The present invention relates to an illuminated keyboard, and more particularly to a thin type illuminated keyboard.
A conventional computer keyboard has no self-illuminating function. Generally, a dim environment becomes hindrance from operating the keyboard. Recently, an illuminated keyboard has been developed. When the illuminated keyboard is used in the dim environment, the user can accurately depress desired keys by means of the light scattered from peripheries of the keys or middle portions of the keys. In addition, the light produced by the illuminated keyboard results in an aesthetically pleasing appearance. For example, Chinese Patent Application No. CN200820125924.4 disclosed an illuminated keyboard. The illuminated keyboard sequentially comprises a keycap, a connecting member, a light-transmissible base plate, a light-guiding plate, a light emitting diode, and a reflector. The keycap and the light-transmissible base plate are connected with each other through the connecting member. As such, the keycap is movable with respect to the light-transmissible base plate in the vertical direction. The light emitting diode is disposed on the reflector, and accommodated within a receptacle of the light-guiding plate. Through the reflector and the light-guiding plate, the light emitted by the light emitting diode is guided to the region under the keycap so as the illuminate the whole illuminated keyboard.
Since the conventional illuminated keyboard needs an additional light-guiding plate and associated keyboard component to guide light, the thickness of the illuminated keyboard increased and the illuminated keyboard is not cost-effective.
It is an object of the present invention to provide a thin type illuminated keyboard with reduced thickness and fabricating cost.
In accordance with an aspect of the present invention, there is provided a thin type illuminated keyboard. The thin type illuminated keyboard includes a light source, a light-guiding frame plate, a keycap, a membrane plate, switch circuit plate and a base plate. The light source is used for emitting light. The light-guiding frame plate has a concave structure in a bottom surface thereof. The keycap is connected with the light-guiding frame plate and movable upwardly or downwardly with respect to the light-guiding frame plate. The keycap has a light-transmissible character portion. The light source is disposed on the membrane plate and accommodated within the concave structure of the light-guiding frame plate. The keycap, the light-guiding frame plate, the membrane plate, the switch circuit plate and the base plate are sequentially arranged from top to bottom. The light emitted by the light source is guided by the light-guiding frame plate to irradiate the light-transmissible character portion.
In an embodiment, a scattering portion is formed on an inner wall of the concave structure at a side close to the keycap.
In an embodiment, the scattering portion includes plural scattering and refracting angles, which are formed on a periphery of the concave structure at the side close to the keycap.
In an embodiment, the light-guiding frame plate is arranged immediately under the keycap, and has an optical refraction profile. The optical refraction profile is formed by a texturing process or an optical etching process.
In an embodiment, the membrane plate is light-transmissible.
In an embodiment, the thin type illuminated keyboard includes a connecting member for connecting the keycap with the light-guiding frame plate.
In an embodiment, the light source is a light emitting diode.
In an embodiment, the light source is fixed on the membrane plate via an electrically-conductive adhesive.
In an embodiment, the base plate is a metallic plate.
In an embodiment, the base plate is an aluminum plate.
In an embodiment, the base plate is an iron plate.
In an embodiment, the thin type illuminated keyboard further comprises an elastic member, and the light-guiding frame plate has a hollow portion. The elastic member is penetrated through the hollow portion, so that the keycap is elastically movable upwardly and downwardly.
In an embodiment, the elastic member is made of silicone rubber.
In an embodiment, a bottom surface of the elastic member is disposed on the switch circuit plate and penetrated through a hollow portion of the light-guiding frame plate.
In an embodiment, after a surface of the keycap is processed by a paint-spraying process, a character is removed by a laser engraving process so as to define the light-transmissible character portion.
The above objects and advantages of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention provides a thin type illuminated keyboard. The present invention will now be described more specifically with reference to the following drawings and embodiments. The thin type illuminated keyboard of the present invention is applied to an input device of an electronic apparatus such as a laptop, a desktop computer or an industrial computer.
Please refer to
As shown in
Alternatively, after the surface of the keycap 10 is processed by for example a paint-spraying process, the character portion is directly hollowed out to define the light-transmissible character portion 12, wherein the non-character portion of the keycap 10 is processed by a paint-spraying process or other means such that the non-character portion becomes opaque. As a consequence, the general character or symbol may be printed on the character portion 12.
The connecting member 20 is a scissors-type connecting structure for connecting the keycap 10 with the light-guiding frame plate 40. As such, the keycap 10 is movable with respect to the light-guiding frame plate 40 in the direction perpendicular to the surface of the illuminated keyboard 100. The elastic member 30 is made of silicone rubber and has a shape of an inverted cup. The upper end surface of the elastic member 30 is positioned on the bottom surface of the keycap 10. After the keycap 10 is penetrated through the light-guiding frame plate 40 and the membrane plate 50, the lower end surface of the keycap 10 is bonded onto the switch circuit plate 60. Alternatively, the lower end surface of the keycap 10 is not bonded onto the switch circuit plate 60, but in contact with the switch circuit plate 60. Due to the elastic member 30, the keycap 10 is elastically movable upwardly and downwardly.
Please refer to
In an embodiment, the light source 52 is a light emitting diode. The driving circuit (not shown) for driving the light source 52 is disposed on the membrane plate 50. The light source 52 is fixed on the membrane plate 50 via an electrically-conductive adhesive, and accommodated within the concave structure 44 of the light-guiding frame plate 40. An exemplary membrane plate 50 is a transparent plastic sheet. Depending on the number and positions of the keycaps 10, the membrane plate 50 has respective hole 54. As such, the elastic members 30 of plural key structures could be penetrated through respective hole 54.
In an embodiment, the base plate 70 is a metallic plate such as an aluminum plate or an iron plate.
When the light source 52 is driven by the driving circuit to illuminate, the light 80 emitted by the light source 52 is guided to the region under the keycap 10 through the light-guiding frame plate 40. Then, by the optical refraction profile 425 that is formed on the inner wall 423 of the hollow portion 422 of each frame unit 42, the direction of the light 80 is changed, so that the light 80 is directed to the region immediately under the keycap 10 to irradiate the light-transmissible character portion 12 of the keycap 10.
The light source 52 and the driving circuit thereof are formed on the membrane plate 50. By using the original light-guiding frame plate to guide the light, the function of illuminating the illuminated keyboard is achieved without any other additional light-guiding plate or additional light-guiding element. Since no additional component is required, the fabricating cost is reduced. Moreover, since the light source 52 is arranged between the light-guiding frame plate 40 and the membrane plate 50 and buried within the light-guiding frame plate 40, the thickness of the light source 52 is sunk into the thickness of the light-guiding frame plate 40. In other words, the overall thickness of the illuminated keyboard is not increased while maintaining a minimized thickness.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
098143538 | Dec 2009 | TW | national |