Thioesterases and cells for production of tailored oils

Information

  • Patent Grant
  • 9290749
  • Patent Number
    9,290,749
  • Date Filed
    Friday, March 15, 2013
    11 years ago
  • Date Issued
    Tuesday, March 22, 2016
    8 years ago
Abstract
The invention features plant acyl-ACP thioesterase genes of the FatB class and proteins encoded by these genes. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Oleaginous microalga host cells with the new genes or previously identified FatB genes are disclosed. The microalgae cells produce triglycerides with useful fatty acid profiles.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 3, 2013, is named SOLAP019US_SL.txt and is 318,250 bytes in size.


BACKGROUND

Certain organisms including plants and some microalgae use a type II fatty acid biosynthetic pathway, characterized by the use of discrete, monofunctional enzymes for fatty acid synthesis. In contrast, mammals and fungi use a single, large, multifunctional protein.


Type II fatty acid biosynthesis typically involves extension of a growing acyl-ACP (acyl-carrier protein) chain by two carbon units followed by cleavage by an acyl-ACP thioesterase. In plants, two main classes of acyl-ACP thioesterases have been identified: (i) those encoded by genes of the FatA class, which tend to hydrolyze oleoyl-ACP into oleate (an 18:1 fatty acid) and ACP, and (ii) those encoded by genes of the FatB class, which liberate C8-C16 fatty acids from corresponding acyl-ACP molecules.


Different FatB genes from various plants have specificities for different acyl chain lengths. As a result, different gene products will produce different fatty acid profiles in plant seeds. See, U.S. Pat. Nos. 5,850,022; 5,723,761; 5,639,790; 5,807,893; 5,455,167; 5,654,495; 5,512,482; 5,298,421; 5,667,997; and 5,344,771; 5,304,481. Recently, FatB genes have been cloned into oleaginous microalgae to produce triglycerides with altered fatty acid profiles. See, WO2010/063032, WO2011,150411, and WO2012/106560.


SUMMARY

In an embodiment of the invention, there is a nucleic acid having at least 80% sequence identity to any of SEQ ID NOS: 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76 or any equivalent sequences by virtue of the degeneracy of the genetic code.


In another embodiment of the invention, there is a nucleic acid sequence encoding a protein having at least 80% sequence identity to any of SEQ ID NOS: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 75, or 77, or a fragment thereof having acyl-ACP thioesterase activity. The protein can have acyl-ACP thioesterase activity operable to alter the fatty acid profile of an oil produced by a recombinant cell comprising that sequence.


In a further embodiment of the invention there is a method of producing a recombinant host cell that produces an altered fatty acid profile, the method comprising transforming the cell with any of the nucleic acids mentioned above. The host cell can be a plant cell, a microbial cell, or a microalgal cell. Another embodiment of the invention includes a host cell produced by this method.


In an embodiment, there is a method for producing an oil or oil-derived product, the method comprising cultivating the host cell and extracting the oil, optionally wherein the cultivation is heterotrophic growth on sugar. Optionally, a fatty acid, fuel, chemical, or other oil-derived product can be produced from the oil. Optionally, the oil can have a fatty acid profile comprising at least 20% C8, C10, C12, C14 or C16 fatty acids. Optionally, the oil is produced by a microalgae and can lack C24-alpha sterols.







DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS OF THE INVENTION

Definitions


As used with respect to nucleic acids, the term “isolated” refers to a nucleic acid that is free of at least one other component that is typically present with the naturally occurring nucleic acid. Thus, a naturally occurring nucleic acid is isolated if it has been purified away from at least one other component that occurs naturally with the nucleic acid.


A “natural oil” or “natural fat” shall mean a predominantly triglyceride oil obtained from an organism, where the oil has not undergone blending with another natural or synthetic oil, or fractionation so as to substantially alter the fatty acid profile of the triglyceride. In connection with an oil comprising triglycerides of a particular regiospecificity, the natural oil or natural fat has not been subjected to interesterification or other synthetic process to obtain that regiospecific triglyceride profile, rather the regiospecificity is produced naturally, by a cell or population of cells. In connection with a natural oil or natural fat, and as used generally throughout the present disclosure, the terms oil and fat are used interchangeably, except where otherwise noted. Thus, an “oil” or a “fat” can be liquid, solid, or partially solid at room temperature, depending on the makeup of the substance and other conditions. Here, the term “fractionation” means removing material from the oil in a way that changes its fatty acid profile relative to the profile produced by the organism, however accomplished. The terms “natural oil” and “natural fat” encompass such oils obtained from an organism, where the oil has undergone minimal processing, including refining, bleaching and/or degumming, that does not substantially change its triglyceride profile. A natural oil can also be a “noninteresterified natural oil”, which means that the natural oil has not undergone a process in which fatty acids have been redistributed in their acyl linkages to glycerol and remain essentially in the same configuration as when recovered from the organism.


“Exogenous gene” shall mean a nucleic acid that codes for the expression of an RNA and/or protein that has been introduced into a cell (e.g. by transformation/transfection), and is also referred to as a “transgene”. A cell comprising an exogenous gene may be referred to as a recombinant cell, into which additional exogenous gene(s) may be introduced. The exogenous gene may be from a different species (and so heterologous), or from the same species (and so homologous), relative to the cell being transformed. Thus, an exogenous gene can include a homologous gene that occupies a different location in the genome of the cell or is under different control, relative to the endogenous copy of the gene. An exogenous gene may be present in more than one copy in the cell. An exogenous gene may be maintained in a cell as an insertion into the genome (nuclear or plastid) or as an episomal molecule.


“Fatty acids” shall mean free fatty acids, fatty acid salts, or fatty acyl moieties in a glycerolipid. It will be understood that fatty acyl groups of glycerolipids can be described in terms of the carboxylic acid or anion of a carboxylic acid that is produced when the triglyceride is hydrolyzed or saponified.


“Microalgae” are microbial organisms that contain a chloroplast or other plastid, and optionally that are capable of performing photosynthesis, or a prokaryotic microbial organism capable of performing photosynthesis. Microalgae include obligate photoautotrophs, which cannot metabolize a fixed carbon source as energy, as well as heterotrophs, which can live solely off of a fixed carbon source. Microalgae include unicellular organisms that separate from sister cells shortly after cell division, such as Chlamydomonas, as well as microbes such as, for example, Volvox, which is a simple multicellular photosynthetic microbe of two distinct cell types. Microalgae include cells such as Chlorella, Dunaliella, and Prototheca. Microalgae also include other microbial photosynthetic organisms that exhibit cell-cell adhesion, such as Agmenellum, Anabaena, and Pyrobotrys. Microalgae also include obligate heterotrophic microorganisms that have lost the ability to perform photosynthesis, such as certain dinoflagellate algae species and species of the genus Prototheca.


An “oleaginous” cell is a cell capable of producing at least 20% lipid by dry cell weight, naturally or through recombinant or classical strain improvement. An “oleaginous microbe” or “oleaginous microorganism” is a microbe, including a microalga that is oleaginous.


In connection with a natural oil, a “profile” is the distribution of particular species or triglycerides or fatty acyl groups within the oil. A “fatty acid profile” is the distribution of fatty acyl groups in the triglycerides of the oil without reference to attachment to a glycerol backbone. Fatty acid profiles are typically determined by conversion to a fatty acid methyl ester (FAME), followed by gas chromatography (GC) analysis with flame ionization detection (FID). The fatty acid profile can be expressed as one or more percent of a fatty acid in the total fatty acid signal determined from the area under the curve for that fatty acid. FAME-GC-FID measurement approximate weight percentages of the fatty acids.


“Recombinant” is a cell, nucleic acid, protein or vector that has been modified due to the introduction of an exogenous nucleic acid or the alteration of a native nucleic acid. Thus, e.g., recombinant cells can express genes that are not found within the native (non-recombinant) form of the cell or express native genes differently than those genes are expressed by a non-recombinant cell. Recombinant cells can, without limitation, include recombinant nucleic acids that encode a gene product or suppression elements such as mutations, knockouts, antisense, interfering RNA (RNAi) or dsRNA that reduce the levels of active gene product in a cell. A “recombinant nucleic acid” is a nucleic acid originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases, ligases, exonucleases, and endonucleases, using chemical synthesis, or otherwise is in a form not normally found in nature. Recombinant nucleic acids may be produced, for example, to place two or more nucleic acids in operable linkage. Thus, an isolated nucleic acid or an expression vector formed in vitro by ligating DNA molecules that are not normally joined in nature, are both considered recombinant for the purposes of this invention. Once a recombinant nucleic acid is made and introduced into a host cell or organism, it may replicate using the in vivo cellular machinery of the host cell; however, such nucleic acids, once produced recombinantly, although subsequently replicated intracellularly, are still considered recombinant for purposes of this invention. Similarly, a “recombinant protein” is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid.


Thioesterase Sequences


Additional FatB genes encoding thioesterases with varying substrate preferences have been identified from plant seeds. These genes or functional subsequences thereof can be used to engineer organisms to produce fatty acids having a chain-length distribution (fatty acid profile) that is altered from the wild type organism. Specifically, recombinant cells express one or more of the exogenous FatB genes. The fatty acids can be further converted to triglycerides, fatty aldehydes, fatty alcohols and other oleochemicals either synthetically or biosynthetically. In specific embodiments, triglycerides are produced by a host cell expressing the novel FatB gene. A triglyceride-containing natural oil can be recovered from the host cell. The natural oil can be refined, degummed, bleached and/or deodorized. The oil, in its natural or processed form, can be used for foods, chemicals, fuels, cosmetics, plastics, and other uses.


The genes can be used in a variety of genetic constructs including plasmids or other vectors for expression or recombination in a host cell. The genes can be codon optimized for expression in a target host cell. The proteins produced by the genes can be used in vivo or in purified form.


The gene sequences disclosed can also be used to prepare antisense, or inhibitory RNA (e.g., RNAi or hairpin RNA) to inhibit complementary genes in a plant or other organism.


FatB genes found to be useful in producing desired fatty acid profiles in a cell are summarized below in Table 1. Nucleic acids or proteins having the sequence of SEQ ID NOS: 1-78 can be used to alter the fatty acid profile of a recombinant cell. Variant nucleic acids can also be used; e.g, variants having at least 80, 85, 90, 95, 96, 97, 98, or 99% sequence identity to SEQ ID NOS: 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, or 78. Codon optimization of the genes for a variety of host organisms is contemplated, as is the use of gene fragments. Preferred codons for Prototheca strains and for Chlorella protothecoides are shown below in Tables 2 and 3, respectively. In some embodiments, the first and/or second most preferred Prototheca codons are employed for codon optimization.


In embodiments of the invention, there is protein or a nucleic acid encoding a protein having any of SEQ ID NOS: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 75, or 77. In an embodiment, there is protein or a nucleic acid encoding a protein having at least 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% sequence identity with any of SEQ ID NOS: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 75, or 77. In certain embodiments, the invention encompasses a fragment any of the above-described proteins or nucleic acids (including fragments of protein or nucleic acid variants), wherein the protein fragment has acyl-ACP thioesterase activity or the nucleic acid fragment encodes such a protein fragment. In other embodiments, the fragment includes a domain of an acyl-ACP thioesterase that mediates a particular function, e.g., a specificity-determining domain. Illustrative fragments can be produced by C-terminal and/or N-terminal truncations and include at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of the full-length sequences disclosed herein.


The term “percent sequence identity,” in the context of two or more amino acid or nucleic acid sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. For sequence comparison to determine percent nucleotide or amino acid identity, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters. Optimal alignment of sequences for comparison can be conducted using the NCBI BLAST software (ncbi.nlm.nih.gov/BLAST/) set to default parameters. For example, to compare two nucleic acid sequences, one may use blastn with the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) set at the following default parameters: Matrix: BLOSUM62; Reward for match: 1; Penalty for mismatch: −2; Open Gap: 5 and Extension Gap: 2 penalties; Gap×drop-off: 50; Expect: 10; Word Size: 11; Filter: on. For a pairwise comparison of two amino acid sequences, one may use the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) with blastp set, for example, at the following default parameters: Matrix: BLOSUM62; Open Gap: 11 and Extension Gap: 1 penalties; Gap×drop-off 50; Expect: 10; Word Size: 3; Filter: on.


In certain embodiments, percent sequence identity for variants of the nucleic acids or proteins discussed above can be calculated by using the full-length nucleic acid sequence (e.g., one of SEQ ID NOS: 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 76, or 78) or full-length amino acid sequence (e.g., one of SEQ ID NOS: 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 75, or 77) as the reference sequence and comparing the full-length test sequence to this reference sequence. In some embodiments relating to fragments, percent sequence identity for variants of nucleic acid or protein fragments can be calculated over the entire length of the fragment.


The nucleic acids can be in isolated form, or part of a vector or other construct, chromosome or host cell. It has been found that is many cases the full length gene (and protein) is not needed; for example, deletion of some or all of the N-terminal hydrophobic domain (typically an 18 amino acid domain starting with LPDW (SEQ ID NO: 115)) yields a still-functional gene. In addition, fusions of the specificity determining regions of the genes in Table 1 with catalytic domains of other acyl-ACP thioesterases can yield functional genes. Thus, in certain embodiments, the invention encompasses functional fragments (e.g., specificity determining regions) of the disclosed nucleic acid or amino acids fused to heterologous acyl-ACP thioesterase nucleic acid or amino acid sequences, respectively.









TABLE 1







FatB genes according to embodiments of the present invention
















Native CDS

Prototheca







nucloetide

moriformis





Sequence
Amino Acid
sequence (not
codon-




Variant (relative
Sequence of
codon-
optimized




to dominant
CDS (no
optimized, no
nucleotide




transcript
additional
additional
sequence


Species
Gene Name
idenitified)
tags)
cloning sites)
of CDS






Cinnamomum

CcFATB1b
M25L, M322R,
SEQ ID NO: 1
SEQ ID NO: 2
SEQ ID



camphora


ΔT367-D368


NO: 3



Cinnamomum

CcFATB4
“wild-type”
SEQ ID NO: 4
SEQ ID NO: 5
SEQ ID



camphora





NO: 6



Cinnamomum

CcFATB3
“wild-type”
SEQ ID NO: 7
SEQ ID NO: 8
SEQ ID



camphora





NO: 9



Cuphea

ChsFATB1
“wild-type”
SEQ ID NO:
SEQ ID NO: 11
SEQ ID



hyssopifolia



10

NO: 12



Cuphea

ChsFATB2
“wild-type”
SEQ ID NO:
SEQ ID NO: 14
SEQ ID



hyssopifolia



13

NO: 15



Cuphea

ChsFATB2b
+a.a.248-259
SEQ ID NO:
SEQ ID NO: 17
SEQ ID



hyssopifolia



16

NO: 18



Cuphea

ChsFATB3
“wild-type”
SEQ ID NO:
SEQ ID NO: 20
SEQ ID



hyssopifolia



19

NO: 21



Cuphea

ChsFATB3b
V204I, C239F,
SEQ ID NO:
SEQ ID NO: 23
SEQ ID



hyssopifolia


E243D, M251V
22

NO: 24



Cuphea

CuPSR23FATB3
“wild-type”
SEQ ID NO:
SEQ ID NO: 26
SEQ ID


PSR23


25

NO: 27



Cuphea

CwFATB3
“wild-type”
SEQ ID NO:
SEQ ID NO: 29
SEQ ID



wrightii



28

NO: 30



Cuphea

CwFATB4a
“wild-type”
SEQ ID NO:
SEQ ID NO: 32
SEQ ID



wrightii



31

NO: 33



Cuphea

CwFATB4b
“wild-type”
SEQ ID NO:
SEQ ID NO: 35
SEQ ID



wrightii



34

NO: 36



Cuphea

CwFATB5
“wild-type”
SEQ ID NO:
SEQ ID NO: 38
SEQ ID



wrightii



37

NO: 39



Cuphea

ChtFATB1a
“wild-type”
SEQ ID NO:
SEQ ID NO: 41
SEQ ID



heterophylla



40

NO: 42



Cuphea

ChtFATB1b
P16S, T20P, G94S,
SEQ ID NO:
SEQ ID NO: 44
SEQ ID



heterophylla


G105W, S293F,
43

NO: 45




L305F



Cuphea

ChtFATB2b
“wild-type”
SEQ ID NO:
SEQ ID NO: 47
SEQ ID



heterophylla



46

NO: 48



Cuphea

ChtFATB2a
S17P, P21S, T28N,
SEQ IDO NO:
SEQ ID NO: 50
SEQ ID



heterophylla


L30P, S33L,
49

NO: 51




G76D, S78P,




G137W



Cuphea

ChtFATB2c
G76D, S78P
SEQ ID NO:
SEQ ID NO: 53
SEQ ID



heterophylla



52

NO: 54



Cuphea

ChtFATB2d
S21P, T28N,
SEQ ID NO:
SEQ ID NO: 56
SEQ ID



heterophylla


L30P, S33L,
55

NO: 57




G76D, R97L,




H124L, W127L,




I132S, K258N,




C303R, E309G,




K334T, T386A



Cuphea

ChtFATB2e
G76D, R97L,
SEQ ID NO:
SEQ ID NO: 59
SEQ ID



heterophylla


H124L, I132S,
58

NO: 60




G152S, H165L,




T211N, K258N,




C303R, E309G,




K334T, T386A



Cuphea

ChtFATB2f
R97L, H124L,
SEQ ID NO:
SEQ ID NO: 62
SEQ ID



heterophylla


I132S, G152S,
61

NO: 63




H165L, T211N



Cuphea

ChtFATB2g
A6T, A16V, S17P,
SEQ ID NO:
SEQ ID NO: 65
SEQ ID



heterophylla


G76D, R97L,
64

NO: 66




H124L, I132S,




S143I, G152S,




A157T, H165L,




T211N, G414A



Cuphea

ChtFATB3a
“wild-type”
SEQ ID NO:
SEQ ID NO: 68
SEQ ID



heterophylla



67

NO: 69



Cuphea

ChtFATB3b
C67G, H72Q,
SEQ ID NO:
SEQ ID NO: 71
SEQ ID



heterophylla


L128F, N179I
70

NO: 72



Cuphea

CvisFATB1
published
SEQ ID NO:
N/A
SEQ ID



viscosissima



73

NO: 74



Cuphea

CvisFATB2
published
SEQ ID NO:
N/A
SEQ ID



viscosissima



75

NO: 76



Cuphea

CvisFATB3
published
SEQ ID NO:
N/A
SEQ ID



viscosissima



77

NO: 78
















TABLE 2





Preferred codon usage in Prototheca strains




















Ala
GCG
345 (0.36)
Asn
AAT
  8 (0.04)



GCA
 66 (0.07)

AAC
201 (0.96)



GCT
101 (0.11)
Pro
CCG
161 (0.29)



GCC
442 (0.46)

CCA
 49 (0.09)


Cys
TGT
 12 (0.10)

CCT
 71 (0.13)



TGC
105 (0.90)

CCC
267 (0.49)


Asp
GAT
 43 (0.12)
Gln
CAG
226 (0.82)



GAC
316 (0.88)

CAA
 48 (0.18)


Glu
GAG
377 (0.96)
Arg
AGG
 33 (0.06)



GAA
 14 (0.04)

AGA
 14 (0.02)


Phe
TTT
 89 (0.29)

CGG
102 (0.18)



TTC
216 (0.71)

CGA
 49 (0.08)


Gly
GGG
 92 (0.12)

CGT
 51 (0.09)



GGA
 56 (0.07)

CGC
331 (0.57)



GGT
 76 (0.10)
Ser
AGT
 16 (0.03)



GGC
559 (0.71)

AGC
123 (0.22)


His
CAT
 42 (0.21)

TCG
152 (0.28)



CAC
154 (0.79)

TCA
 31 (0.06)


Ile
ATA
  4 (0.01)

TCT
 55 (0.10)



ATT
 30 (0.08)

TCC
173 (0.31)



ATC
338 (0.91)
Thr
ACG
184 (0.38)


Lys
AAG
284 (0.98)

ACA
 24 (0.05)



AAA
  7 (0.02)

ACT
 21 (0.05)


Leu
TTG
 26 (0.04)

ACC
249 (0.52)



TTA
  3 (0.00)
Val
GTG
308 (0.50)



CTG
447 (0.61)

GTA
  9 (0.01)



CTA
 20 (0.03)

GTT
 35 (0.06)



CTT
 45 (0.06)

GTC
262 (0.43)



CTC
190 (0.26)
Trp
TGG
107 (1.00)


Met
ATG
191 (1.00)
Tyr
TAT
 10 (0.05)






TAC
180 (0.95)





Stop
TGA/TAG/TAA
















TABLE 3





Preferred codon usage in Chlorella protothecoides




















TTC (Phe)
TAC (Tyr)
TGC (Cys)
TGA (Stop)






TGG (Trp)
CCC (Pro)
CAC (His)
CGC (Arg)






CTG (Leu)
CAG (Gln)
ATC (Ile)
ACC (Thr)






GAC (Asp)
TCC (Ser)
ATG (Met)
AAG (Lys)






GCC (Ala)
AAC (Asn)
GGC (Gly)
GTG (Val)






GAG (Glu)













Host Cells


The host cell can be a single cell or part of a multicellular organism such as a plant. Methods for expressing Fatb genes in a plant are given in U.S. Pat. Nos. 5,850,022; 5,723,761; 5,639,790; 5,807,893; 5,455,167; 5,654,495; 5,512,482; 5,298,421; 5,667,997; and 5,344,771; 5,304,481, or can be accomplished using other techniques generally known in plant biotechnology. Engineering of oleaginous microbes including Chlorophyta is disclosed in WO2010/063032, WO2011,150411, and WO2012/106560 and in the examples below.


Examples of oleaginous host cells include plant cells and microbial cells having a type II fatty acid biosynthetic pathway, including plastidic oleaginous cells such as those of oleaginous algae. Specific examples of microalgal cells include heterotrophic or obligate heterotrophic microalgae of the phylum Chlorophtya, the class Trebouxiophytae, the order Chlorellales, or the family Chlorellacae. Examples of oleaginous microalgae are provided in Published PCT Patent Applications WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/150411, including species of Chlorella and Prototheca, a genus comprising obligate heterotrophs. The oleaginous cells can be, for example, capable of producing 25, 30, 40, 50, 60, 70, 80, 85, or about 90% oil by cell weight, ±5%. Optionally, the oils produced can be low in DHA or EPA fatty acids. For example, the oils can comprise less than 5%, 2%, or 1% DHA and/or EPA. The above-mentioned publications also disclose methods for cultivating such cells and extracting oil, especially from microalgal cells; such methods are applicable to the cells disclosed herein and incorporated by reference for these teachings. When microalgal cells are used they can be cultivated autotrophically (unless an obligate heterotroph) or in the dark using a sugar (e.g., glucose, fructose and/or sucrose). In any of the embodiments described herein, the cells can be heterotrophic cells comprising an exogenous invertase gene so as to allow the cells to produce oil from a sucrose feedstock. Alternately, or in addition, the cells can metabolize xylose from cellulosic feedstocks. For example, the cells can be genetically engineered to express one or more xylose metabolism genes such as those encoding an active xylose transporter, a xylulose-5-phosphate transporter, a xylose isomerase, a xylulokinase, a xylitol dehydrogenase and a xylose reductase. See WO2012/154626, “GENETICALLY ENGINEERED MICROORGANISMS THAT METABOLIZE XYLOSE”, published Nov. 15, 2012.


Oils and Related Products


The oleaginous cells express one or more exogenous genes encoding fatty acid biosynthesis enzymes. As a result, some embodiments feature natural oils that were not obtainable from a non-plant or non-seed oil, or not obtainable at all.


The oleaginous cells produce a storage oil, which is primarily triacylglyceride and may be stored in storage bodies of the cell. A raw oil may be obtained from the cells by disrupting the cells and isolating the oil. WO2008/151149, WO2010/06032, WO2011/150410, and WO2011/1504 disclose heterotrophic cultivation and oil isolation techniques. For example, oil may be obtained by cultivating, drying and pressing the cells. The oils produced may be refined, bleached and deodorized (RBD) as known in the art or as described in WO2010/120939. The raw or RBD oils may be used in a variety of food, chemical, and industrial products or processes. After recovery of the oil, a valuable residual biomass remains. Uses for the residual biomass include the production of paper, plastics, absorbents, adsorbents, as animal feed, for human nutrition, or for fertilizer.


Where a fatty acid profile of a triglyceride (also referred to as a “triacylglyceride” or “TAG”) cell oil is given here, it will be understood that this refers to a nonfractionated sample of the storage oil extracted from the cell analyzed under conditions in which phospholipids have been removed or with an analysis method that is substantially insensitive to the fatty acids of the phospholipids (e.g. using chromatography and mass spectrometry). The oil may be subjected to an RBD process to remove phospholipids, free fatty acids and odors yet have only minor or negligible changes to the fatty acid profile of the triglycerides in the oil. Because the cells are oleaginous, in some cases the storage oil will constitute the bulk of all the TAGs in the cell.


The stable carbon isotope value δ13C is an expression of the ratio of 13C/12C relative to a standard (e.g. PDB, carbonite of fossil skeleton of Belemnite americana from Peedee formation of South Carolina). The stable carbon isotope value δ13C (0/00) of the oils can be related to the δ13C value of the feedstock used. In some embodiments, the oils are derived from oleaginous organisms heterotrophically grown on sugar derived from a C4 plant such as corn or sugarcane. In some embodiments the δ13C (0/00) of the oil is from −10 to −17 0/00 or from −13 to −16 0/00.


The oils produced according to the above methods in some cases are made using a microalgal host cell. As described above, the microalga can be, without limitation, fall in the classification of Chlorophyta, Trebouxiophyceae, Chlorellales, Chlorellaceae, or Chlorophyceae. It has been found that microalgae of Trebouxiophyceae can be distinguished from vegetable oils based on their sterol profiles. Oil produced by Chlorella protothecoides was found to produce sterols that appeared to be brassicasterol, ergosterol, campesterol, stigmasterol, and β-sitosterol, when detected by GC-MS. However, it is believed that all sterols produced by Chlorella have C24β stereochemistry. Thus, it is believed that the molecules detected as campesterol, stigmasterol, and β-sitosterol, are actually 22,23-dihydrobrassicasterol, proferasterol and clionasterol, respectively. Thus, the oils produced by the microalgae described above can be distinguished from plant oils by the presence of sterols with C24β stereochemistry and the absence of C24α stereochemistry in the sterols present. For example, the oils produced may contain 22,23-dihydrobrassicasterol while lacking campesterol; contain clionasterol, while lacking in β-sitosterol, and/or contain poriferasterol while lacking stigmasterol. Alternately, or in addition, the oils may contain significant amounts of Δ7-poriferasterol.


In embodiments of the present invention, oleaginous cells expressing one or more of the genes of Table 1 can produce an oil with at least 20% of C8, C10, C12, C14 or C16 fatty acids. In a specific embodiment, the level of myristate (C14:0) in the oil is greater than 30%.


Thus, in embodiments of the invention, there is a process for producing an oil, triglyceride, fatty acid, or derivative of any of these, comprising transforming a cell with any of the nucleic acids discussed herein. In another embodiment, the transformed cell is cultivated to produce an oil and, optionally, the oil is extracted. Oil extracted in this way can be used to produce food, oleochemicals or other products.


The oils discussed above alone or in combination are useful in the production of foods, fuels and chemicals (including plastics, foams, films, etc). The oils, triglycerides, fatty acids from the oils may be subjected to C—H activation, hydroamino methylation, methoxy-carbonation, ozonolysis, enzymatic transformations, epoxidation, methylation, dimerization, thiolation, metathesis, hydro-alkylation, lactonization, or other chemical processes.


After extracting the oil, a residual biomass may be left, which may have use as a fuel, as an animal feed, or as an ingredient in paper, plastic, or other product. For example, residual biomass from heterotrophic algae can be used in such products.


The described embodiments of the invention are intended to be merely exemplary and numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention. For example, the various triglyceride oils can be tailored in for a mixture of midchain and long chain fatty acids in order to adjust parameters such as polarity, solvency, and foam-height of the oils or chemicals made from the oils.


EXAMPLE 1

Sequences of novel plant acyl-ACP thioesterases involved in seed-specific midchain (C8-C16) fatty acid biosynthesis in higher plants were isolated. Seed-specific lipid production genes were isolated through direct interrogation of RNA pools accumulating in oilseeds. Based on phylogenetic analysis, novel enzymes can be classified as members of FatB family of acyl-ACP thioesterases.


Seeds of oleaginous plants were obtained from local grocery stores or requested through USDA ARS National Plant Germplasm System (NPGS) from North Central Regional Plant Introduction Station (NCRIS) or USDA ARS North Central Soil Conservation Research Laboratory (Morris, Mich.). Dry seeds were homogenized in liquid nitrogen to powder, resuspended in cold extraction buffer containing 6-8M Urea and 3M LiCl and left on ice for a few hours to overnight at 4° C. The seed homogenate was passed through NucleoSpin Filters (Macherey-Nagel) by centrifugation at 20,000 g for 20 minutes in the refrigerated microcentrifuge (4° C.). The resulting RNA pellets were resuspended in the buffer containing 20 mM Tris HCl, pH7.5, 0.5% SDS, 100 mM NaCl, 25 mM EDTA, 2% PVPP) and RNA was subsequently extracted once with Phenol-Chloroform-Isoamyl Alcohol (25:24:1, v/v) and once with chloroform. RNA was finally precipitated with isopropyl alcohol (0.7 Vol.) in the presence of 150 mM of Na Acetate, pH5.2, washed with 80% ethanol by centrifugation, and dried. RNA samples were treated with Turbo DNAse (Lifetech) and purified further using RNeasy kits (Qiagen) following manufacturers' protocols. The resulting purified RNA samples were converted to pair-end cDNA libraries and subjected to next-generation sequencing (2×100 bp) using Illumina Hiseq 2000 platform. RNA sequence reads were assembled into corresponding seed transcriptomes using Trinity or Oases packages. Putative thioesterase-containg cDNA contigs were identified by mining transcriptomes for sequences with homology to known thioesterases. These in silico identified putative thioesterase cDNAs have been further verified by direct reverse transcription PCR analysis using seed RNA and primer pairs targeting full-length thioesterase cDNAs. The resulting amplified products were cloned and sequenced de novo to confirm authenticity of identified thioesterase genes.


To interrogate evolutionary and functional relationship between novel acyl-ACP thioesterases and the members of two existing thioesterase classes (FatA and FatB), we performed a phylogenetic analysis using published full-length (Mayer and Shanklin, 2007) and truncated (THYME database) amino acid thioesterase sequences. Novel proteins appear to group with known acyl-ACP FatB thioesterases involved in biosynthesis of C8-C16 fatty acids. Moreover, novel thioesterases appear to cluster into 3 predominant out-groups suggesting distinct functional similarity and evolutionary relatedness among members of each cluster.


The amino acid sequences of the FatB genes follow are shown in Table 4.









TABLE 4





Amino acid sequences of FatB genes















CuPSR23 FATB3 (SEQ ID NO: 25):


MVVAAATSAFFPVPAPGTSPKPGKSGNWPSSLSPTFKPKSIPNAGFQVKANASAH





PKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTAITTVFVAAEKQWTMLD





RKSKRPDMLVDSVGLKCIVRDGLVSRQSFLIRSYEIGADRTASIETLMNHLQETSINHCK





SLGLLNDGFGRTPGMCKNDLIWVLTKMQIMVNRYPTWGDTVEINTWFSQSGKIGMASD





WLISDCNTGEILIRATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDQKLH





KFDVKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCSLTVEYRR





ECGMDSVLESVTAVDPSENGGRSQYKHLLRLEDGTDIVKSRTEWRPKNAGTNGAISTST





AKTSNGNSVS





CuPSR23 FATB3b (SEQ ID NO: 79):


MVVAAATSAFFPVPAPGTSPKPGKSGNWPSSLSPTFKPKSIPNAGFQVKANASAH





PKANGSAVNLKSGSLNTQEDTSSSPPPRAFLNQLPDWSMLLTAITTVFVAAEKQWTMLD





RKSKRPDMLVDSVGLKSIVRDGLVSRQSFLIRSYEIGADRTASIETLMNHLQETSINHCKS





LGLLNDGFGRTPGMCKNDLIWVLTKMQIMVNRYPTWGDTVEINTWFSQSGKIGMASD





WLISDCNTGEILIRATSVWAMMNQKTRRFSRLPYEVRQELTPHFVDSPHVIEDNDQKLH





KFDVKTGDSIRKGLTPRWNDLDVNQHVSNVKYIGWILESMPIEVLETQELCSLTVEYRR





ECGMDSVLESVTAVDPSENGGRSQYKHLLRLEDGTDIVKSRTEWRPKNAGTNGAISTST





AKTSNGNSAS





CwFATB3 (SEQ ID NO: 28):


MVVAAAASSAFFPVPAPRTTPKPGKFGNWPSSLSPPFKPKSNPNGRFQVKANVSP





HPKANGSAVSLKSGSLNTLEDPPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQFTRLD





RKSKRPDMLVDWFGSETIVQDGLVFRERFSIRSYEIGADRTASIETLMNHLQDTSLNHCK





SVGLLNDGFGRTSEMCTRDLIWVLTKMQIVVNRYPTWGDTVEINSWFSQSGKIGMGRD





WLISDCNTGEILVRATSAWAMMNQKTRRFSKLPCEVRQEIAPHFVDAPPVIEDNDRKLH





KFDVKTGDSICKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYRR





ECGRESVVESVTSMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNRAIST





CwFATB3a (SEQ ID NO: 28):


MVVAAAASSAFFPVPAPRTTPKPGKFGNWPSSLSPPFKPKSNPNGRFQVKANVSP





HPKANGSAVSLKSGSLNTLEDPPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQFTRLD





RKSKRPDMLVDWFGSETIVQDGLVFRERFSIRSYEIGADRTASIETLMNHLQDTSLNHCK





SVGLLNDGFGRTSEMCTRDLIWVLTKMQIVVNRYPTWGDTVEINSWFSQSGKIGMGRD





WLISDCNTGEILVRATSAWAMMNQKTRRFSKLPCEVRQEIAPHFVDAPPVIEDNDRKLH





KFDVKTGDSICKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYRR





ECGRESVVESVTSMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNRAIST





CwFATB3b (SEQ ID NO: 80):


MVVAAAASSAFFPVPAPRTTPKPGKFGNWPSSLSPPFKPKSNPNGRFQVKANVSP





HPKANGSAVSLKSGSLNTLEDLPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQFTRLD





RKSKRPDMLVDWFGSETIVQDGLVFRERFSIRSYEIGADRTASIETLMNHLQDTSLNHCK





SVGLLNDGFGRTSEMCTRDLIWVLTKMQIVVNRYPTWGDTVEINSWFSQSGKIGMGRD





WLISDCNTGEILVRATSAWAMMNQKTRRFSKLPCEVRQEIAPHFVDAPPVIEDNDRKLH





KFDVKTGDSICKGLTPGWNDLDVNQHVSNVKYIGWILEKFWRPRSYALSPLNIGGNVE





GKVW





CwFATB3c (SEQ ID NO: 81):


MVVAAAASSAFFPVPAPRTTPKPGKFGNWPSSLSPPFKPKSNPNGRFQVKANVSP





HPKANGSAVSLKSGSLNTLEDLPSSPPPRTFLNQLPDWSRLRTAITTVFVATEKQFTRLD





RKSKRPDMLVDWFGSETIVQDGLVFRERFSIRSYEIGADRTASIETLMNHLQDTSLNHCK





SVGLLNDGFGRTSEMCTRDLIWVLTKMQIVVNRYPTWGDTVEINSWFSQSGKIGMGRD





WLISDCNTGEILVRATSAWAMMNQKTRRFSKLPCEVRQEIAPHFVDAPPVIEDNDRKLH





KFDVKTGDSICKGLTPGWNDLDVNQHVSNVKYIGWILEKFWRPRSYALSPLNIGGNVE





GKVW





CwFATB4a (SEQ ID NO: 31):


MVATAASSAFFPVPSADTSSSRPGKLGSGPSSLSPLKPKSIPNGGLQVKANASAPP





KINGSSVGLKSGGFKTQEDSPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI





AGLSNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK





LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYR





RECGRESVLESLTAVDPSAEGYASRFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPSE





ESSPGDFF





CwFATB4a.1 (SEQ ID NO: 82):


MVATAASSAFFPVPSADTSSSRPGKLGSGPSSLSPLKPKSIPNGGLQVKANASAPP





KINGSSVGLKSGGFKTQEDSPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI





AGLSNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK





LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYR





RECGRESVLESLTAVDPSAEGYASRFQHLLRLEDGGEIVKARTEWRPKNAGINWVVPSE





ESSPGDFF





CwFATB4a.2 (SEQ ID NO: 83):


MVATAASSAFFPVPSADTSSSRPGKLGNGPSSLSPLKPKSIPNGGLQVKANASAPP





KINGSSVGLKSGSFKTQEDAPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI





AGLSNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK





LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYR





RECGRESVLESLTAVDPSAEGYASRFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPSE





ESSPGDFF





CwFATB4a.3 (SEQ ID NO: 84):


MVATAASSAFFPVPSADTSSSRPGKLGSGPSSLSPLKPKSIPNGGLQVKANASAPP





KINGSSVGLKSGGFKTQEDSPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI





AGLSNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK





LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYR





RECGRESVLESLTAVDPSAEGYVSRFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPSE





ESSPGDFF





CwFATB4b (SEQ ID NO: 34):


MVATAASSAFFPVPSADTSSSRPGKLGNGPSSLSPLKPKSIPNGGLQVKANASAPP





KINGSSVGLKSGSFKTQEDAPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI





AGLSSDGFGRTPAMSKRDLIWVVAKMQVMVNRYPAWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK





LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPAEVLETQELCSLTLEY





RRECGRESVLESLTAVDPSGEGDGSKFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPS





EESSPGGDFF





CwFATB4b.1 (SEQ ID NO: 85):


MVATAASSAFFPVPSADTSSSRPGKLGSGPSSLSPLKPKSIPNGGLQVKANASAPP





KINGSSVGLKSGSFKTQEDAPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGSIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKI





AGLSSDGFGRTPAMSKRDLIWVVAKMQVMVNRYPAWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRNEIEPHFVDSAPVVEDDDRK





LPKLDENTADSIRKGLTPRWNDLDVNQHVNNVKYIGWILESTPAEVLETQELCSLTLEY





RRECGRESVLESLTAVDPSGEGDGSKFQHLLRLEDGGEIVKARTEWRPKNAGINGVVPS





EESSPGGDFF





CwFATB5 (SEQ ID NO: 37):


MVAAAASSAFFSVPTPGTPPKPGKFGNWPSSLSVPFKPDNGGFHVKANASAHPK





ANGSAVNLKSGSLETPPRSFINQLPDLSVLLSKITTVFGAAEKQWKRPGMLVEPFGVDRI





FQDGVFFRQSFSIRSYEIGVDRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRD





LIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCRTGEILIRATSVWA





MMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDQKLQKLDVKTGDSIRDGLTPRWND





LDVNQHVNNVKYIGWILKSVPIEVFETQELCGVTLEYRRECGRDSVLESVTAMDPAKEG





DRCVYQHLLRLEDGADITIGRTEWRPKNAGANGAMSSGKTSNGNCLIEGRGWQPFRVV





RLIF





CwFATB5a (SEQ ID NO: 86):


MVAAAASSAFFSVPTPGTPPKPGKFGNWPSSLSVPFKPDNGGFHVKANASAHPK





ANGSAVNLKSGSLETPPRSFINQLPDLSVLLSKITTVFGAAEKQWKRPGMLVEPFGVDRI





FQDGFFFRQSFSIRSYEIGVDRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRD





LIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCRTGEILIRATSVWA





MMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDQKLQKLDVKTGDSIRDGLTPRWND





LDVNQHVNNVKYIGWILKSVPIEVFETQELCGVTLEYRRECGRDSVLESVTAMDPAKEG





DRCVYQHLLRLEDGADITIGRTEWRPKNAGANGAMSSGKTSNGNCLIEGRGWQPFRVV





RLIF





CwFATB5b (SEQ ID NO: 87):


MVAAAASSAFFSVPTPGTPPKPGKFGNWPSSLSVPFKPDNGGFHVKANASAHPK





ANGSAVNLKSGSLETPPRSFINQLPDLSVLLSKITTVFGAAEKQWKRPGMLVEPFGVDRI





FQDGVFFRQSFSIRSYEIGVDRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRD





LIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCRTGEILIRATSVWA





MMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDQKLQKLDVKTGDSIRDGLTPRWND





LDVNQHVNNVKYIGWILKSVPIEVFETQELCGVTLEYRRECGRDSVLESVTAMDPAKEG





DRCVYQHLLWLEDGADITIGRTEWRPKNAGANGAMSSGKTSNGNCLIEGRGWQPFRV





VRLIF





CwFATB5c (SEQ ID NO: 88):


MVAAAASSAFFSVPTPGTPPKPGKFGNWPSSLSVPFKPDNGGFHVKANASAHPK





ANGSAVNLKSGSLETPPRSFINQLPDLSVLLSKITTVFGAAEKQWKRPGMLVEPFGVDRI





FQDGVFFRQSFSIRSYEIGVDRTASIETLMNIFQETSLNHCKSIGLLNDGFGRTPEMCKRD





LIWVVTKIQVEVNRYPIWGDTIEVNTWVSESGKNGMGRDWLISDCRTGEILIRATSVWA





MMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDQKLQKLDVKTGDSIRDGLTPRWND





LDVNQHVNNVKYIGWILKSVPIEVFETQELCGVTLEYRRECGRDSVLESVTAMDPAKEG





DRCVYQHLLRLEDGADITIGRTEWRPKNAGANGAMSSGKTSNGNCLIEGMGWQPFRVV





RLIF





CwFATB5.1 (SEQ ID NO: 89):


MVAAAASSAFFSVPTPGTSPKPGKFRNWPSSLSVPFKPETNHNGGFHIKANASAH





PKANGSALNLKSGSLETQEDTSLSSPPRTFIKQLPDWSMLLSKITTVFGAAEKQLKRPGM





LVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLNDGFG





RTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCRTGE





ILIRATSVWAMMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDRKLYKLNVKTGDSIR





DGLTPRWNDLDVNQHVNNVKFIGWILKSVPTKVFETQELCGVTLEYRRECGKDSVLES





VTAMDPAKEGDRSVYQHLLRLEDGADITIGRTEWRPKNAGANEAISSGKTSNGNSAS





CwFATB5.1a (SEQ ID NO: 90):


MVAAAASSAFFSVPTPGTSPKPGKFRNWPLSLSVPFKPETNHNGGFHIKANASAH





PKANGSALNLKSGSLETQEDTSLSSPPRTFIKQLPDWSMLLSKITTVFGAAEKQLKRPGM





LVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLNDGFG





RTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCRTGE





ILIRATSVWAMMNQNTRRLSKFPYEVRQEIAPHFVDSAPVIEDDRKLYKLNVKTGDSIR





DGLTPRWNDLDVNQHVNNVKFIGWILKSVPTKVFETQELCGVTLEYRRECGKDSVLES





VTAMDPAKEGDRSVYQHLLRLEDGADITIGRTEWRPKNAGANEAISSGKTSNGNSAS





CcFATB2b (SEQ ID NO: 91):


MVTTSLASAYFSMKAVMLAPDGRGIKPRSSGLQVRAGNERNSCKVINGTKVKD





TEGLKGCSTLQGQSMLDDHFGLHGLVFRRTFAIRCYEVGPDRSTSIMAVMNHLQEAAR





NHAESLGLLGDGFGETLEMSKRDLIWVVRRTHVAVERYPAWGDTVEVEAWVGASGNT





GMRRDFLVRDCKTGHILTRCTSVSVMMNMRTRRLSKIPQEVRAEIDPLFIEKVAVKEGEI





KKLQKLNDSTADYIQGGWTPRWNDLDVNQHVNNIIYVGWIFKSVPDSISENHHLSSITLE





YRRECIRGNKLQSLTTVCGGSSEAGIICEHLLQLEDGSEVLRARTEWRPKHTDSFQGISER





FPQQEPHK





CcFATB3 (SEQ ID NO: 7):


MVATAAASAFFPVGAPATSSATSAKASMMPDNLDARGIKPKPASSSGLQVKAN





AHASPKINGSKVSTDTLKGEDTLTSSPAPRTFINQLPDWSMFLAAITTIFLAAEKQWTNL





DWKPRRPDMLADPFGIGRFMQDGLIFRQHFAIRSYEIGADRTASIETLMNHLQETALNH





VRSAGLLGDGFGATPEMSRRDLIWVVTRMQVLVDRYPAWGDIVEVETWVGASGKNG





MRRDWLVRDSQTGEILTRATSVWVMMNKRTRRLSKLPEEVRGEIGPYFIEDVAIIEEDN





RKLQKLNENTADNVRRGLTPRWSDLDVNQHVNNVKYIGWILESAPGSILESHELSCMTL





EYRRECGKDSVLQSMTAVSGGGSAAGGSPESSVECDHLLQLESGPEVVRGRTEWRPKS





ANNSRSILEMPAESL





CcFATB3b (SEQ ID NO: 92):


MVATAAASAFFPVGAPATSSATSAKASMMPDNLDARGIKPKLASSSGLQVKAN





AHASPKINGSKVSTDTLKGEDTLTSSPAPRTFINQLPDWSMFLAAITTIFLAAEKQWTNL





DWKPRRPDMLADPFGIGRFMQDGLIFRQHFAIRSYEIGADRTASIETLMNHLQETALNH





VRSAGLLGDGFGATPEMSRRDLIWVVTRMQVLVDRYPAWGDIVEVETWVGASGKNG





MRRDWLVRDSQTGEILTRATSVWVMMNKRTRRLSKLPEEVRGEIGPYFIEDVAIIEEDN





RKLQKLNENTADNVRRGLTPRWSDLDVNQHVNNVKYIGWILESAPGSILESHELSCMTL





EYRRECGKDSVLQSMTAVSGGGSAAGGSPESSVECDHLLQLESGPEVVRGRTEWRPKS





ANNSRSILEMPAESL





CcFATB3c (SEQ ID NO: 93):


MVATAAASAFFPVGAPATSSATSAKASMMPDNLDARGIKPKPASSSGLQVKAN





AHASPKINGSKVSTDTLKGEDTLTSSPAPRTFINQLPDWSMFLAAITTIFLAAEKQWTNL





DWKPRRPDMLADPFGIGRFMQDGLIFRQHFAIRSYEIGADRTASIETLMNHLQETALNH





VRSAGLLGDGFGATPEMSRRDLIWVVTRMQVLVDRYPAWGDIVEVETWVGASGKNG





MRRDWLVRDSQTGEILTRATSVWVMMNKRTRRLSKLPEEVRGEIGPYFIEDVAIIEEDN





RKLQKLNENTADNVRRGLTPRWSDLDVNQHVNNAKYIGWILESAPGSILESHELSCMTL





EYRRECGKDSVLQSMTAVSGGGSAAGGSPESSVECDHLLQLESGPEVVRGRTEWRPKS





ANNSRSILEMPAESL





ChtFATB1a (SEQ ID NO: 40):


MVAAAASSAFFSVPTPGTSTKPGNFGNWPSSLSVPFKPESNHNGGFRVKANASA





HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWGMLLSKITTVFGAAERQWKRP





GMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND





GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCR





TGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTGD





SIRKGLTPRWNDLDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSVL





ESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGAISTGKTSNENSVS





ChtFATB1a.1 (SEQ ID NO: 94):


MVAAAASSAFFSVPTPGTSPKPGNFGNWPSSLSVPFKPESNHNGGFRVKANASA





HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWGMLLSKITTVFGAAERQWKRP





GMLVEPFGVDRIFQDGVFFRHSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND





GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLIGDC





RTGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTG





DSIRKGLTPRWNDLDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDS





VLESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGALSTGKTSNGN





SVS





ChtFATB1a.2 (SEQ ID NO: 95):


MVAAAASSAFFSVPTPGTSPKPGNFGNWPSNLSVPFKPESNHNGGFRVKANASA





HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWGMLLSKITTVFGAAERQWKRP





GMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND





GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCR





TGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTGD





SIRKGLTPRWNDFDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSVL





ESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGAISTGKTSNENSVS





ChtFATB1a.3 (SEQ ID NO: 96):


MVAAAASSAFFSVPTPGTSPKPGNFGNWPSSLSVPFKPESNHNGGFRVKANASA





HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWGMLLSKITTVFGAAERQWKRP





GMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND





GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCR





TGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTGD





SIRKGLTPRWNDFDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSVL





ESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGVNGAISTGKTSNENSVS





ChtFATB1a.4 (SEQ ID NO: 97):


MVAAAASSAFFSVPTPGTSPKPGNFGNWPSSLSVPFKPESNHNGGFRVKANASA





HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWSMLLSKITTVFGAAERQWKRP





GMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND





GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCR





TGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTGD





SIRKGLTPRWNDFDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSVL





ESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGAISTGKTSNENSVS





ChtFATB1b (SEQ ID NO: 43):


MVAAAASSAFFSVPTSGTSPKPGNFGNWPSSLSVPFKPESSHNGGFQVKANASA





HPKANGSAVNLKSGSLETQEDTSSSSPPPRTFIKQLPDWSMLLSKITTVFWAAERQWKRP





GMLVEPFGVDRIFQDGVFFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHCKSIGLLND





GFGRTPEMCKRDLIWVVTKIQVEVNRYPTWGDTIEVNTWVSESGKNGMGRDWLISDCR





TGEILIRATSVWAMMNRKTRRLSKFPYEVRQEIAPHFVDSAPVIEDDKKLHKLDVKTGD





FIRKGLTPRWNDFDVNQHVNNVKYIGWILKSVPAEVFETQELCGVTLEYRRECGRDSVL





ESVTAMDTAKEGDRSLYQHLLRLEDGADITIGRTEWRPKNAGANGAISTGKTSNENSVS





ChtFATB2b (SEQ ID NO: 46):


MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA





HPKANGSAVSLKSGSLNTQEGTSSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQLTMLD





RKSKKPDMHVDWFGLEIIVQDGLVFRESFSIRSYEIGADRTASIETLMNHLQDTSLNHCK





SVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYPTWGDTVEINSWFSQSGKIGMGRN





WLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLHK





FDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYRRE





CGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGK





TSNGNSVS





ChtFATB2a (SEQ ID NO: 49):


MVVAAAASSAFFPVPAPGTTSKPGKFGNWPSSLSPSFKPKSNPNGGFQVKANAS





AHPKANGSAVSLKSGSLNTKEDTPSSPPPRTFLNQLPDWSRLRTAITTVFVAAEKQLTML





DRKSKKPDMHVDWFGLEIIVQDWLVFRESFSIRSYEIGADRTASIETLMNHLQDTSLNHC





KSVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYPTWGDTVEINSWFSQSGKIGMGR





NWLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDAPPLIEDNDRKLH





KFDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYRR





ECGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTG





KTSNGNSVS





ChtFATB2c (SEQ ID NO: 52):


MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA





HPKANGSAVSLKSGSLNTKEDTPSSPPPRTFLNQLPDWNRLRTAITTVFVAAEKQLTML





DRKSKKPDMHVDWFGLEIIVQDGLVFRESFSIRSYEIGADRTASIETLMNHLQDTSLNHC





KSVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYPTWGDTVEINSWFSQSGKIGMGR





NWLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLH





KFDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYRR





ECGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTG





KTSNGNSVS





ChtFATB2d (SEQ ID NO: 55):


MVVAAAASSAFFPVPAPGTTSKPGKFGNWPSSLSPSFKPKSNPNGGFQVKANAS





AHPKANGSAVSLKSGSLNTQEDTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTML





DRKSKRPDMLVDLFGLESIVQDGLVFRESYSIRSYEIGADRTASIETLMNHLQDTSLNHC





KSVGLLNDGFGRTPEMCKRDLIWVLTKMQIMVNRYPTWGDTVEINSWFSQSGKIGMGR





NWLISDCNTGEILIRATSIWAMMNQNTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLH





KFDVKTGDSIRKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYRR





ECGRESVLESVTAMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNGAISTG





KTSNGNSVS





ChtFATB2e (SEQ ID NO: 58):


MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA





HPKANGSAVSLKSGSLNTQEDTSSSPPPQTFLNQLPDWSRLLTAISTVFVAAEKQLTMLD





RKSKRPDMLVDWFGLESIVQDGLVFRESYSIRSYEISADRTASIETVMNLLQETSLNHCK





SMGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYPNWGDTVEINSWFSQSGKIGMGRN





WLISDCNTGEILIRATSIWAMMNQNTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLHK





FDVKTGDSIRKGLTPGWNDLDVNQHVSNVKYIGWILESMPTEVLETQELCSLTLEYRRE





CGRDSVLESVTAMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNGAISTGK





TSNGNSVS





ChtFATB2f (SEQ ID NO: 61):


MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA





HPKANGSAVSLKSGSLNTQEGTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTMLD





RKSKRPDMLVDWFGLESIVQDGLVFRESYSIRSYEISADRTASIETVMNLLQETSLNHCK





SMGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYPNWGDTVEINSWFSQSGKIGMGRN





WLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLHK





FDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYRRE





CGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGK





TSNGNSVS





ChtFATB2g (SEQ ID NO: 64):


MVVAATASSAFFPVPVPGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA





HPKANGSAVSLKSGSLNTQEDTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTMLD





RKSKRPDMLVDWFGLESIVQDGLVFREIYSIRSYEISADRTTSIETVMNLLQETSLNHCKS





MGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYPNWGDTVEINSWFSQSGKIGMGRN





WLISDCNTGEILIRATSIWAMMNQKTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLHK





FDVKTGDSICKGLTPEWNDLDVNQHVSNVKYIGWILESMPKEVLDTQELCSLTLEYRRE





CGRDSVLESVTAMDPSKVGDRSQYQHLLRLEDGTDIMKGRTEWRPKNAGTNGAISTGK





TSNANSVS





ChtFATB2h (SEQ ID NO: 98):


MVVAAAASSAFFPVPASGTSPKPGKFGTWLSSSSPSYKPKSNPSGGFQVKANASA





HPKANGSAVSLKSGSLNTQEGTSSSPPPRTFLNQLPDWSRLLTAISTVFVAAEKQLTMLD





RKSKRPDMLVDWFGLESIVQDGLVFRESYSIRSYEISADRTASIETVMNLLQETSLNHCK





SMGILNDGFGRTPEMCKRDLIWVLTKMQILVNRYPNWGDTVEINSWFSQSGKIGMGRN





WLISDCNTGEILIRATSIWAMMNQNTRRFSKLPNEVRQEIAPHFVDAPPVIEDNDRKLHK





FDVKTGDSIRKGLTPGWNDLDVNQHVSNVKYIGWILESIPTEVLETQELCSLTLEYRREC





GRESVLESVTAMNPSKVGDRSQYQHLLRLEDGADIMKGRTEWRPKNAGTNGAISTGKT





SNGNSVS





ChtFATB3a (SEQ ID NO: 67):


MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP





KINGSSVSLKSCSLKTHEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS





AGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDWK





LPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEY





RRECGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASG





ETSPGNS





ChtFATB3b (SEQ ID NO: 70):


MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP





KINGSSVSLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGFGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS





AGLLIEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMRR





DWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDWKL





PKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEYR





RECGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASGE





TSPGNS





ChtFATB3c (SEQ ID NO: 99):


MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP





KINGSSVSLKSCSLKTHEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS





AGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDRK





LPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEY





RRECGRESVLESLTAVDPSEKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGAIAFG





ETSPGDS





ChtFATB3d (SEQ ID NO: 100):


MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP





KINGSSVSLKSCSLKTHEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIKTVMNHLQETALNHVK





SAGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGM





RRDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDW





KLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLE





YRRECGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIAS





GETSPGNS





ChtFATB3e (SEQ ID NO: 101):


MVATAASSAFFPVPSPDTSSRPGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP





KINGSSVSLKSGSLKTHEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS





AGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDWK





LPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEY





RRECGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASG





ETSPGNS





ChtFATB3f (SEQ ID NO: 102):


MVATAASSAFFPVPSPDTSSRLGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP





KINGSSVSLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMPVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS





AGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDWK





LPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEY





RRECGRESVLESLTAVDPSEKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASG





ETSPGNS





ChtFATB3g (SEQ ID NO: 103):


MVATAASSAFFPVPSPDTSSRAGKLGNGSSSLRPLKPKFVANAGLQVKANASAPP





KINGSSVSLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLDW





KPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHVKS





AGLLNEGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNGMR





RDWLISDCNTGEILTRASSVWVMMNQKTRKLSKIPDEVRHEIEPHFVDSAPVIEDDDWK





LPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTLEY





RRECGRESVLESLTAVDPSGKGFGPQFQHLLRLEDGGEIVKGRTEWRPKTAGINGTIASG





ETSPGNS





ChsFATB1 (SEQ ID NO: 10):


MVATNAAAFSAYTFFLTSPTHGYSSKRLADTQNGYPGTSLKSKSTPPPAAAAAR





NGALPLLASICKCPKKADGSMQLDSSLVFGFQFYIRSYEVGADQTVSIQTVLNYLQEAAI





NHVQSAGYFGDSFGATPEMTKRNLIWVITKMQVLVDRYPAWGDVVQVDTWTCSSGKN





SMQRDWFVRDLKTGDIITRASSVWVLMNRLTRKLSKIPEAVLEEAKLFVMNTAPTVDD





NRKLPKLDGSSADYVLSGLTPRWSDLDMNQHVNNVKYIAWILESVPQSIPETHKLSAIT





VEYRRECGKNSVLQSLTNVSGDGITCGNSIIECHHLLQLETGPEILLARTEWISKEPGFRG





APIQAEKVYNNK





ChsFATB2 (SEQ ID NO: 13):


MVATAASSAFFPVPSPDASSRPGKLGNGSSSLSPLKPKLMANGGLQVKANASAP





PKINGSSVGLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLD





WKPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHV





KSAGLLNDGFGRTLEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNG





MRRDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRHEIEPHFVDSAPVIEDDD





RKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTL





EYRRECGRESVLESLTAVDPSGKGSGSQFQHLLRLEDGGEIVKGRTEWRPKTAGINGPIA





SGETSPGDSS





ChsFatB2b (SEQ ID NO: 16):


MVATAASSAFFPVPSPDASSRPGKLGNGSSSLSPLKPKLMANGGLQVKANASAP





PKINGSSVGLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLD





WKPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHV





KSAGLLNDGFGRTLEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNG





MRRDWLISDCNTGEILTRASSKSQIMLPLHYCSVWVMMNQKTRRLSKIPDEVRHEIEPH





FVDSAPVIEDDDRKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPE





VLETQELCSLTLEYRRECGRESVLESLTAVDPSGKGSGSQFQHLLRLEDGGEIVKGRTEW





RPKTAGINGPIASGETSPGDSS





ChsFatB2c (SEQ ID NO: 104):


MVATAASSAFFPVPSPDASSRPGKLGNGSSSLSPLKPKLMANGGLQVKANASAP





PKINGSSVGLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLD





WKPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHV





KSAGLLNDGFGRTLEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNG





MRRDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRHEIEPHFVDSAPVIEDDD





RKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTL





EYRRECGRESVLESLTAVDPSGKGSGSQFQHLMRLEDGGEIVKGRTEWRPKTAGINGPI





ASGETSPGDSS





ChsFatB2d (SEQ ID NO: 105):


MVATAASSAFFPVPSPDASSRPGKLGNGSSSLSPLKPKLMANGGLQVKANASAP





PKINGSSVGLKSGSLKTQEDTPSAPPPRTFINQLPDWSMLLAAITTVFLAAEKQWMMLD





WKPKRPDMLVDPFGLGRIVQDGLVFRQNFSIRSYEIGADRTASIETVMNHLQETALNHV





KSAGLLNDGFGRTPEMYKRDLIWVVAKMQVMVNRYPTWGDTVEVNTWVAKSGKNG





MRRDWLISDCNTGEILTRASSVWVMMNQKTRRLSKIPDEVRHEIEPHFVDSAPVIEDDD





RKLPKLDEKTADSIRKGLTPKWNDLDVNQHVNNVKYIGWILESTPPEVLETQELCSLTL





EYRRECGRESVLESLTAVDPSGKGSGSQFQHLLRLEDGGEIVKGRTEWRPKTAGINGPIA





SGETSPGDSS





Chs FATB3 (SEQ ID NO: 19):


MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA





RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML





DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC





KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG





RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL





HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR





RECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAIST





GKTSNGNSIS





ChsFatb3b (SEQ ID NO: 22):


MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA





RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML





DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC





KSIGLLNDGFGRTPEMCKRDLIWVVTKMHIEVNRYPTWGDTIEVNTWVSESGKTGMGR





DWLISDFHTGDILIRATSVCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKLH





KLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYRR





ECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAISTG





KTSNGNSIS





ChsFatB3c (SEQ ID NO: 106):


MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA





RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML





DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC





KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG





RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL





HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR





QECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGTDIAKGRTKWRPKNAGKTSNGNS





IS


ChsFATB3d (SEQ ID NO: 107):


MVAAEASSALFSVRTPGTSPKPGKFGNWPSSLSVPFKSKSNHNGGFQVKANASA





RPKANGSAVSLKSGSLDTQEDASSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML





DRKSKRSDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC





KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG





RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL





HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR





RECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAIST





GKTSNGNSIS





ChsFATB3e (SEQ ID NO: 108):


MVAAEASSALFSVRTPGTSPKPGKFGNWPSSLSVPFKSKSNHNGGFQVKANASA





RPKANGSAVSLKSGSLDTQEDASSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML





DRKSKRSDMLMDPFGVDRVVQDGVVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC





KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG





RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL





HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR





RECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAIST





GKTSNGNSIS





ChsFATB3f (SEQ ID NO: 109):


MVAAEASSALFSVRTPGTSPKPGKFGNWPSSLSVPFKSKSNHNGGFQVKANASA





RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML





DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC





KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG





RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL





HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR





RECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAIST





GKTSNGNSIS





ChsFATB3g (SEQ ID NO: 110):


MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA





RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML





DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC





KSIGLLNDGFGRTPEMCKRDLIWVVTKMHIEVNRYPTWGDTIEVNTWVSESGKTGMGR





DWLISDFHTGDILIRATSVCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKLH





KLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYRQ





ECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGTDIAKGRTKWRPKNAGKTSNGNSIS





ChsFATB3h (SEQ ID NO: 111):


MVAAEASSALFSVRTPGTSPKPGKFGNWPSSLSVPFKSKSNHNGGFQVKANASA





RPKANGSAVSLKSGSLDTQEDASSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML





DRKSKRSDMLMDPFGVDRVVQDGVVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC





KSIGLLNDGFGRTPEMCKRDLIWVVTKMHIEVNRYPTWGDTIEVNTWVSESGKTGMGR





DWLISDFHTGDILIRATSVCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKLH





KLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYRQ





ECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGTDIAKGRTKWRPKNAGKTSNGNSIS





ChsFATB3i (SEQ ID NO: 112):


MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA





RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML





DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC





KSIGLLNDGFGRTPEMCKRDLIWVVTKMHVEVNRYPTWGDTIEVNTWVSESGKTGMG





RDWLISDCHTGEILIRATSMCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKL





HKLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYR





RECGGDSVLESVTAMDPSKEGDRSLYQHLLRLEDGADIAKGRTKWRPKNAGTNGAIST





GKTSNGNSIS





ChsFATB3j (SEQ ID NO: 113):


MVAAEASSALFSVRTPGTSPKPGKFGNWPTSLSVPFKSKSNHNGGFQVKANASA





RPKANGSAVSLKSGSLDTQEDTSSSSSPPRTFINQLPDWSMLLSAITTVFVAAEKQWTML





DRKSKRPDMLMDPFGVDRVVQDGAVFRQSFSIRSYEIGADRTASIETLMNIFQETSLNHC





KSIGLLNDGFGRTPEMCKRDLIWVVTKMHIEVNRYPTWGDTIEVNTWVSESGKTGMGR





DWLISDFHTGDILIRATSVCAMMNQKTRRFSKFPYEVRQELAPHFVDSAPVIEDYQKLH





KLDVKTGDSICNGLTPRWNDLDVNQHVNNVKYIGWILESVPTEVFETQELCGLTLEYRQ





ECGRDSVLESVTAMDPSKEGDRSLYQHLLRLEDGTDIAKGRTKWRPKNAGKTSNGNSIS









EXAMPLE 2

In the example below, we detail the effect of expressing plant oilseed transcriptome-derived, heterologous thioesterases in the UTEX1435 (web.biosci.utexas.edu/utex/) strain, Strain A.


As in Example 1, RNA was extracted from dried plant seeds and submitted for paired-end sequencing using the Illumina Hiseq 2000 platform. RNA sequence reads were assembled into corresponding seed transcriptomes using Trinity or Oases packages and putative thioesterase-containing cDNA contigs were identified by mining transcriptomes for sequences with homology to known thioesterases. These in silico identified putative thioesterase cDNAs were verified by direct reverse transcription PCR analysis using seed RNA and primer pairs targeting full-length thioesterase cDNAs. The resulting amplified products were cloned and sequenced de novo to confirm authenticity of identified thioesterase genes and to identify sequence variants arising from expression of different gene alleles or diversity of sequences within a population of seeds. The resulting amino acid sequences were subjected to phylogenetic analysis using published full-length (Mayer and Shanklin, 2007) and truncated (THYME database) FatB sequences. The thioesterases that clustered with acyl-ACP FatB thioesterases, which are involved in biosynthesis of C8-C16 fatty acids, were pursued.


Construction of Transforming Vectors Expressing Acyl-ACP FatB Thioesterases


27 putative acyl-ACP FatB thioesterases from the species Cinnamomum camphora, Cuphea hyssopifolia, Cuphea PSR23, Cuphea wrightii, Cuphea heterophylla, and Cuphea viscosissima were synthesized in a codon-optimized form to reflect Prototheca moriformis (UTEX 1435) codon usage. Of the 27 genes synthesized, 24 were identified by our transcriptome sequencing efforts and the 3 genes from Cuphea viscosissima, were from published sequences in GenBank.


Transgenic strains were generated via transformation of the base strain Strain A (Prototheca moriformis, derived from UTEX 1435 by classical mutation and screening for high oil production) with a construct encoding 1 of the 27 FatB thioesterases. The construct pSZ2760 encoding Cinnamomum camphora (Cc) FATB1b is shown as an example, but identical methods were used to generate each of the remaining 26 constructs encoding the different respective thioesterases. Construct pSZ2760 can be written as 6S::CrTUB2: ScSUC2: CvNR::PmAMT3: CcFATB1b:CvNR::6S. The sequence of the transforming DNA is provided in Table 5 (pSZ2760). The relevant restriction sites in the construct from 5′-3′, BspQ1, KpnI, AscI, MfeI, EcoRI, SpeI, XhoI, SacI, BspQ1, respectively, are indicated in lowercase, bold, and underlined. BspQ1 sites delimit the 5′ and 3′ ends of the transforming DNA. Bold, lowercase sequences at the 5′ and 3′ end of the construct represent genomic DNA from UTEX 1435 that target integration to the 6S locus via homologous recombination. Proceeding in the 5′ to 3′ direction, the selection cassette has the C. reinhardtii f3-tubulin promoter driving expression of the S. cerevisiae gene SUC2 (conferring the ability to grow on sucrose) and the Chlorella vulgaris Nitrate Reductase (NR) gene 3′ UTR. The promoter is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for ScSUC2 are indicated by bold, uppercase italics, while the coding region is indicated with lowercase italics. The 3′ UTR is indicated by lowercase underlined text. The spacer region between the two cassettes is indicated by upper case text. The second cassette containing the codon optimized CcFATB1b gene (Table 5; pSZ2760) from Cinnamomum camphora is driven by the Prototheca moriformis endogenous AMT3 promoter, and has the Chlorella vulgaris Nitrate Reductase (NR) gene 3′ UTR. In this cassette, the AMT3 promoter is indicated by lowercase, boxed text. The initiator ATG and terminator TGA for the CcFATB1b gene are indicated in bold, uppercase italics, while the coding region is indicated by lowercase italics and the spacer region is indicated by upper case text. The 3′ UTR is indicated by lowercase underlined text. The final construct was sequenced to ensure correct reading frame and targeting sequences.









TABLE 5





pSZ2760 Transforming construct (SEQ ID NO: 114)

















gctcttc

gccgccgccactcctgctcgagcgcgcccgcgcgtgcgccgccagcgccttggccttttcgccgcgctcgtgcgcgtcgct







gatgtccatcaccaggtccatgaggtctgccttgcgccggctgagccactgcttcgtccgggcggccaagaggagcatgagggag







gactcctggtccagggtcctgacgtggtcgcggctctgggagcgggccagcatcatctggctctgccgcaccgaggccgcctccaa







ctggtcctccagcagccgcagtcgccgccgaccctggcagaggaagacaggtgaggggggtatgaattgtacagaacaaccacg







agccttgtctaggcagaatccctaccagtcatggctttacctggatgacggcctgcgaacagctgtccagcgaccctcgctgccgcc







gcttctcccgcacgcttctttccagcaccgtgatggcgcgagccagcgccgcacgctggcgctgcgcttcgccgatctgaggacagt







cggggaactctgatcagtctaaacccccttgcgcgttagtgttgccatcctttgcagaccggtgagagccgacttgttgtgcgccacc







ccccacaccacctcctcccagaccaattctgtcacctttttggcgaaggcatcggcctcggcctgcagagaggacagcagtgccca








embedded image









embedded image









embedded image









embedded image








ctgcaggccttcctgttcctgctggccggcttcgccgccaagatcagcgcctccatgacgaacgagacgtccgaccgccccctggtgca







cttcacccccaacaagggctggatgaacgaccccaacggcctgtggtacgacgagaaggacgccaagtggcacctgtacttccagt







acaacccgaacgacaccgtctgggggacgcccttgttctggggccacgccacgtccgacgacctgaccaactgggaggaccagccc







atcgccatcgccccgaagcgcaacgactccggcgccttctccggctccatggtggtggactacaacaacacctccggcttcttcaacga







caccatcgacccgcgccagcgctgcgtggccatctggacctacaacaccccggagtccgaggagcagtacatctcctacagcctgga







cggcggctacaccttcaccgagtaccagaagaaccccgtgctggccgccaactccacccagttccgcgacccgaaggtcttctggtac







gagccctcccagaagtggatcatgaccgcggccaagtcccaggactacaagatcgagatctactcctccgacgacctgaagtcctgg







aagctggagtccgcgttcgccaacgagggcttcctcggctaccagtacgagtgccccggcctgatcgaggtccccaccgagcaggac







cccagcaagtcctactgggtgatgttcatctccatcaaccccggcgccccggccggcggctccttcaaccagtacttcgtcggcagcttc







aacggcacccacttcgaggccttcgacaaccagtcccgcgtggtggacttcggcaaggactactacgccctgcagaccttcttcaaca







ccgacccgacctacgggagcgccctgggcatcgcgtgggcctccaactgggagtactccgccttcgtgcccaccaacccctggcgctc







ctccatgtccctcgtgcgcaagttctccctcaacaccgagtaccaggccaacccggagacggagctgatcaacctgaaggccgagcc







gatcctgaacatcagcaacgccggcccctggagccggttcgccaccaacaccacgttgacgaaggccaacagctacaacgtcgacc







tgtccaacagcaccggcaccctggagttcgagctggtgtacgccgtcaacaccacccagacgatctccaagtccgtgttcgcggacct







ctccctctggttcaagggcctggaggaccccgaggagtacctccgcatgggcttcgaggtgtccgcgtcctcctcttcctggaccgcgg







gaacagcaaggtgaagttcgtgaaggagaacccctacttcaccaaccgcatgagcgtgaacaaccagcccttcaagagcgagaac







gacctgtcctactacaaggtgtacggcttgctggaccagaacatcctggagctgtacttcaacgacggcgacgtcgtgtccaccaacac







ctacttcatgaccaccgggaacgccctgggctccgtgaacatgacgacgggggtggacaacctgttctacatcgacaagttccaggtg








embedded image








acttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgtttgatcttgtgtgtacgcgcttttgcgagttgctagctgc







ttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcatcccaaccgcaacttatctacgctgtcctgctatccct







cagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgcctgtattctcctggtactgcaacctgtaaaccagcac








embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image








catgaaggccgtgatgctggcccgcgacggccgcggcctgaagccccgctcctccgacctgcagctgcgcgccggcaacgcccaga







cctccctgaagatgatcaacggcaccaagttctcctacaccgagtccctgaagaagctgcccgactggtccatgctgttcgccgtgatc







accaccatcttctccgccgccgagaagcagtggaccaacctggagtggaagcccaagcccaaccccccccagctgctggacgacca







cttcggcccccacggcctggtgttccgccgcaccttcgccatccgctcctacgaggtgggccccgaccgctccacctccatcgtggccgt







gatgaaccacctgcaggaggccgccctgaaccacgccaagtccgtgggcatcctgggcgacggcttcggcaccaccctggagatgt







ccaagcgcgacctgatctgggtggtgaagcgcacccacgtggccgtggagcgctaccccgcctggggcgacaccgtggaggtgga







gtgctgggtgggcgcctccggcaacaacggccgccgccacgacttcctggtgcgcgactgcaagaccggcgagatcctgacccgct







gcacctccctgtccgtgatgatgaacacccgcacccgccgcctgtccaagatccccgaggaggtgcgcggcgagatcggccccgcct







tcatcgacaacgtggccgtgaaggacgaggagatcaagaagccccagaagctgaacgactccaccgccgactacatccagggcg







gcctgaccccccgctggaacgacctggacatcaaccagcacgtgaacaacatcaagtacgtggactggatcctggagaccgtgccc







gactccatcttcgagtcccaccacatctcctccttcaccatcgagtaccgccgcgagtgcacccgcgactccgtgctgcagtccctgacc







accgtgtccggcggctcctccgaggccggcctggtgtgcgagcacctgctgcagctggagggcggctccgaggtgctgcgcgccaag







accgagtggcgccccaagctgtccttccgcggcatctccgtgatccccgccgagtcctccgtgatggactacaaggaccacgacggcg







actacaaggaccacgacatcgactacaaggacgacgacgacaag
TGA

ctcgaggcagcagcagctcggatagtatcgacacact








ctggacgctggtcgtgtgatggactgttgccgccacacttgctgccttgacctgtgaatatccctgccgcttttatcaaacagcctcagtgtgttt







gatcttgtgtgtacgcgcttttgcgagttgctagctgcttgtgctatttgcgaataccacccccagcatccccttccctcgtttcatatcgcttgcat







cccaaccgcaacttatctacgctgtcctgctatccctcagcgctgctcctgctcctgctcactgcccctcgcacagccttggtttgggctccgc







ctgtattctcctggtactgcaacctgtaaaccagcactgcaatgctgatgcacgggaagtagtgggatgggaacacaaatggaAAGCT






GTATAGGGATAACAGGGTAATgagctcttgttttccagaaggagttgctccttgagcctttcattctcagcctcgata






acctccaaagccgctctaattgtggagggggttcgaatttaaaagcttggaatgttggttcgtgcgtctggaacaagcccagacttgt







tgctcactgggaaaaggaccatcagctccaaaaaacttgccgctcaaaccgcgtacctctgctttcgcgcaatctgccctgttgaaa







tcgccaccacattcatattgtgacgcttgagcagtctgtaattgcctcagaatgtggaatcatctgccccctgtgcgagcccatgcca







ggcatgtcgcgggcgaggacacccgccactcgtacagcagaccattatgctacctcacaatagttcataacagtgaccatatttctc







gaagctccccaacgagcacctccatgctctgagtggccaccccccggccctggtgcttgcggagggcaggtcaaccggcatgggg







ctaccgaaatccccgaccggatcccaccacccccgcgatgggaagaatctctccccgggatgtgggcccaccaccagcacaacct







gctggcccaggcgagcgtcaaaccataccacacaaatatccttggcatcggccctgaattccttctgccgctctgctacccggtgctt







ctgtccgaagcaggggttgctagggatcgctccgagtccgcaaacccttgtcgcgtggcggggcttgttcgagctt

gaagagc











Constructs encoding the identified heterologous FatB genes, such as CcFATB1b from pSZ2760 in Table 6, were transformed into Strain A, and selected for the ability to grow on sucrose. Transformations, cell culture, lipid production and fatty acid analysis were all carried out as previously described. After cultivating on sucrose under low nitrogen conditions to accumulate oil, fatty acid profiles were determined by FAME-GC. The top performer from each transformation, as judged by the ability to produce the highest level of midchain fatty acids, is shown in Table 4.









TABLE 6







Alteration of Fatty Acid Profiles in S3150 upon Expression of Heterologous FatB


Thioesterases










SZ
FA profile of top performer from each transformation (%; primary lipid in Strain A background)



















Species
Gene Name
Plasmid
Strain
C8:0
C10:0
C12:0
C14:0
C16:0
C18:0
C18:1
C18:2
C18:3α























Cinnamomum

CcFATB1b
pSZ2760
A; T526;
0
0
1
15
26
2
46
9
1



camphora



D1670-13



Cinnamomum

CcFATB4
pSZ2756
A; T525;
0
1
33
4
7
2
41
10
1



camphora



D1666-31



Cinnamomum

CcFATB3
pSZ2755
A; T525;
0
0
0
3
44
3
41
8
0



camphora



D1665-4



Cuphea hyssopifolia

ChsFATB1
pSZ2778
A; T535;
0
0
0
2
22
4
63
8
1





D1689-30



Cuphea hyssopifolia

ChsFATB2
pSZ2796
A; T537;
0
0
0
6
53
3
32
6
0





D1700-46



Cuphea hyssopifolia

ChsFATB2b
pSZ2792
A; T537;
0
0
0
5
26
2
56
9
1





D1696-9



Cuphea hyssopifolia

ChsFATB3
pSZ2797
A; T537;
0
0
8
34
27
2
24
5
1





D1701-48



Cuphea hyssopifolia

ChsFATB3b
pSZ2795
A; T537;
0
0
7
29
27
1
28
6
1





D1699-1



Cuphea PSR23

CuPSR23FATB3
pSZ2793
A; T537;
0
1
0
2
24
3
61
8
1





D1697-13



Cuphea wrightii

CwFATB3
pSZ2751
A; T525;
0
2
17
9
19
2
41
8
1





D1661-22



Cuphea wrightii

CwFATB4a
pSZ2752
A; T525;
0
0
0
4
48
3
36
7
1





D1662-30



Cuphea wrightii

CwFATB4b
pSZ2753
A; T525;
0
0
0
5
52
3
32
6
1





D1663-29



Cuphea wrightii

CwFATB5
pSZ2754
A; T525;
0
0
0
3
27
3
57
7
1





D1664-39



Cuphea heterophylla

ChtFATB1a
pSZ2757
A; T525;
0
0
5
18
27
2
39
7
1





D1667-19



Cuphea heterophylla

ChtFATB1b
pSZ2773
A; T535;
0
0
2
7
27
3
53
8
1





D1685-29



Cuphea heterophylla

ChtFATB2b
pSZ2780
A; T535;
0
0
0
2
25
3
61
8
1





D1691-8



Cuphea heterophylla

ChtFATB2a
pSZ2774
A; T537;
0
0
0
2
27
3
59
6
0





D1702-24



Cuphea heterophylla

ChtFATB2c
pSZ2758
A; T525;
0
0
3
2
23
3
58
7
1





D1668-22



Cuphea heterophylla

ChtFATB2d
pSZ2759
A; T526;
0
0
4
4
23
3
54
9
1





D1669-19



Cuphea heterophylla

ChtFATB2e
pSZ2775
A; T535;
0
1
2
3
24
3
57
8
1





D1686-23



Cuphea heterophylla

ChtFATB2f
pSZ2777
A; T535;
0
0
0
2
28
3
57
8
1





D1688-33



Cuphea heterophylla

ChtFATB2g
pSZ2794
A; T537;
0
0
0
2
22
3
62
9
1





D1698-19



Cuphea heterophylla

ChtFATB3a
pSZ2776
A; T535;
0
0
0
5
47
4
37
7
1





D1687-23



Cuphea heterophylla

ChtFATB3b
pSZ2779
A; T535;
0
0
0
6
49
5
32
7
0





D1690-31



Cuphea viscosissima

CvisFATB1
pSZ2810
A; T540;
0
1
0
2
24
3
60
8
0





D1711-30



Cuphea viscosissima

CvisFATB2
pSZ2817
A; T547;
0
0
0
4
51
2
36
6
0





D1718-1



Cuphea viscosissima

CvisFATB3
pSZ2791
A; T537;
0
0
0
8
28
2
52
8
1





D1695-1





A (parent
0
0
0
2
28
3
58
7
0





strain):









Many of the acyl-ACP FatB thioesterases were found to exhibit midchain activity when expressed in Prototheca moriformis. For example, expression of CcFATB1b causes an increase in myristate levels from 2% of total fatty acids in the parent, Strain A, to ˜15% in the D1670-13 primary transformant. Other examples include CcFATB4, which exhibits an increase in laurate levels from 0% in Strain A to ˜33%, and ChsFATB3, which exhibits an increase in myristate levels to ˜34%. Although some of the acyl-ACP thioesterases did not exhibit dramatic effects on midchain levels in the current incarnation, efforts will likely develop to optimize some of these constructs.


Sequences of the Heterologous Acyl-ACP Thioesterases Identified and Transformed into P. moriformis (UTEX 1435)


A complete listing of relevant sequences for the transforming constructs, such as the deduced amino acid sequence of the encoded acyl-ACP thioesterase, the native CDS coding sequence, the Prototheca moriformis codon-optimized coding sequence, and the nature of the sequence variants examined, is provided as SEQ ID NOS: 1-78.

Claims
  • 1. A recombinant nucleic acid having at least 97% sequence identity to any of SEQ ID NOS: 5 or 6, or any equivalent sequences by virtue of the degeneracy of the genetic code, wherein the recombinant nucleic acid encodes a protein having acyl-ACP thioesterase activity.
  • 2. A recombinant nucleic acid encoding a protein having at least 90% sequence identity to SEQ ID NO: 4 and acyl-ACP thioesterase activity, wherein the recombinant nucleic acid also comprises a heterologous nucleic acid.
  • 3. A method of producing a recombinant cell, the method comprising transforming the cell with a nucleic acid according to any of claim 1 or 2.
  • 4. A host cell comprising a recombinant nucleic acid encoding a protein having at least 90% sequence identity to SEQ ID NO:4 and acyl-ACP thioesterase activity, wherein the recombinant nucleic acid comprises an exogenous nucleic acid, and wherein the host cell has an altered fatty acid profile.
  • 5. The host cell of claim 4, wherein the host cell is selected from a plant cell, a microbial cell, and a microalgal cell.
  • 6. A method for producing an oil or oil-derived product, the method comprising cultivating a host cell of claim 4 and extracting oil produced thereby, optionally wherein the cultivation is heterotrophic growth on sugar.
  • 7. The method of claim 6, further comprising producing a fatty acid, fuel, chemical, or other oil-derived product from the oil.
  • 8. A vector comprising the recombinant nucleic acid of claim 1 or 2.
US Referenced Citations (133)
Number Name Date Kind
4049724 Sheng et al. Sep 1977 A
4288378 Japikse et al. Sep 1981 A
4335156 Kogan et al. Jun 1982 A
4584139 Gray et al. Apr 1986 A
4603188 Kusakawa et al. Jul 1986 A
4683202 Mullis Jul 1987 A
4798793 Eigtved Jan 1989 A
4940835 Shah et al. Jul 1990 A
4940845 Hirota et al. Jul 1990 A
4945050 Sanford et al. Jul 1990 A
4992189 Chen et al. Feb 1991 A
5080848 Strauss et al. Jan 1992 A
5091116 Krishnamurthy et al. Feb 1992 A
5156963 Eigtved Oct 1992 A
5233099 Tabata Aug 1993 A
5233100 Tabata et al. Aug 1993 A
5258197 Wheeler et al. Nov 1993 A
5268192 Zook et al. Dec 1993 A
5298421 Davies et al. Mar 1994 A
5298637 Cooper Mar 1994 A
5304481 Davies et al. Apr 1994 A
5304664 Peppmoller et al. Apr 1994 A
5342768 Pedersen et al. Aug 1994 A
5344771 Davies et al. Sep 1994 A
5346724 Ohgake et al. Sep 1994 A
5380894 Burg et al. Jan 1995 A
5391383 Sullivan et al. Feb 1995 A
5427704 Lawate Jun 1995 A
5434278 Pelloso et al. Jul 1995 A
5451332 Lawate Sep 1995 A
5455167 Voelker et al. Oct 1995 A
5458795 Lawate Oct 1995 A
5475160 Singleton et al. Dec 1995 A
5506201 McDermott et al. Apr 1996 A
5512482 Voelker et al. Apr 1996 A
5567359 Cassidy et al. Oct 1996 A
5576027 Friedman et al. Nov 1996 A
5639790 Voelker et al. Jun 1997 A
5654495 Voelker et al. Aug 1997 A
5667997 Voelker et al. Sep 1997 A
5686131 Sato et al. Nov 1997 A
5693507 Daniell et al. Dec 1997 A
5723761 Voelker et al. Mar 1998 A
5776741 Pedersen et al. Jul 1998 A
5807893 Voelker et al. Sep 1998 A
5833999 Trinh et al. Nov 1998 A
5850022 Dehesh et al. Dec 1998 A
5885440 Hoehn et al. Mar 1999 A
5888947 Lambert et al. Mar 1999 A
5928696 Best et al. Jul 1999 A
5942479 Frankenbach et al. Aug 1999 A
5945585 Hitz et al. Aug 1999 A
6020509 Weerasooriya et al. Feb 2000 A
6022577 Chrysam et al. Feb 2000 A
6027900 Allnutt et al. Feb 2000 A
6051539 Kodali et al. Apr 2000 A
6057375 Wollenweber et al. May 2000 A
6080853 Corrigan et al. Jun 2000 A
6086903 Trinh et al. Jul 2000 A
6113971 Elmaleh Sep 2000 A
6140302 Lueder et al. Oct 2000 A
6150512 Yuan Nov 2000 A
6217746 Thakkar et al. Apr 2001 B1
6268517 Filler et al. Jul 2001 B1
6278006 Kodali et al. Aug 2001 B1
6320101 Kaplan et al. Nov 2001 B1
6331664 Rubin-Wilson et al. Dec 2001 B1
6342208 Hyldgaard et al. Jan 2002 B1
6380410 Oftring et al. Apr 2002 B1
6391815 Weston et al. May 2002 B1
6395965 Xia May 2002 B1
6398707 Wu et al. Jun 2002 B1
6407044 Dixon Jun 2002 B2
6465642 Kenneally et al. Oct 2002 B1
6468955 Smets et al. Oct 2002 B1
6538169 Pittman et al. Mar 2003 B1
6590113 Sleeter Jul 2003 B1
6596155 Gates et al. Jul 2003 B1
6596768 Block et al. Jul 2003 B2
6630066 Cash et al. Oct 2003 B2
6680426 Daniell et al. Jan 2004 B2
6692730 Perron et al. Feb 2004 B2
6750048 Ruecker et al. Jun 2004 B2
6770104 Murphy Aug 2004 B2
6808737 Ullanoormadam Oct 2004 B2
6869597 Arnaud Mar 2005 B2
6881873 Gillespie et al. Apr 2005 B2
6924333 Bloom et al. Aug 2005 B2
6946430 Sakai et al. Sep 2005 B2
6977322 Gillespie Dec 2005 B2
7041866 Gillespie May 2006 B1
7053267 Knauf et al. May 2006 B2
7081567 Xue et al. Jul 2006 B2
7115173 Caswell et al. Oct 2006 B2
7115760 Sparso et al. Oct 2006 B2
7118773 Floeter et al. Oct 2006 B2
7135290 Dillon Nov 2006 B2
7135620 Daniell et al. Nov 2006 B2
7196124 Parker et al. Mar 2007 B2
7232935 Jakkula et al. Jun 2007 B2
7238277 Dahlberg et al. Jul 2007 B2
7262158 Lukenbach et al. Aug 2007 B1
7264886 Cui et al. Sep 2007 B2
7268276 Ruezinsky et al. Sep 2007 B2
7288278 Mellerup et al. Oct 2007 B2
7288685 Marker Oct 2007 B2
7588931 Damude et al. Sep 2009 B2
7622570 Oswald et al. Nov 2009 B2
8029579 Knuth et al. Oct 2011 B2
8530207 Watts et al. Sep 2013 B2
20020178467 Dehesh Nov 2002 A1
20030097686 Knauf et al. May 2003 A1
20030145350 Spener et al. Jul 2003 A1
20050005333 Ruezinsky et al. Jan 2005 A1
20050102716 Venkatramesh et al. May 2005 A1
20050262588 Dehesh et al. Nov 2005 A1
20070175091 Danzer et al. Aug 2007 A1
20070261138 Graham et al. Nov 2007 A1
20090176272 Champagne et al. Jul 2009 A1
20090317878 Champagne et al. Dec 2009 A1
20100058651 Knuth et al. Mar 2010 A1
20100105955 Alibhai et al. Apr 2010 A1
20100154293 Hom et al. Jun 2010 A1
20110072714 Gaertner et al. Mar 2011 A1
20110145944 Laga et al. Jun 2011 A1
20120009636 Berry et al. Jan 2012 A1
20120283460 Franklin et al. Nov 2012 A1
20120288930 Trimbur et al. Nov 2012 A1
20130031678 Zheng et al. Jan 2013 A1
20130034887 Franklin et al. Feb 2013 A1
20140215654 Davis Jul 2014 A1
20140234920 Davis Aug 2014 A1
20140288320 Rudenko et al. Sep 2014 A1
Foreign Referenced Citations (36)
Number Date Country
1 605 048 Dec 2005 EP
1 640 437 Mar 2006 EP
1 681 337 Jul 2006 EP
1 741 767 Jan 2007 EP
1 741 768 Jan 2007 EP
1 795 576 Jun 2007 EP
1 682 466 Nov 2008 EP
WO 8901032 Feb 1989 WO
WO 9211373 Jul 1992 WO
WO 9410288 May 1994 WO
WO 9513390 May 1995 WO
WO 9623892 Aug 1996 WO
WO 0061740 Oct 2000 WO
WO 0066750 Nov 2000 WO
WO 0208403 Jan 2002 WO
WO 2005047216 May 2005 WO
WO 2006055322 May 2006 WO
WO 2007106903 Sep 2007 WO
WO 2008002643 Jan 2008 WO
WO 2008151149 Dec 2008 WO
WO 2010019813 Feb 2010 WO
WO 2010063031 Jun 2010 WO
WO 2010063032 Jun 2010 WO
WO 2010120939 Oct 2010 WO
WO 2011008565 Jan 2011 WO
WO 2011127069 Oct 2011 WO
WO 2011150410 Dec 2011 WO
WO 2011150411 Dec 2011 WO
WO 2012061647 May 2012 WO
WO 2012106560 Aug 2012 WO
WO 2012154626 Nov 2012 WO
WO 2013158938 Oct 2013 WO
WO 2014120829 Aug 2014 WO
WO 2014151904 Sep 2014 WO
WO 2015051319 Apr 2015 WO
PCTUS201542044 Jul 2015 WO
Non-Patent Literature Citations (133)
Entry
Guo et al. (PNAS (2004) 101: 9205-9210).
U.S. Appl. No. 14/808,361, filed Jul. 24, 2015, Davis et al.
US Office Action, dated Jul. 16, 2015, issued in U.S. Appl. No. 13/797,733.
PCT International Search Report and Written Opinion dated Jun. 24, 2014 issued in PCT/US2014/013676.
PCT International Preliminary Report on Patentability and Written Opinion dated Aug. 13, 2015 issued in PCT/US2014/013676.
Database Geneseq [Online] (Jun. 6, 2000) “Bay C18:1 preferring acyl-ACP thioesterase protein from clone 3A-17.”, retrieved from EBI accession No. GSP:AAY80558 Database accession No. AAY80558; and Database Geneseq [Online] (Jun. 6, 2000) “Bay C18:1 preferring acyl-ACP thioesterase protein.”, retrieved from EBI accession No. GSP:AAY80559 Database accession No. AAY80559.
Database Geneseq [Online] (Nov. 2, 1995) “Camphor thioesterase.”, retrieved from EBI accession No. GSP:AAR74148 Database accession No. AAR74148.
Database Geneseq [Online] (Oct. 26, 1996) “Cuphea C14:0-ACP thioesterase.”, retrieved from EBI accession No. GSP:AAW02081 Database accession No. AAW02081.
Database Geneseq [Online] (Aug. 5, 2010) “U. californica fatty acyl-ACP thioesterase protein (without PTS), SEQ:139.”, retrieved from EBI accession No. GSP:AYC84249 Database accession No. AYC84249.
PCT Invitation to Pay Additional Fees and, Where Applicable, Protest Fee dated Jun. 18, 2014 issued in PCT/US2014/026644.
PCT International Search Report and Written Opinion dated Aug. 29, 2014 issued in PCT/US2014/026644.
PCT International Preliminary Report on Patentability dated Sep. 24, 2015 issued in PCT/US2014/026644.
GenBank Accession No. U17097, Umbellularia californica Uc FatB2 (FatB) mRNA, complete cds., Jun. 1, 1995, 2pp.
GenBank: Accession No. U39834.1, Cuphea hookeriana 8:0- and 10:0-ACP specific thioesterase (FatB2) mRNA, complete cds, May 21, 2014, 2pp.
GenBank Accession No. AAC49001, Uc FatB2 (FatB) Umbellularica californica, May 30, 1995, 2pp.
Apt et al., (1996) “Stable nuclear transformation of the diatom Phaeodactylum tricornutum,” Molecular and General Genetics, 252:572-579.
Barnes et al., (2005) “Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes,” Mol Gen Genomics274:625-636.
Blatti et al., (Sep. 2012) “Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions,” PLoS ONE 7(9):e42949, 12pp.
Blowers et al., (Jan. 1989) “Studies on Chlamydomonas Chloroplast Transformation: Foreign DNA Can Be Stably Maintained in the Chromosome,” The Plant Cell, 1:123-132.
Bonaventure et al., (Apr. 2003) “Disruption of the FATB Gene in Arabidopsis Dethonstrates an Essential Role of Saturated Fatty Acids in Plant Growth,” The Plant Cell 15:1020-1033.
Boynton et al., (1988) “Chloroplast Transformation in Chlamydomonas with High Velocity Microprojectiles,” Science, 240(4858):1534-1538.
Chasan, (Mar. 1995) “Engineering Fatty Acids—The Long and Short of It,” Plant Cell, 7:235-237.
Chen et al.,(1988) “Recognition of prokaryotic transcription terminators by spinach chloroplast RNA polymerase,” Nucleic Acids Research,16(17):8411-8431.
Chen et al., (2001) “Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells,” Current Genetics, 39(5):365-370.
Chow et al., (1999) “Electrotransformation of Chlorella vulgaris,” Plant Cell Reports, 18:778-780.
Cobley et al., (Sep. 1993) “Construction of Shuttle Plasmids Which Can Be Efficiently Mobilzed from Escherichia coli into the Chromatically Adapting Cyanobacterium, Fremyella diplosiphon,” Plasmid, 30(2): 90-105.
Cobley et al., (2002) “CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR),” Molecular Microbiololgy,44(6):1517-1531.
Comai et al., (Oct. 15, 1988) “Chloroplast Transport of a Ribulose Bisphosphate Carboxylase Small Subunit-5-Enolpyruvyl 3-Phosphoshikimate Synthase Chimeric Protein Requires Part of the Mature Small Subunit in Addition to the Transit Peptide,” The Journal of Biological Chemistry, 263(29):15104-15109.
Courchesne, Noémie Manuelle Dorval el al., (2009) “Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches,” Journal of Biotechnology, 141(1):31-41.
Davies et al., (1992) “Expression of the arylsulfatase gene from the β2-tubulin promoter in Chlamydomonas reinhardtii,” Nucleic Acids Res., 20(12):2959-2965.
Dawson et al., (1997) “Stable Transformation of Chlorella: Rescue of Nitrate Reductase-Deficient Mutants with the Nitrate Reductase Gene,” Current Microbiol., 35(6):356-362.
Debuchy et al., (1989) “The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus,” EMBO Journal, 8(10):2803-2809.
Dehesh et al. (1996) “Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana,” The Plant Journal, 9(2):167-172.
Dehesh et al., (1998) “KAS IV: a 3-ketoacyl-ACP synthase from Cuphea sp. is a medium chain specific condensing enzyme,” The Plant Journal, 15:383-390.
Deshnium et al., (1995) “Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress,” Plant Mol. Biol.,29(5):897-907.
Dörmann et al., (Jan. 1995) “Cloning and Expression in Escherichia coli of a Novel Thioesterase from Arabidopsis thaliana Specific for Long-Chain Acyl-Acyl Carrier Proteins,” Archives of Biochemistry and Biophysics, 316(1):612-618.
Eccleston et al., (1996) “Medium-chain fatty Acid biosynthesis and utilization in Brassica napus plants expressing lauroyl-acyl carrier protein thioesterase,” Planta, 198:46-53.
El-Sheekh et al., (1999) “Stable transformation of the intact cells of Chlorella kessleri with high velocity microprojectiles,” Biologia Plantarium, 42:(2):209-216.
Facciotti et al., (1998) “Molecular dissection of the plant acyl-acyl carrier protein thioesterases,” European Journal of Lipid Science and Technology, 100(Nr. 4-5, S.):167-172.
Facciotti et al., (Jun. 1999) “Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase,” Nat Biotechnol., 17(6):593-597.
Falciatore et al., (May 1999) “Transformation of Nonselectable Reporter Genes in Marine Diatoms,” Mar. Biotechnol., 1(3):239-251.
Frenz et al., (1989) “Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii,” Enzyme Microb. Technol., 11:717-724.
Fromm et al., (Sep. 1985) “Expression of genes transferred into monocot and dicot plant cells by electroporation,” Proc. Natl. Acad. Sci. USA, 82:5824 5828.
Ginalski et al., (2003) “Detection of reliable and unexpected protein fold predictions using 3D-Jury,” Nucleic Acids Research,31(13):3291-3292.
Giuffrida et al., (2004) “Formation and Hydrolysis of Triacylglycerol and Sterol Epdxides: Role of Unsaturated Triacylglycerol Peroxyl Radicals,” Free Radical Biology and & Medicine, 37(1):104-114.
Gruber et al., (1991) “Escherichia coli-Anacystis nidulans Plasmid Shuttle Vectors Containing the PL Promoter from Bacteriophage Lambda,” Current Micro. 22:15-19.
Gruber et al., (1996) “Expression of the Volvox gene encoding nitrate reductase: Mutation-dependent activation of cryptic splice sites and intron-enhanced gene expression from a cDNA,” Plant Molecular Biology, 31(1):1-12.
Hall et al., (1993) “Expression of a foreign gene in Chlamydomonas reinhardtii,” Gene, 124:75-81.
Hallmann et al., (Nov. 1994) “Reporter genes and highly regulated promoters as tools for transformation experiments in Volvox carteri,” Proc. Natl. Acad. Sci. USA, 91:11562-11566.
Hanley-Bowdoin et al., (Feb. 1987) “Chloroplast promoters,” TIBS, 12:67-70.
Hawkins et al., (1999) “Expression of Human Growth Hormone by the Eukaryotic Alga, Chlorella,” Current Microbiology, 38:335-341.
Heise et al., (1994) “Factors Controlling Medium-Chain Fatty Acid Synthesis in Plastids From Cuphea Embryos,” Prog. Lipid Res., 33(1/2):87-95.
Hejazi et al., (Apr. 2004) “Milking of microalgae,” TRENDS in Biotechnology, 22(4):189-194.
Hillen et al., (1982) “Hydrocracking of the Oils of Botryococcus braunii to Transport Fuels,” Biotechnology and Bioengineering, XXIV:193-205.
Hitz et al., (1994) “Cloning of a Higher-Plant Plastid ω-6 Fatty Acid Desaturase cDNA and Its Expression in a Cyanobacterium,” Plant Physiol.,105(2):635-641.
Huang et al. (2006) “Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation,” Appl. Microbiol. Biotechnol. 72:197-205.
Inoue et al., (1993) “Analysis of Oil Derived From Liquefaction of Botryococcus braunii,” Biomass Bioenergy, 6(4):269-274).
Isbell et al., (Feb. 1994) “Acid-Catalyzed Condensation of Oleic Acid into Estolides and Polyestolides,” JAOCS, 71(2):169-174.
Jakobiak et al. (Dec. 2004) “The Bacterial Paromomycin Resistance Gene, aphH, as a Dominant Selectable Marker in Volvox carteri,” Protist,155(4):381-393.
Jarvis et al. (1991) “Transient expression of firefly luciferase in protoplasts of the green alga Chlorella elltpsoidea,” Current Genetics, 19:317-321.
Jha et al., (2006) “Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli,” Plant Physiology and Biochemistry, 44:645-655.
Jiang et al., (Apr. 2005) “The Actin Gene Promoter-driven bar as a Dominant Selectable Marker for Nuclear Transformation of Dunaliella salina,” Acta Genetica Sinica, 32(4):424-433.
Jones et al., (Mar. 1995) “Palmitoyl-Acyl Carrier Protein (ACP) Thioesterase and the Evolutionary Origin of Plant Acyl-ACP Thioesterases,” The Plant Cell, 7:359-371.
Kalscheuer et al., (1999) “Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids),” Applied and Environmental Microbiology, 52:508-515.
Kang et al., (Jul. 2000) “The Regulation Activity of Chlorella Virus Gene 5′ Upstream Sequence in Escherichia coli and Eucaryotic Algae,” [English Abstract] Chinese Journal of Biotechnology, 16(4):6 pages.
Kang et al., (2004) “Genetic diversity in chlorella viruses flanking kcv, a gene that encodes a potassium ion channel protein,” Virology, 326(1):150-159.
Kawasaki et al., (2004) “Immediate early genes expressed in chlorovirus infections,” Virology,318(1):214-223.
Kim et al., (2002) Stable Integration and Functional Expression of Flounder Growth Hormone Gene in Transformed Microalga, Chlorella ellipsoidea, Mar. Biotechnol., 4(1):63-73.
Kindle, (Feb. 1990) “High-frequency nuclear transformation of Chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. USA, 87(3):1228-1232.
Klein et al., (1987) “High-velocity microprojectiles for delivering nucleic acids into living cells,” Nature London 327(7):70-73.
Knauf, (Feb. 1987) “The application of genetic engineering to oilseed crops,” TIBTECH, 5:40-47.
Knutzon et al., (Jul. 1999) “Lysophosphatidic Acid Acyltransferase from Coconut Endosperm Mediates the Insertion of Laurate at the sn-2 Position of Triacylglycerols in Lauric Rapeseed Oil and Can Increase Total Laurate Levels,” Plant Physiology, 120:739-746.
Kojima et al., (1999) “Growth and Hydrocarbon Production of Microalga Botryococcus braunii in Bubble Column Photobioreactors,” Journal of Bioscience and Bioengineering, 87(6): 811-815.
Koksharova et al., (Feb. 2002) “Genetic tools for cyanobacteria,” Appl Microbiol Biotechnol 58(2):123-137.
Krebbers et al., (1982) “The maize chloroplast genes for the β and ε subunits of the photosynthetic coupling factor CF1 are fused,” Nucleic Acids Research, 10(16):4985-5002.
La Scala et al., (Jan. 2002) “The Effect of Fatty Acid Composition on the Acrylation Kinetics of Epoxidized Triacylglycerols”, Journal of the American Oil Chemists' Society, 79(1):59-63.
Lapidot et al., (May 2002) “Stable Chloroplast Transformation of the Unicellular Red Alga Porphyridium Species,” Plant Physiol., 129(1):7-12.
Larson et al., (2002) “Acyl CoA profilesof transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds,” The Plant Journal, 32(4):519-527.
Lumbreras et al., (1998) “Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron,” Plant Journal, 14(4):441-447.
Manuell et al., (2007) “Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast,” Plant Biotechnol Journal, 5:402-412.
Mayer et al., (Feb. 4, 2005) “A Structural Model of the Plant Acyl-Acyl Carrier Protein Thioesterase FatB Comprises Two Helix/4-Stranded Sheet Domains, the N-terminal Domain Containing Residues That Affect Specificity and the C-terminal Domain Containing Catalytic Residues,” The Journal of Biological Chemistry, 280(5):3621-3627.
Mayfield et al., (Jan. 21, 2003) “Expression and assembly of a fully active antibody in algae,” Proc. Natl. Acad. Sci. USA, 100(2):438-442.
Mekhedov et al., (Feb. 2000) “Toward a Functional Catalog of the Plant Genome. A Survey of Genes for Lipid Biosynthesis,” Plant Physiology, 122:389-401.
Mendes et al. (2003) “Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae,” Inorganica Chimica Acta, 356:328-334.
Metzger et al., (Jun. 2003) “Lycopanerols I-L, Four New Tetraterpenoid Ethers from Botryococcus braunii,” J Nat. Prod.66(6):772-778.
Metzger et al., (2005) “Botryococcus braunii: a rich source for hydrocarbons and related ether lipids,” Appl Microbiol Biotechnol 66:486-496.
Miao et al., (2004) “High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides,” Journal of Biotechnology, 110:85-93.
Miao et al., (2006) “Biodiesel production from heterotrophic microalgal oil,” Biosource Technology, 97:841-846.
Minowa et al., (1995) “Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction,” Fuel, 74(12):1735-1738.
Mitra et al., (Oct. 14, 1994) “A Chlorella Virus Gene Promoter Functions as a Strong Promoter Both in Plants and Bacteria,” Biochemical Biophysical Research Communication, 204(1): 187-194.
Mitra et al., (Oct. 1994) “The Chlorella virus adenine methyltransferase gene promoter is a strong promoter in plants,” Plant Mol. Biol., 26(1):85-93.
Moreno-Pérez et al., (2012) “Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds,” Planta, 235:629-639.
Mullet et al., (1985) “Multiple transcripts for higher plant rbcL and atpB genes and localization of the transcription initiation site of the rbcL gene,” Plant Molecular Biology, 4:39-54.
Oda et al., (2000) “Degradation of Polylactide by Commercial Proteases,” Journal of Polymers and the Environment, 8(1):29-32.
Onai et al., (2004) “Natural transformation of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1: a simple and efficient method for gene transfer,” Mol Genet Genomics, 271(1):50-59.
Park et al., (2005) “Isolation and Characterization of Chlorella Virus from Fresh Water in Korea and Application in Chlorella Transformation System,” The Plant Patholology Journal, 21(1): 13-20.
Pröschold et al., (Aug. 2005) “Portrait of a species: Chlamydomonas reinhardtii,” Genetics,170:1601-1610.
Radakovits et al., (Apr. 2010) “Genetic Engineering of Algae for Enhanced Biofuel Production,” Eukaryotic Cell, 9(4):486-501.
Rao et al., (2006) “Antioxidant Activity of Botryococcus braunii Extract Elucidated in Vitro Models,” J. Agric. Food Chem., 54(13):4593-4599.
Rehm et al., (2001)“Heterologous expression of the acyl-acyl carrier protein thioesterase gene from the plant Umbellularia californica mediates polyhydroxyalkanoate biosynthesis in recombinant Escherichia coli,” Appl Microbiol Biotechnol, 55:205-209.
Rismani-Yazdi et al., (2011) “Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels,” BMC Genomics, 12:148, 17 pages; doi:10.1186/1471-2164-12-148.
Rosenberg, Julian N. et al., (2008) “A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution,” Current Opinion in Biotechnology, 19(5):430-436.
Salas et al., (2002) “Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases,” Archives of Biochemistry and Biophysics, 403:25-34.
Sanford, (Dec. 1988) “The biolistic process,” Trends in Biotech.6:299-302.
Sawayama et al. (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae Biomass and Bioenergy, 17:33-39.
Schreier et al., (1985) “The use of nuclear-encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts,” EMBO J. 4(1):25-32.
Schultz et al., (Apr. 2005) “A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota,” RNA, 11(4):361-364.
Schütt et al., (1998) “The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids,” Publication, Planta, 205:263-268.
Shao et al., (2002) “Cloning and expression of metallothionein mutant α-KKS-α in Anabaena sp. PCC 7120,” Marine Pollution Bulletin,45(1-12):163-167.
Sheehan, John; Dunahay, Terri; Benemann, John; Roessler, Paul; (Jul. 1998) “A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae,” Prepared for U.S. Department of Energy's Office of Fuels Development, Prepared by National Renewable Energy Laboratory, NREL/TP-580-24190, 328 pages.
Stemmer et al., (1995) “Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides,” Gene, 164(1):49-53.
Tan et al., (Aug. 2005) “Establishment of a Micro-Particle Bombardment Transformation System for Dunaliella salina,” The Journal of Microbiology, 43(4):361-365.
Tang et al., (Aug. 1995) “Insertion Mutagenesis of Chlamydomonas reinhardtii by Electroporation and Heterologous DNA,” Biochemistry and Molecular Biology International, 36(5):1025-1035.
Tyystjärvi et al., (2005) “Mathematical modelling of the light response curve of photoinhibition of Photosystem II,” Photosynthesis Research, 84(1-3):21-27.
Vázquez-Bermúdez et al., (Jan. 2000) “Uptake of 2-Oxoglutarate in Synechococcus Strains Transformed with the Escherichia coli kgtP Gene,” Journal of Bacteriology, 182(1):211-215.
Vázquez-Bermúdez et al., (2003) “Carbon supply and 2-oxoglutarate ejects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC 7942,” FEMS Microbiology Letters, 221(2):155-159.
Voelker, (1996) “Plant Acyl-ACP Thioesterases: Chain-Length Determining Enzymes in Plant Fatty Acid Biosynthesis,” Genetic Engineering, Edited by: Setlow JK. Plenum Pres, New York, 18:111-133.
Voelker et al., (Dec. 1994) “Alteration of the Specificity and Regulation of Fatty Acid Synthesis of Escherichia coli by Expression of a Plant Medium Chain Acyl-Acyl Carrier Protein Thioesterase,” Journal of Bacteriology, 176(23):7320-7327.
Voelker et al., (1997) “Broad-Range and Binary-Range Acyl-Acyl-Carrier-Protein Thioesterases Suggest an Alternative Mechanism for Medium-Chain Production in Seeds,” Plant Physiol., 114:669-677.
Voetz et al., (1994) “Three Different cDNAs Encoding Acyl Carrier Proteins from Cuphea lanceolata,” Plant Physiol., 106:785-786.
Walker et al., (2005) “Characterisation of the Dunaliella tertiolecta RbcS genes and their promoter activity in Chlamydomonas reinhardtii,” Plant Cell Rep. 23(10-11):727-735.
Westphal et al., (Mar. 27, 2001) “Vipp1 deletion mutant of Synechocystis: A connection between bacterial phage shock and thylakoid biogenesis?” Proc. Natl. Acad. Sci. USA, 98(7):4243-4248.
Wiberg et al., (2000) “The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L.,” Planta, 212:33-40.
Wirth et al., (1989) “Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation,” Mol Gen Genet. 216(1):175-177.
Wolk et al., (Mar. 1984) “Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria,” Proc. Natl. Acad. Sci. USA, 81(5):1561-1565.
Wong et al., (1992) “Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants,” Plant Molecular Biology, 20:81-93.
Wu et al., (2001) “Identification of Chlorella spp. isolates using ribosomal DNA sequences,” Bot. Bull. Acad. Sin.42:115-121.
Yu et al., (2011) “Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae,” Microbial Cell Factories, 10:91 [Retrieved from the Internet Jul. 24, 2012: <URL:http://www.microbialcellfactories.com/content/10/1/91>], 11 pages.
Yuan et al., (Feb. 16, 1996) “The Catalytic Cysteine and Histidine in the Plant Acyl-Acyl Carrier Protein Thioesterases,” The Journal of Biological Chemistry, 271(7):3417-3419.
Zurawski et al., (1981) “The structure of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from spinach chloroplast DNA, ” Nucleic Acids Res. 9(14):3251-3270.
Zurawski et al., (Dec. 1982) “Nucleotide sequence of the gene for the Mr 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38,950,” Proc. Natl. Acad. Sci. USA, 79:7699-7703.
Mayer, et al. 2007, “Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach,” BMC Plant Biology 7(1):1-11.
Yuan, et al. 1995, “Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering,” Proc. Natl. Acad. Sci. USA 92:10639-10643.
Related Publications (1)
Number Date Country
20140275586 A1 Sep 2014 US