Bell, et. al., Phenethylthiazolethieourea (PETT) Compounds, a New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogs, J. Med. Chem., vol. 38, pp. 4929-4936, 1995. |
Davies et. al., Condensed Thiophen Ring Systems. Part XIX. Synthesis of 6,7-Dihydrothieno [3,2-c] pyridines by Intramolecular Cyclistion of 2-(2- or 3-Thienyl)ethyl Isothiocyanate, Journal of Chemical Society, Perkin Translations 1, vol. 2, pp. 138-14, 1976. |
Cantrell, et. al., Phenethylthiazolythiourea (PETT) Compounds as a New Class of HIV-1 Reverse Transcriptase Inhibitors. 2. Synthesis and Further Structure-Activity Relationship Studies of PETT Analogs, J. Med. Chem., 39, 4261-4274, 1996. |
Gittos et. al., A New Synthesis of Isocyanates, J. C. S. Perkin I, pp. 169-143, 141. |
Ahgren, C., et al., 1995, Antimicrob. Agents Chemotherapy, 39, 1329-1335 The PETT Series, a New Class of Potent Nonnucleoside Inhibitors of Human Immunodeficiency Virus Type 1 Reverse Transcriptase. |
Bell, F. W., et al., 1995, J. Med. Chem., 38, 4929-4936 Penethylthiazolethiourea (PETT) Compounds, a New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogs. |
Bosworth, N., et al., 1989, Nature, 341: 167-168 Scintillation proximity assay. |
Cantrell, A. S., et al., 1996, J. Med. Chem., 39, 4261-4274 Phenethylthiazolylthiourea (PETT) Compounds as a New Class of HIV-1 Reverse Transcriptase Inhibitors. 2. Synthesis and Further Structure-Activity Relationship Studies of PETT Analogs. |
Das, K. et al., 1996, J. Mol. Biol., 264, 1085-1100 Crystal Structures of 8-Cl and 9-Cl TIBO Complexed with Wild-type HIV-1 RT and 8-Cl TIBO Complexed with the Tyr181Cys HIV-1 RT Drug-resistant Mutant. |
Ding, J., 1995, et al., Nat. Struct. Biol., 2, 407-415 Structure of HIV-1 TR/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. |
Erice, A. et al., 1993, Antimicrob. Ag. Chemother., 37, 835 Anti-Human Immunodeficiency Virus Type 1 Activity of an Anti-CD4 Immunoconjugate Containing Pokeweed Antiviral Protein. |
Kohlstaedt, L.A. et al., 1992, Science, 256, 1783-1790 Crystal Structure at 3.5 .ANG. Resolution of HIV-1 Reverse Transcriptase Complexed with an Inhibitor. |
Mao, C. et al., 1998, Bioorganic & Medicinal Chemistry Letters 8, pp. 2213-2218 Structure-Based Design of N-[2-(1-Piperidinylethyl)]-N'-[2-(5-Bromopyridyl)]-Thiourea and N-2-(1-Piperazinylethyl)-N'-[2-(5-Bromopyridyl)]-Thiourea as Potent Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase. |
Pauwels, R. et al., 1990, Nature, 343, 470-474 Potent and selective inhibitionofHIV-1 replication in vitro by a novel series of TIBO derivatives. |
Ren, J. et al., 1995, Structure, 3, 915-926 The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design. |
Romero, D. L. et al., 1993, J. Med. Chem., 36, 1505-1508 Bis(heteroaryl)piperazine (BHAP) Reverse Transcriptase Inhibitors: Structure-Activity Relationships of Novel Substituted Indole Analogues and the Identification of 1-[(5-Methanesulfonamido-1H-indol-2-yl)-carbonyl]-4-[3-[(1-methylethyl)amino]-pyridinyl]piperazine Monomethanesulfonate (U-90152S), a Second-Generation Clinical Candidate. |
Sahlberg, et al., 1998, Bioorganic & Medicinal Chemistry Letters 8, pp. 1511-1516 Synthesis and Anti-Hiv Activities of Urea-PETT Analogs Belonging to a New Class of Potent Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors. |
Sudbeck, E. A. et al., 1998, Antimicrobial Agents and Chemotherapy, 42(12), 3225-33 Structure-Based Design of Novel Dihydroalkoxybenzyloxopyrimidine Derivatives as Potent Nonnucleoside Inhibitors of the Human Immunodeficiency Virus Reverse Transcriptase. |
Uckun, F. M. et al., 1998, Antimicrobial Agents and Chemotherapy, 42, 383 TXU (Anti-CD7)-Pokeweed Antiviral Protein as a Potent Inhibitor of Human Immunodeficiency Virus. |
Vig, R. et al., 1998, Bioorganic & Medicinal Chemistry, 6:1789-1797 Rational Design and Synthesis of Phenethyl-5-bromopyridyl Thiourea Derivatives as Potent Non-nucleoside Inhibitors of HIV Reverse Transcriptase. |
Zhang et al., 1996, Antiviral Chemistry & Chemotherapy, 7(5):221-229 Synergistic inhibition of HIV-1 reverse transcriptase and HIV-1 replication by combining trovirdine with AZT, ddl and ddC in vitro. |