slab nozzle.
In continuous metal forming processes, metal melt is transferred from one metallurgical vessel to another, to a mould or to a tool. For example, as shown in
Control of the flow rate Q of the molten metal through the nozzle is very important because any variation thereof provokes corresponding variations of the level of the meniscus (200m) of molten metal formed in the mould (100). A stationary meniscus level must be obtained for the following reasons. A liquid lubricating slag is artificially produced through the melting of a special powder on the meniscus of the building slab, which is being distributed along the mould walls as flow proceeds. If the meniscus level varies excessively, the lubricating slag tends to collect in the most depressed parts of the wavy meniscus, thus leaving exposed its peaks, with a resulting null or poor distribution of lubricant, which is detrimental to the wear of the mould and to the surface of the metal part thus produced. Furthermore, a meniscus level varying too much also increases the risks of having lubricating slag being entrapped within the metal part being cast, which is of course detrimental to the quality of the product. Finally, any variation of the level of the meniscus increases the wear rate of the refractory outer walls of the nozzle, thus reducing the service time thereof.
A particular field of metallurgy is the production of thin metal strips. Traditionally, the final gauge of a strip is obtained by cold rolling, which is an expensive process since semi-finished products produced from a caster need to be cooled, stored, often transported to a new plant and re-heated to hot-roll thicker strips to be finally cold rolled and annealed. Various methods have been proposed to link a continuous caster to a hot rolling station such as to produce thin gauge strips of the order of less than 1.5 mm in a continuous or semi-continuous process from the casting stage to the hot rolling stage, thus reducing energy and water consumptions by far more than half. Such processes are described for example in WO 92/00815, WO 00/50189, WO 00/59650, WO 2004/026497, and WO 2006/106376. In particular WO 2004/026497 discloses a so called “endless” process, where the metallic matter is always connected without any interruption from the casting stage to the rolling stage, with the strip being cut to length when it is already at the final thickness and in front of the coilers. In those lines unprecedented productivities for a single casting line up to 4 million tonnes per year can be reached. The continuous casting stage in such processes must allow the production of thin slabs without intermediate treatments of the slab coming out of a thin slab mould. Thin slabs are semi-finished products having a width substantially larger than their thickness which is typically of the order of 30 to 120 mm. For such applications, in order to guarantee the subsequent rolling operations and temperature further than the productivity, it is fundamental to cast e.g. thin steel slabs at a high flow rate, up to 5 Kg/min per mm of width, that means e.g. with a 2.1 m wide steel slab to be able to cast up to 10 tonnes/min. Very specific nozzles must be used, often called and herein referred to as “thin slab nozzles”. As illustrated in
The upstream portion and downstream portion of a thin slab nozzle are connected to one another by a connecting portion, giving thin slab nozzles their typical overall shovel-like shape. As illustrated in
The control of the level of the meniscus (200m) formed by molten metal and slag in a thin slab mould is achieved mainly by modifying the distance between the stopper head of a stopper (7) and the inlet orifice of the thin slab nozzle (1) as discussed above with respect to nozzles in general (see
EP 925132 proposes a thin slab nozzle improving the control of the flow of molten metal from a metal vessel such as a tundish to a thin slab mould, and having a particular geometry of the thin slab nozzle cavity at the level of the diffuser. For example, the combined cross-sectional area of the two front ports at the level of the end of the converging bore portion (50e) is lower than the corresponding cross-sectional area at the boundary between the upstream and converging bore portions (50a, 50e) of the nozzle. Although the side walls of the ports diverge downwards in a plane π2 defined by the longitudinal axis X1 and second transverse axis X3, they are convergent in planes π1 and π3, respectively defined by axes (X1, X2) and (X2, X3), thus giving rise to a reduction of cross-section in the downward direction. The cavity walls in the connecting portion of the thin slab nozzle represented in FIG. 2 of EP 925132 are clearly converging linearly.
EP 1854571 discloses a thin slab nozzle, focusing on the geometry of an ogival divider, having continuous contours and an angle at the vertex comprised between 30° and 60°. The divider in its lower portion is symmetrically tapered with its sides towards the median vertical axis. This design solves drawbacks appearing in thin slab nozzles of the type disclosed in EP 925132 discussed above. In particular, it prevents instability and detachment of the flow from occurring along the contours of the flow divider. Flow detachments are causing vortices as metal flows along the contours of the flow divider provoking vein partition (flow separation) phenomena. These vortices have the tendency to be dragged by the stream into the mould and combine with the turbulent flow structures caused by an excessive fluid friction (turbulent interaction) between the opposed narrow surfaces of both obtained exiting flows lead to instability, asymmetry, and oscillation of the mould flow pattern, as well as excessively rapid circulation of flows towards the meniscus (bath surface) without the proper penetration of the liquid mass.
Each of U.S. Pat. No. 7,757,747, WO 9529025, WO 9814292, WO 02081128 and DE 4319195 discloses thin slab nozzles having a divider of height substantially smaller than the dividers of the thin slab nozzles described above, yielding a very short pair of ports. It is believed that allowing molten metal to flow out of the outlet port orifices so soon after the flow was split into two distinct streams does not allow the formation of close to parallel streamlines not disturbed by large scale eddies, alike laminar flow into a thin slab mould. With such geometry a clear distinction in the central bore between an upstream bore portion (50a) and a converging bore portion (50e) is not possible anymore.
U.S. Pat. No. 7,757,747 discloses a thin slab nozzle comprising a first central divider splitting the flow path defined by a central bore portion into two sub-flows, and further comprising two short dividers splitting each sub-flow into two further sub-flows, yielding a nozzle comprising four port outlets. Along a first direction, the central bore decreases continuously from the inlet orifice to the first divider (see FIG. 2 of U.S. Pat. No. 7,757,747) and can therefore not be divided into an upstream bore portion (50a) and a converging bore portion (50e) since the whole central bore continuously converges. Similarly, WO 9814292 and WO 9529025 show a central bore cross-section getting continuously thinner along a first direction and broader along a second direction normal to the first direction until it reaches a divider (see FIG. 15 of WO 9814292). In all cases, the front ports are extremely short.
In WO 02081128 the upstream portion of the central bore continuously evolves from a circular to an elliptical cross-section, and if a converging bore portion (50e) can be identified as referral number 3, it does not end the central bore but simply gets thinner along a first direction and broader along a second direction normal to the first direction, until it finally reaches a divider to split the flow along two extremely short ports. DE 4319195 discloses a thin slab nozzle comprising a clear converging bore portion converging linearly on a first plane of symmetry of the nozzle, and diverging linearly on a second plane of symmetry, normal to the first plane of symmetry. Again the converging bore portion does not end the central bore, which continues as a thin and broad channel until it meets a divider forming two ports.
The various solutions proposed in the art for thin slab nozzles do not quite satisfactorily fulfill yet all the stringent flow requirements for a thin slab nozzle and for continuously linking the casting stage to a hot-rolling stage in a process as discussed above.
The main requirements may be listed as follow:
a) the possibility to deliver molten metal at very high mass-flow rates into the mould;
b) a proper distribution of velocity of the flow on the outlet ports;
c) recirculation flows in the mould with a steady and controlled flow pattern (the same type of recirculation flow)
d) the need for an excellent stability of the liquid metal and molten mould powder interface referred to as “meniscus”.
The present invention proposes a thin slab nozzle which offers an excellent control of the flow of molten metal into a thin slab mould, wherein the thin slab can be driven directly to a hot rolling stage for producing a thin strip of desired gauge (e.g. <10 mm).
This and other advantages are discussed in the following sections.
The present invention is defined in the appended independent claims. Preferred embodiments are defined in the dependent claims. In particular, the present invention concerns a thin slab nozzle for casting thin slabs made of metal, said thin slab nozzle having a geometry symmetrical with respect to a first symmetry plane π1 defined by a longitudinal axis X1 and a first transverse axis X2 normal to X1, and symmetrical with respect to a second symmetry plane π2, defined by the longitudinal axis X1 and a second transverse axis X3 normal to both X1 and X2, said thin slab nozzle extending along said longitudinal axis X1 from:
In the present context, the terms “upstream” and “downstream” are defined with respect to the direction of flow of molten metal when a thin slab nozzle is operational and coupled to the bottom floor of a tundish or any other metallurgic vessel (in
In order to maintain the streamlines as parallel as possible and prevent flow detachment, it is preferred that the total bore cross-sectional area remains relatively constant from the inlet portion down to an upstream portion of the connecting portion including both central bore and front ports. In particular, the total cross-sectional area A (X1) measured on planes π3 normal to the longitudinal axis X1, of both central bore and first and second front ports is characterized in that the relative variation, ΔA(X1)/Aa=|Aa−A(X1)|/Aa, of the total cross-sectional area A(X1) with respect to the total cross-sectional area Aa at the upstream boundary is not greater than 15%, for any plane π3 intersecting the longitudinal axis X1, from the upstream boundary down to 70% of the height He of the converging bore portion. In yet a preferred embodiment, it is preferred that the total cross-section of the central bore and front ports never increases throughout the height of the central bore such that the derivative dA/dX1 in the converging bore portion of the total cross-sectional area A on any plane π3 normal to the longitudinal axis X1, with respect to the position of said plane π3 on the longitudinal axis X1, is never greater than 0, dA/dX1≦0.
In a preferred embodiment, the converging bore portion is further divided into two bore portions:
In particular, it is preferred that the sections along plane π1 of at least one of the end bore portion and transition bore portion form an arc of a circle. In other words, the radius of curvature ρb1 measured on a section of the thin slab nozzle along plane π1 is constant at any point of the bore wall of the transition bore portion and/or the radius of curvature ρc1 measured on a section of the thin slab nozzle along plane π1 is constant at any point of the bore wall of the end bore portion.
In a preferred embodiment, the geometry of a section of the central bore of the thin slab nozzle along symmetry plane π, defined above applies also to a section along symmetry plane π2 and, more preferably, applies also to any section along a plane πi comprising the longitudinal axis X1. In particular, excluding the first and second port inlets, the radii of curvature and height ratios of the bore wall of the converging bore portion, transition bore portion and end bore portion defined above with respect to a section of the thin slab nozzle along the first symmetry plane π1 apply also to a section of the thin slab nozzle along the symmetry plane π2 and preferably, along any plane πi comprising the first longitudinal axis X1. In a more preferred embodiment, the converging bore portion has an elliptical or even circular cross-section along any plane π3 normal to the longitudinal axis X1. In case of a circular cross-section, the central bore portion (excluding the port inlets) has geometry of revolution. In other words, the central bore, excluding the first and second port inlets, may have an elliptical or circular cross section along a plane π3 normal to the longitudinal axis X1, having principal diameters D2(X1), D3(X1) along the first transverse axis X2 and second transverse axis X3 respectively, whose dimensions evolve along the longitudinal axis X1 such that the ratio D2(X1)/D3(X1) remains constant, with D2(X1)≦D3(X1). This means that a circle remains a circle, and an ellipse remains an ellipse of same proportions along the longitudinal axis X1 (homothety).
It is preferred that the side port inlets be located mostly in the converging bore portion. The upstream ends of the side port inlets are preferably located close to the upstream boundary. Similarly it is preferred that the downstream ends of the side port inlets be close to the downstream end of the converging bore portion. The distance between downstream ends of the side port inlets and the downstream end of the converging bore portion is defined by the height Hf of the thin bore portion which should therefore be relatively small. In particular, the distance between the upstream end of the thin slab nozzle and the upstream end of the first and second port inlets is comprised within Ha (1±7%) and/or within Ha (1±0.07) and/or within (Ha±30 mm). Concerning the height Hf it is preferred that the ratio of the height Hf of the thin bore portion to the height He of the converging portion is not more than 50%, preferably not more than 25%, more preferably not more than 15%. Taking an alternative reference, it is preferred that the ratio of the height Hf of the thin bore portion to the height of the central bore (=Ha+He+Hf) is less than 15%, preferably not more than 10%, more preferably not more than 7%, most preferably not more than 3%.
As discussed above, the front ports preferably meet the central bore portion at the level of the converging bore portion (it may extend a bit upstream and downstream of the converging bore portion). On plane π2 defined by axis (X1, X3) the first and second front ports preferably meet the central bore at an angle α with respect to the longitudinal axis X1, comprised between 5° and 45°, more preferably between 15° and 40°, most preferably between 20° and 30°. The ratio W51/D2a, of the width W51 of the first and second front ports along the first transverse axis X2 to the width D2a along the first transverse axis X2 of the central bore at the upstream boundary is preferably comprised between 15% and 40%, more preferably between 24% and 32%.
The geometry of the divider separating one front port from the other is of importance. In a section along the second symmetry plane π2, the divider (10) in contact with the first and second ports (51) is characterized by both its walls extending from the upstream end (10u) of the divider to the downstream end of the thin slab nozzle along the longitudinal axis X1, first diverging until the divider (10) reaches its maximum width and then converging until they reach the downstream end of the thin slab nozzle. The height Hd of the divider (10) is preferably at least twice as large as the height He of the converging bore portion, Hd≧2 He. This ensures that the front ports are long enough to allow the streamlining of the flow of molten metal after diverting it from the central bore to the front ports.
In a preferred embodiment, the ratio D2b/D2a, of the width D2b along the first transverse axis X2 of the central bore at the transition boundary to the width D2a along the first transverse axis X2 of the central bore at the upstream boundary is comprised between 65% and 85%, preferably between 70% and 80%.
The present invention also concerns a metal casting installation for casting thin slabs comprising a metallurgical vessel, such as a tundish, provided with at least an outlet in fluid communication with a thin slab nozzle as defined above, whose outlet diffusing portion is inserted in a thin slab mould. In particular, the metal casting installation is of the type described in any of WO 92/00815, WO00/50189, WO 00/59650, WO 2004/026497, and WO 2006/106376.
For a fuller understanding of the nature of the present invention, reference is made to the following detailed description taken in conjunction with the accompanying drawings in which:
As illustrated in
A thin slab nozzle according to the present invention comprises three main portions illustrated in
The thin slab nozzle comprises a bore system fluidly connecting the inlet orifice (50u) to the outlet port orifices (51d). As illustrated in
The geometries of the upstream portion and outlet diffusing portion are so different, the former being substantially cylindrical and the latter being thin, flat and flaring out, that the geometries of the bore system in said portions must also differ substantially. The upstream bore portion is generally substantially prismatic, elliptic, often but not necessarily cylindrical, or homothetic with side walls slowly converging downstream with a moderate angle of not more than 5°. In all cases, apart from the upstream orifice (50u) whose geometry must match the shape of the stopper head (7), the walls of the upstream bore portion (50a) are substantially straight, i.e. the radius of curvature ρa1 at any point of the bore wall over at least 90% of the height Ha (excluding the region of the inlet orifice) of the upstream bore portion (50a) tends towards infinite. On the other hand, the front ports (51) are narrow along the first transverse direction X2 so that they can fit in a thin slab mould, and flare out along the second transverse direction X3 to maintain a sufficient cross-sectional area (along any plane π3 normal to the longitudinal axis X1).
With such differing bore geometries between the upstream bore portion and the front ports, it is clear that the geometry of the connecting bore portion, defined as the section of the bore system corresponding to the connecting portion of the thin slab nozzle and comprising the converging bore portion (50e), the thin bore portion (50f), as well as the upstream portion of the front ports (51), is most critical to ensure that molten metal flows smoothly in a state so called “fully turbulent established regime” (not disturbed by large scale eddies) alike laminar for what concerns the streamlines from the upstream orifice (50u) of the thin slab nozzle to the downstream port orifices (51d). In a section of the thin slab nozzle according to the present invention along the first symmetry plane π1, the geometry of the wall of the central bore (50) at the connecting bore portion (50e) is characterized as follows:
Furthermore, it is advantageous that the height Hd of the portion of the bore system downstream of the central bore (50), i.e. located downstream of the upstream end (10u) of the divider (10) and corresponding to the height Hd of said divider, be sufficiently large for the streamlining of the flow within the first and second front ports (51). In particular, the height Hd of the divider (10) is preferably at least twice as large as the height He of the converging bore portion (50e), Hd≧2 He. Best streamlining of the flow along the first and second front ports (51) is obtained with a divider (10) characterized by two walls in a section along the second symmetry plane π2 which extend from the upstream end (10u) of the divider to the downstream end of the thin slab nozzle along the longitudinal axis X1, first diverging until the divider reaches its maximum width and then converging until they reach the downstream end of the thin slab nozzle.
In this embodiment, the height Hb of the transition bore portion (50b) should be substantially greater than the height Hc of the end bore portion (50c). In particular, the height ratio Hb/Hc should be comprised between 3 and 12.
In a preferred embodiment, the radius of curvature ρb1, ρc1 of at least one or both the transition bore portion (50b) and the end bore portion (50c) is constant over the whole height Hb, Hc of the corresponding bore portion (50b, 50c), thus defining a corresponding arc of a circle, as illustrated in
It is preferred that, excluding the presence of the first and second port inlets (51u), the geometry of the central bore (50) defined above with respect to a section along the symmetry plane π1 defined by axis (X1, X2) applies mutatis mutandis to a section along the symmetry plane π2 defined by axis (X1, X3) (as illustrated in
The connecting bore portion, comprising the converging and thin bore portions (50e, 50f) must allow a smooth flow transition from a cylindrical (or similar) bore of width D2a at the upstream boundary (5a) to front ports of width W51, substantially smaller than the width D2a. For example, measured along the first transverse axis X2, the ratio W51/D2a of the width W51 of the first and second front ports along the first transverse axis X2 and the width D2a along the first transverse axis X2 of the central bore (50) at the upstream boundary (5a) is typically comprised between 15% and 40%, preferably between 24% and 32%. In case of a nozzle as illustrated in
Since the pressure in the molten metal along the longitudinal axis X1 is proportional to the cross-sectional area of the bore system, it is important that the total cross-sectional area of the bore system remains substantially constant within the central bore (50) until close to its end (10u), wherein the metal melt flow must be diverted towards the first and second front ports (51). This is straightforward in the upstream bore portion, since it is prismatic or slightly conical, but it is most problematic to maintain the cross-sectional area substantially constant as far down as possible the converging bore portion (50e). By “substantially constant” and “as far down as possible”, it is meant herein that the relative variation, ΔA(X1)/Aa=|Aa−A (X1)|/Aa, of the total cross-sectional area A(X1) with respect to the total cross-sectional area Aa at the upstream boundary (5a) should not be greater than 15%, for any plane π3 intersecting the longitudinal axis X1 from the upstream boundary (5a) down to 70% of the height He of the converging bore portion (50e). This means that the pressure can build up in the molten metal within a very short distance, corresponding at most to about 30% of He to deflect the metal flow sideways towards the first and second front ports (51). In particular, it is advantageous that the cross-sectional area never increases until the molten metal reaches the end of the central bore portion (10u) (10u corresponding to the upstream end of the divider 10) and flows exclusively in the front ports. Indeed, an increase in cross-sectional area in the connecting portion would create flow detachment leading to turbulences and formation of large eddies. Such requirement can be expressed in terms of the derivative dA/dX1 in the converging bore portion (50e) of the total cross-sectional area A on any plane π3 normal to the longitudinal axis X1 with respect to the position of said plane π3 on the longitudinal axis X1; said derivative being advantageously never greater than 0, dA/dX1≦0.
The evolution of the total cross-sectional bore area on a plane π3 normal to the longitudinal axis X1, which is the sum of the cross-sectional area of the central bore (50) and of the first and second front ports (51), as a function of the position along the longitudinal axis X1 depends on the location where the first and second front ports (51) are connected to the central bore (50). As discussed above, the port inlets (51u) of the first and second front ports must open at least partially on two opposite walls of the converging bore portion (50e). It is preferred that the upstream end of the first and second port inlets (51u) be located quite close to the upstream boundary (5a). By “quite close” it is meant herein, that the upstream end of the first and second port inlets (51u) be separated from the upstream boundary by not more than 7% of the height Ha of the upstream bore portion (50a). In practice, this should not represent more than 30 mm either upstream or downstream of the upstream boundary (5a). The downstream end of the first and second port inlets (51u) depends on the height Hf of the thin bore portion, which has been discussed above. The height Hf too is preferably quite small, and it is preferred that at least 80% of the height of the front port inlets (51u) of the first and second front ports, preferably at least 90%, more preferably at least 95%, is comprised within the converging bore portion (50e).
On plane π2 defined by axis (X1, X3) (see view (a) of
It can be seen in
It can be seen that the cross-sectional area of the bore system varies very differently from one nozzle type to the other in the connecting bore portion.
The bore cross-sectional area in a nozzle according to the present invention (black circles) decreases very slowly over more than half, preferably over 70% of the height He of the converging portion, and then decreases more rapidly thus creating a pressure field over a small volume at the end of the central bore (50) for re-directing (distributing) the flow of metal melt towards the first and second front ports (51) with a homogeneous pressure field. This favours the formation of a streamlined flow along the first and second front ports with substantially less risks of flow detachment and turbulence formation downstream of the central bore.
Improving the streamlining of the flow is important of course to avoid formation of turbulence, but it also allows a much more accurate control of the flow rate by the stopper. Flow rate at the inlet orifice of a thin slab nozzle is controlled by varying the distance separating the stopper head (7) and the seat of the inlet orifice (50u). If the evolution of the bore cross-sectional area along the longitudinal axis X1 of the nozzle creates inhomogeneity in the flow profile with local variations of the pressure fields, the accuracy of the flow rate control with the stopper becomes extremely difficult, and the flow rate is likely to fluctuate with time. As discussed in the introductory section, such flow rate fluctuations inevitably create fluctuations of the level of the meniscus in the thin slab mould with all the consequences discussed above. The present invention therefore allows a better control of the flow and flow rate of a molten metal through a thin slab nozzle than hitherto achieved. This is particularly interesting for high speed casting installation where metal, such as steel, is cast at high casting rates in the order of 5 Kg/min per mm of width (W) that means for a 1500 mm slab a rate of about 6-7 tonnes per minute. In particular, the nozzle of the invention is suitable for new installations adapted to cast thicker and wider slabs at up to 10 tonnes per minute. The nozzle according to the invention permits to cast at high speed large thin slabs having a width (W) of 1600 mm up to 2000 mm or more in casting installations as described above in paragraph [0004].
The thin slab nozzle of the present invention is particularly suitable for use in a metal casting installation for casting thin slabs comprising a tundish provided with at least an outlet in fluid communication with such thin slab nozzle. The good control of the flow of molten metal through a thin slab nozzle according to the present invention renders it ideal for use in casting installations which are coupled to a hot rolling unit for the continuous production of metal strips of thin gauge with a high degree of precision. Thin slab nozzles according to the present invention were tested by Acciaieria Arvedi SpA in a mini-mill for flat rolled products using the Arvedi Technology in Cremona (Italy) equipped with a single casting line and hot rolling unit referred to as Endless Strip Production (ESP). Strips with a gauge comprised between 0.8 mm and 12.7 mm were successfully produced continuously at constant rates with a high degree of precision. The level variations of the meniscus in the thin slab nozzle were monitored and remained very moderate, causing no problem during the production trials.
The “endless” Strip production of thin strips allows substantial savings in energy, water, and equipment costs over traditional strip production techniques. The requirements on the metal flow coming out of the thin slab nozzle and thus on the flow control out of the thin slab nozzle are however much higher than in discontinuous processes, wherein the semi-finished products can be treated somehow before being cold rolled to reduce defects. The excellent flow control obtained with a thin slab nozzle according to the present invention allows the continuous production of thin strips with homogeneous properties and is optimal for use in an ESP unit.
Number | Date | Country | Kind |
---|---|---|---|
14171989.8 | Jun 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/054197 | 6/3/2015 | WO | 00 |