None.
1. Field of the Invention
The present invention relates generally to fluid reaction surfaces, and more specifically to a process for making a thin walled turbine blade.
2. Description of the Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
Turbine airfoils, rotor blades and stator vanes, used in a gas turbine engine require internal cooling because of the extremely hot gas flow passing over the airfoil surface of these airfoils. Turbine airfoils have a rigid internal web or rib portion with a thin airfoil wall forming the airfoil surface on which the hot gas flow is exposed. Thin wall airfoils are used in the lower stages of the turbine that require longer airfoils, and therefore a more rigid internal structure to support the airfoil under the high stress levels during operation of the turbine. The internal ribs form the internal cooling passages and impingement cavities. Thin wall airfoils provide a high level of heat transfer from the hot external surface to the cooled interior surface of the wall.
A thin wall turbine blade made from a super alloy, such as a nickel based super alloy, cannot be cast by the conventional lost wax casting process. Wall thicknesses required for a thin wall turbine blade cannot be cast because the molten metal is not viscous enough to pass through all of the narrow cavities that form the thin walls. The prior art thin wall turbine blades are therefore made by other processes such as that disclosed in U.S. Pat. No. 6,805,535 B2 issued to Tiemann on Oct. 19, 2004 and entitled DEVICE AND METHOD FOR PRODUCING A BLADE FOR A TURBINE AND BLADE PRODUCED ACCORDING TO THIS METHOD in which the blade is cast as two halves, and then the two halves are bonded tog ether to form the finished thin wall blade.
Another process for making thin wall turbine blades is disclosed in the U.S. Pat. No. 5,640,767 issued to Jackson et al on Jun. 24, 1997 and entitled METHOD FOR MAKING A DOUBLE-WALL AIRFOIL which shows the blade made from a partially hollow airfoil support wall, and a thin wall airfoil shaped outer surface bonded over the support wall. This type of thin wall blade is a composite blade.
Another type of composite turbine blade is shown in U.S. Pat. No. 5,348,446 issued to Lee et al on Sep. 20, 1994 and entitled BIMETALLIC TURBINE AIRFOIL which shows the blade made from a core body with first and second panels bonded to the pressure and suction sides of the core body and fabricated leading and trailing edge components bonded to the leading and trailing edges of the core body to form the composite blade. All of these above cited prior art references disclose a process for making a blade in which the blade is formed of multiple parts and not cast as a single piece.
The current casting process to produce a turbine blade will produce wall thickness based on the casting alloy used and the grain structure desired. The single crystal casting process will produce a thin wall turbine blade. However, this process is very expensive to produce a turbine blade.
It is an object of the present invention to produce a turbine blade with a thin wall airfoil surface by casting the blade as a single piece without forming the blade from a plurality of parts that are bonded together.
Another object of the present invention is to produce a thin walled turbine blade that is much lower in cost than the single crystal cast turbine blade of the prior art.
The present invention is a turbine blade for use in a gas turbine engine, in which the turbine blade has a thin wall airfoil surface for improved cooling of the airfoil wall. The blade is first cast from a super alloy by a conventional lost wax casting process with the internal cooling passages formed therein, and where the blade walls are cast with an extra thickness in order to allow for the casting process to form the blade as a single piece. The cast blade is then machined to remove wall material to the depth originally designed for the thin wall airfoil. Prior to machining the extra thick wall blade, the wall thickness is measured around the entire blade to determine how much material must be removed in order to leave the wall with the proper thickness in order to account for core shift during the casting process. The cost of casting a thick walled super alloy turbine blade and then machining the walls to the desired thinness is much lower than the cost of casting a single crystal thin wall turbine blade.
The present invention is a process for making a turbine blade with thin walls at a lower cost than the single crystal turbine blade. The present invention describes a turbine blade and a process for making the blade. However, the present invention is also intended to be used to produce a stator vane having thin walls as well. The present invention is intended to be used in a large turbine blade such as that used in an industrial gas turbine engine. However, the present invention can be used in any size turbine airfoil where the process of casting cannot be used to form thin walls during the casting process.
During the lost wax casting process, the cores used to form the internal passages or channels can sometimes move slightly. This would result in a wall thickness being either too thick or too thin. After the blade has been cast, a process is used to measure the actual cast wall thickness at all points over the blade that is to be machined later. A wall thickness measurement using a sonic or eddy current process can be used to measure the wall thickness around the blade. This measurement is used to control the machining process that will remove enough material from the thicker cast blade such that the thin wall blade is formed.
In
In
This application is a continuation-in-part of U.S. patent application Ser. No. 12/957,488 filed on Dec. 1, 2010 and now U.S. Pat. No. 8,277,193 issued on Oct. 2, 2012; which is a continuation of U.S. Regular patent application Ser. No. 11/655,705 filed on Jan. 19, 2007 and entitled Thin Walled Turbine Blade and Process for Making the Blade now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3260505 | Ver Snyder | Jul 1966 | A |
4358882 | Wilkinson | Nov 1982 | A |
4631092 | Ruckle et al. | Dec 1986 | A |
5193314 | Wormley et al. | Mar 1993 | A |
5348446 | Lee et al. | Sep 1994 | A |
5640767 | Jackson et al. | Jun 1997 | A |
6158961 | Kehl et al. | Dec 2000 | A |
6626230 | Woodrum et al. | Sep 2003 | B1 |
6805535 | Tiemann | Oct 2004 | B2 |
6959572 | Lawrence et al. | Nov 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
Parent | 11655705 | Jan 2007 | US |
Child | 12957488 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12957488 | Dec 2010 | US |
Child | 13622551 | US |