1. Technical Field
The present disclosure relates generally to devices and techniques for performing surgical procedures. More particularly, the present disclosure relates to an access device for minimally invasive surgery.
2. Background of the Related Art
In an effort to reduce trauma and recovery time, many surgical procedures are performed through small openings in the skin, such as an incision or a natural body orifice. For example, these procedures include laparoscopic procedures, which are generally performed within the confines of a patient's abdomen, and thoracic procedures, which are generally performed within a patient's chest cavity.
Specific surgical instruments have been developed for use during such minimally invasive surgical procedures. These surgical instruments typically include an elongated shaft with operative structure positioned at a distal end thereof, such as graspers, clip appliers, specimen retrieval bags, etc.
During minimally invasive procedures, the clinician creates an opening in the patient's body wall, oftentimes by using an obturator or trocar, and thereafter positions an access assembly within the opening. The access assembly includes a passageway extending therethrough to receive one or more of the above-mentioned surgical instruments for positioning within the internal work site, e.g. the body cavity.
During minimally invasive thoracic procedures, an access assembly is generally inserted into a space located between the patient's adjacent ribs that is known as the intercostal space, and then surgical instruments can be inserted into the internal work site through the passageway in the access assembly.
In the interests of facilitating visualization, the introduction of certain surgical instruments, and/or the removal of tissue specimens during minimally invasive thoracic procedures, it may be desirable to spread the tissue adjacent the ribs defining the intercostal space and/or the ribs. Additionally, during these procedures, firm, reliable placement of the access assembly is desirable to allow the access assembly to withstand forces that are applied during manipulation of the instrument(s) inserted therethrough. However, reducing patient trauma during the procedure, discomfort during recovery, and the overall recovery time remain issues of importance. Thus, there exists a need for thoracic access ports which minimize post operative patient pain while enabling atraumatic retraction of tissue and which do not restrict access to the body cavity. There also exists a need to facilitate insertion of such thoracic ports into the body cavity.
According to one aspect of the present disclosure, a surgical access device is provided which includes a body that includes a first member and a second member. Each member includes a top surface, a bottom surface, a leading end, and a trailing end. The first and second members are relatively movable between open and closed configurations and are positionable within an opening in tissue to provide access to an interior space of a patient. The first and second members in the open configuration define a passage therethrough. The passage is dimensioned to permit access to the interior space of the patient for passage of a surgical instrument therethrough.
Preferably, the trailing ends are positioned in close cooperative alignment when the first and second members are in the open configuration and the top surfaces are positioned in close cooperative alignment when the first and second members are in the closed configuration.
In some embodiments, in the open configuration, the leading ends of the first and second members are diametrically opposed and the top and bottom surfaces of the first member are substantially aligned with the top and bottom surfaces of the second member along an axis substantially transverse to a central axis defined through the passage. In some embodiments, in the closed configuration, the leading and trailing ends of the first member are substantially aligned with the leading and trailing ends of the second member and the bottom surfaces of the first and second members are disposed in substantially mirrored relation.
In some embodiments, one or both of the first and second members include one or more flaps extending into the passage.
In some embodiments, one or both of the first and second members define one or more apertures dimensioned to facilitate the positioning of the first and the second members into the open configuration. The apertures can include a first portion and a second portion wherein the first portion is smaller than the second portion. Each of the first and second members can include a surface feature defined along the top surface thereof wherein each respective surface feature can be in contact with the other surface feature when the first and second members are in the closed configuration. One or more of the surface features may include a tapered portion.
In some embodiments, a first arm extends from one of the first and second members and a second arm extends from the other of the first and second members. In such embodiments, the first arm can define a channel dimensioned to receive the second arm such that the first arm and the second arm are engaged in close geometric fit when the first and second members are positioned in the open configuration so that the first and second members are secured in the open configuration.
In some embodiments, one or more cords may be secured to one or both of the first arm and the second arm wherein when the first and second members are secured in the open configuration, the one or more cords are actuable upon the application of a predetermined amount of force to disengage the first and second arms from a close geometric fit so that the first and second members are no longer secured in the open configuration. An opening may be defined within the first arm and/or the second arm through which the one or more cords may be secured.
According to another aspect, a surgical access system is provided and includes a surgical access device and an insertion device. The surgical access device includes a body that includes a first member and a second member. Each member is movable between open and closed configurations and is positionable within an opening in tissue to provide access to an internal space of a patient. The first and second members in the open configuration define a passage therethrough. The passage is dimensioned to permit access to the internal space of a patient for passage of a surgical instrument therethrough.
The insertion device includes a housing having a shaft extending from the housing. At least one movable element extends from a distal end of the shaft. An actuator is operably coupled to at least one movable element and is operable to move at least one movable element between first and second positions. The at least one movable element is releasably engageable with at least one of the first and second members of the surgical access device such that movement of at least one movable element between the first and second positions repositions the first and second members of the surgical access device between open and closed configurations when at least one movable element is engaged with at least one of the first and second members of the surgical access device.
In some embodiments, the at least one movable element is substantially aligned with a longitudinal axis of the insertion device in the first position and substantially aligned with an axis transverse to the longitudinal axis of the insertion device in the second position.
The passage defined through the first and second members in the open configuration may in some embodiments be substantially elliptical and define a plane including major and minor axes. In some embodiments, when the one or more movable elements are positioned in the second position, the one or more movable elements are prevented from crossing the plane defined by a substantially elliptical passage of the surgical access device when the one or more movable elements are not substantially aligned with the major axis defined by the substantially elliptical passage of the surgical access device.
In some embodiments, each member includes a top surface, a bottom surface, a leading end, and a trailing end, wherein the top surfaces are positioned in close cooperative alignment when the first and second members are in the closed configuration and the trailing ends are positioned in close cooperative alignment when the first and second members are in the open configuration and in the closed configuration.
In some embodiments, the first member and/or the second member of the surgical access device define one or more apertures and the one or more movable elements of the insertion device include one or more protuberances extending therefrom wherein the one or more apertures and the one or more protuberances are releasably engagable with each other. The one or more apertures can have a first portion and a second portion wherein the first portion is smaller than the second portion such that the one or more protuberances of the one or more movable elements are dimensioned to engage the smaller portion of the one or more apertures in a tight geometric fit and the larger portion in a loose geometric fit such that the one or more protuberances remain substantially secured to the smaller portion of the one or more apertures when engaged therewith and are substantially freely movable relative to the larger portion of the one or more apertures when engaged therewith.
According to yet another aspect, the present disclosure is directed to a method of accessing an internal surgical work site relative to an intercostal space defined between a patient's ribs. The method includes the step of providing a surgical access device including a body having a first member and a second member, each member including a top surface, a bottom surface, a leading end, and a trailing end. The method includes providing an insertion device including a housing having a shaft extending from the housing, at least one movable element extending from a distal end of the shaft, and an actuator operably coupled to the at least one movable element and operable to move the at least one movable element between first and second positions. The method includes the steps of coupling the at least one movable element to one or both of the first and second members, selectively positioning the first and second members between a closed configuration, where the top surfaces of first and second members are positioned in close cooperative alignment, and an open configuration. The method further includes positioning the first and second members relative to the intercostal space with the insertion device and uncoupling the at least one movable element from at least one of the first and second members.
The method may include the step of removing the surgical access device from the intercostal space by pulling one or more cords operably coupled to the surgical access device. The method may include the step of rotating the insertion device after uncoupling the one or more movable elements of the insertion device from the first and second members of the surgical access device in order to permit removal of the insertion device through a passage defined through the first and second members of the surgical access device.
Various exemplary embodiments of the present disclosure are described herein below with reference to the drawings, wherein:
Various embodiments of the presently disclosed access assembly, and methods of using the same, will now be described in detail with reference to the drawings wherein like references numerals identify similar or identical elements. In the drawings, and in the following description, the term “proximal” should be understood as referring to the end of the access assembly, or component thereof, that is closer to the clinician during proper use, while the term “distal” should be understood as referring to the end that is farther from the clinician, as is traditional and conventional in the art. Additionally, use of the term “tissue” herein below should be understood to encompass both the patient's ribs, and any surrounding tissues. It should also be understood that the term “minimally invasive procedure” is intended to include surgical procedures through small openings/incisions performed within a confined space such as the thoracic cavity or abdominal cavity.
Referring now to the drawings,
With reference to
In the open configuration (
With continued reference to
Referring again to
With continued reference to
The first member 110 includes a surface feature 116 defined therealong. The surface feature 116 may include one or more tapered portions 116a. Similarly, the second member 120 includes a surface feature 126 defined therealong. The surface feature 126 may include one or more tapered portions 126a. The surface features 116, 126 are in contact with each other when the first and second members 110, 120 are in the closed configuration. The tapered portions 116a, 126a of the first and second members 110, 120 may have complementary mating surfaces with at least a portion of the surface feature 116, 126 of the other respective member 110, 120. In this manner, the tapered portions 116a, 126 enable the surface features 116, 126 to engage each other in close cooperative alignment.
As best shown in
Referring now to
Referring now to FIGS. 4 and 10-12, the movable elements 210a, 210b are substantially aligned with a longitudinal axis “L” of the insertion device 200 in the first position and substantially aligned with an axis “Z” that is transverse to the longitudinal axis “L” of the insertion device 200 in the second position. The movable elements 210a, 210b of the insertion device 200 are releasably engagable with one or both of the first and second members 110, 120 of the surgical access device 100 such that movement of the movable elements 210a, 210b between the first and second positions repositions the first and second members 110, 120 of the surgical access device 100 between open and closed configurations when the movable elements 210a, 210b are engaged with one or both of the first and second members 110, 120 of the surgical access device 100. As best shown in
With reference to
With reference now to
Referring now to
The access device 300 can be composed of several components to facilitate the use of different material properties in different areas of the device 300. Since the base 310 is designed to flex it can be made of a material such as polypropylene. Since body 320 is attached, e.g. welded or bonded, to a membrane, it is composed of a material that is compatible with the material of the membrane. It is also envisioned that various molding techniques can be utilized to manufacture device 300 to allow different materials to be used in different regions of a component.
In the open configuration (
With reference now to
The continuous ring 414 is coupled to the proximal end 412a of flexible membrane 412 outside the patient. Ring 414 may be disposed through a loop 416 formed at the proximal end 412a of flexible membrane 412. Proximal end 412a of flexible membrane 412 may be folded back onto and adhered to flexible membrane 412 to define loop 416 therebetween, or, alternatively, proximal end 412a of flexible membrane 412 may be engaged to ring 414 via any other suitable mechanism. Ring 414 may be made from a flexible or a semi-rigid material. The ring 414 may be sufficiently rigid to retain membrane 412 in an open, tensioned configuration, while being somewhat flexible such that ring 414 may be rotated about a circumference thereof to roll, or wind-up flexible membrane 412 therearound, as shown by arrows 420. Thus, as ring 414 is rotated in the direction of arrows 420, membrane 412 is rolled-up around ring 414 and tensioned, thereby flexing the surgical access device 400 further outwardly to retract tissue and/or to expand the passage 130 extending through the surgical access device 400.
With continued reference to
Initially, the opening is made in the outer tissue wall of the thoracic cavity “T” (
With the insertion device 200 maintaining the surgical access device in the closed configuration (
With continued reference to
Referring now to
With reference again to
After uncoupling the movable elements 210a, 210b of the insertion device 200 from the surgical access device, the insertion device 200 can then be repositioned into the closed configuration upon the proximal translation of the actuator 206 (
After removal of the insertion device 200, the clinician carries out the remainder of the surgical procedure by passing one or more surgical instruments through the passage of one of the presently disclosed surgical access devices. However, it should be appreciated that some instruments may be passed through the passage while the insertion device 200 is coupled to the surgical access device.
The surgical instrument(s) inserted through one of the presently disclosed surgical access devices may be any surgical instrument(s) configured and dimensioned to pass through one of the passages of the presently disclosed surgical access devices, and adapted to perform a surgical, diagnostic, or other desired procedure. For example, suitable surgical instruments may include an endoscopic apparatus, which perform a variety of functions such as the application of surgical clips or other such fasteners, the cutting of body tissue, and/or specimen retrieval for removing an internal tissue sample.
In order to facilitate passage of the surgical instrument(s) into the thoracic cavity “T,” and/or removal of the surgical instrument(s) therefrom, it is envisioned that surgical instrument(s), and or the insertion device 200, and/or any of the presently disclosed surgical access devices, may be partially, or entirely, coated with a biocompatible, lubricous material.
Following completed use of the surgical instrument(s), the instrument(s) are withdrawn from the surgical access device. The surgical access device may then be returned to the closed configuration, via reinsertion and coupling of the insertion device 200 as described above. After coupling the insertion device 200 to the surgical access device as described above, the actuator 206 is then proximally translated so that one or more movable elements 210a, 210b reposition the surgical access device into the closed configuration for facilitating removal of the surgical access device from between the adjacent ribs “R.” In this respect, the reduced profile of the surgical access device in the closed configuration allows for atraumatic removal of the surgical access device from the intercostal space “S.”
Alternatively, the surgical access device may be repositioned into the closed configuration for removal upon the application of a predetermined amount of force to the one or more cords 140 as best illustrated in
Persons skilled in the art will understand that the structures and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not to be limited by what has been particularly shown and described.
This application claims priority from provisional application Ser. No. 61/454,684, filed Mar. 21, 2011, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1780912 | Gau | Nov 1930 | A |
1810466 | Deutsch | Jun 1931 | A |
2313164 | Nelson | Mar 1943 | A |
2541516 | Ivory et al. | Feb 1951 | A |
2812758 | Blumenschein | Nov 1957 | A |
3782370 | McDonald | Jan 1974 | A |
3807393 | McDonald | Apr 1974 | A |
3965890 | Gauthier | Jun 1976 | A |
4130113 | Graham | Dec 1978 | A |
4263899 | Burgin | Apr 1981 | A |
4553537 | Rosenberg | Nov 1985 | A |
5007900 | Picha et al. | Apr 1991 | A |
5052374 | Alvarez-Jacinto | Oct 1991 | A |
5080088 | LeVahn | Jan 1992 | A |
5125396 | Ray | Jun 1992 | A |
5169387 | Kronner | Dec 1992 | A |
5231974 | Giglio et al. | Aug 1993 | A |
5232451 | Freitas et al. | Aug 1993 | A |
5269754 | Rydell | Dec 1993 | A |
5279575 | Sugarbaker | Jan 1994 | A |
5330501 | Tovey et al. | Jul 1994 | A |
5346484 | Van Lindert | Sep 1994 | A |
5391156 | Hildwein et al. | Feb 1995 | A |
5437683 | Neumann et al. | Aug 1995 | A |
5445615 | Yoon | Aug 1995 | A |
5460170 | Hammerslag | Oct 1995 | A |
5480410 | Cuschieri | Jan 1996 | A |
5490843 | Hildwein et al. | Feb 1996 | A |
5503617 | Jako | Apr 1996 | A |
5520610 | Giglio et al. | May 1996 | A |
5524644 | Crook | Jun 1996 | A |
5556385 | Andersen | Sep 1996 | A |
5562677 | Hildwein et al. | Oct 1996 | A |
5653705 | De la Torre et al. | Aug 1997 | A |
5697891 | Hori | Dec 1997 | A |
5728103 | Picha et al. | Mar 1998 | A |
5755660 | Tyagi | May 1998 | A |
5755661 | Schwartzman | May 1998 | A |
5772583 | Wright et al. | Jun 1998 | A |
5776110 | Guy et al. | Jul 1998 | A |
5779629 | Hohlen | Jul 1998 | A |
5788630 | Furnish | Aug 1998 | A |
5803921 | Bonadio | Sep 1998 | A |
5810721 | Mueller et al. | Sep 1998 | A |
5846193 | Wright | Dec 1998 | A |
5875782 | Ferrari et al. | Mar 1999 | A |
5879291 | Kolata et al. | Mar 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5908382 | Koros et al. | Jun 1999 | A |
5931778 | Furnish | Aug 1999 | A |
5935107 | Taylor et al. | Aug 1999 | A |
5944736 | Taylor et al. | Aug 1999 | A |
5951466 | Segermark et al. | Sep 1999 | A |
5951467 | Picha et al. | Sep 1999 | A |
5957835 | Anderson et al. | Sep 1999 | A |
5967972 | Santilli et al. | Oct 1999 | A |
5993385 | Johnston et al. | Nov 1999 | A |
6024736 | De la Torre et al. | Feb 2000 | A |
6033362 | Cohn | Mar 2000 | A |
6033425 | Looney et al. | Mar 2000 | A |
6036641 | Taylor et al. | Mar 2000 | A |
6048309 | Flom et al. | Apr 2000 | A |
6074380 | Byrne et al. | Jun 2000 | A |
6113535 | Fox et al. | Sep 2000 | A |
6120436 | Anderson et al. | Sep 2000 | A |
6132370 | Furnish et al. | Oct 2000 | A |
6142935 | Flom et al. | Nov 2000 | A |
6159231 | Looney et al. | Dec 2000 | A |
6162172 | Cosgrove et al. | Dec 2000 | A |
6231506 | Hu et al. | May 2001 | B1 |
6254533 | Fadem et al. | Jul 2001 | B1 |
6254534 | Butler et al. | Jul 2001 | B1 |
6283912 | Hu et al. | Sep 2001 | B1 |
6309349 | Bertolero et al. | Oct 2001 | B1 |
6312377 | Segermark et al. | Nov 2001 | B1 |
6331158 | Hu et al. | Dec 2001 | B1 |
6332468 | Benetti | Dec 2001 | B1 |
6354995 | Hoftman et al. | Mar 2002 | B1 |
6361492 | Santilli | Mar 2002 | B1 |
6382211 | Crook | May 2002 | B1 |
6443957 | Addis | Sep 2002 | B1 |
6450983 | Rambo | Sep 2002 | B1 |
6458079 | Cohn et al. | Oct 2002 | B1 |
6500116 | Knapp | Dec 2002 | B1 |
6517563 | Paolitto et al. | Feb 2003 | B1 |
6547725 | Paolitto et al. | Apr 2003 | B1 |
6585442 | Brei et al. | Jul 2003 | B2 |
6599240 | Puchovsky et al. | Jul 2003 | B2 |
6599292 | Ray | Jul 2003 | B1 |
6616605 | Wright et al. | Sep 2003 | B2 |
6652454 | Hu et al. | Nov 2003 | B2 |
6723044 | Pulford et al. | Apr 2004 | B2 |
6730021 | Vassiliades, Jr. et al. | May 2004 | B2 |
6730022 | Martin et al. | May 2004 | B2 |
6746396 | Segermark et al. | Jun 2004 | B1 |
6746467 | Taylor et al. | Jun 2004 | B1 |
6814078 | Crook | Nov 2004 | B2 |
6814700 | Mueller et al. | Nov 2004 | B1 |
6840951 | De la Torre et al. | Jan 2005 | B2 |
6846287 | Bonadio et al. | Jan 2005 | B2 |
6958037 | Ewers et al. | Oct 2005 | B2 |
7033319 | Pulford et al. | Apr 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7144368 | Larson et al. | Dec 2006 | B2 |
7147599 | Phillips et al. | Dec 2006 | B2 |
7179225 | Shluzas et al. | Feb 2007 | B2 |
7195592 | Ravikumar et al. | Mar 2007 | B2 |
7220228 | Hu et al. | May 2007 | B2 |
7226451 | Shluzas et al. | Jun 2007 | B2 |
7229408 | Douglas et al. | Jun 2007 | B2 |
7238154 | Ewers et al. | Jul 2007 | B2 |
7261688 | Smith et al. | Aug 2007 | B2 |
7270632 | Santilli | Sep 2007 | B2 |
7300399 | Bonadio et al. | Nov 2007 | B2 |
7344495 | Ravikumar et al. | Mar 2008 | B2 |
7387126 | Cox et al. | Jun 2008 | B2 |
7393322 | Wenchell | Jul 2008 | B2 |
7473222 | Dewey et al. | Jan 2009 | B2 |
7507202 | Schoellhorn | Mar 2009 | B2 |
7507235 | Keogh et al. | Mar 2009 | B2 |
7537564 | Bonadio et al. | May 2009 | B2 |
7540839 | Butler et al. | Jun 2009 | B2 |
7559893 | Bonadio et al. | Jul 2009 | B2 |
7566302 | Schwer | Jul 2009 | B2 |
7585277 | Taylor et al. | Sep 2009 | B2 |
7594888 | Raymond et al. | Sep 2009 | B2 |
7650887 | Nguyen et al. | Jan 2010 | B2 |
8403840 | Wagner et al. | Mar 2013 | B2 |
20010002429 | Hu et al. | May 2001 | A1 |
20010020121 | Hu et al. | Sep 2001 | A1 |
20010041827 | Spence et al. | Nov 2001 | A1 |
20020004628 | Hu et al. | Jan 2002 | A1 |
20020095139 | Keogh et al. | Jul 2002 | A1 |
20020099269 | Martin et al. | Jul 2002 | A1 |
20020099271 | Knapp | Jul 2002 | A1 |
20020137989 | Clem et al. | Sep 2002 | A1 |
20030153927 | DiPoto et al. | Aug 2003 | A1 |
20030191371 | Smith et al. | Oct 2003 | A1 |
20040049099 | Ewers et al. | Mar 2004 | A1 |
20040054353 | Taylor | Mar 2004 | A1 |
20040059192 | Cartier et al. | Mar 2004 | A1 |
20040225195 | Spence et al. | Nov 2004 | A1 |
20050096508 | Valentini et al. | May 2005 | A1 |
20050171403 | Paolitto et al. | Aug 2005 | A1 |
20050228232 | Gillinov et al. | Oct 2005 | A1 |
20050267336 | Bertolero et al. | Dec 2005 | A1 |
20050283050 | Gundlapalli et al. | Dec 2005 | A1 |
20060004261 | Douglas | Jan 2006 | A1 |
20060089537 | Schoellhorn | Apr 2006 | A1 |
20060106416 | Raymond et al. | May 2006 | A1 |
20060129165 | Edoga et al. | Jun 2006 | A1 |
20060149137 | Pingleton et al. | Jul 2006 | A1 |
20060149306 | Hart et al. | Jul 2006 | A1 |
20060155170 | Hanson et al. | Jul 2006 | A1 |
20070027364 | Schwer | Feb 2007 | A1 |
20070038032 | De Canniere et al. | Feb 2007 | A1 |
20070073110 | Larson et al. | Mar 2007 | A1 |
20070167980 | Figulla | Jul 2007 | A1 |
20080132766 | Dant et al. | Jun 2008 | A1 |
20080234550 | Hawkes et al. | Sep 2008 | A1 |
20090105655 | Desantis | Apr 2009 | A1 |
20090204067 | Abu-Halawa | Aug 2009 | A1 |
20090265941 | Kurrus | Oct 2009 | A1 |
20090299148 | White et al. | Dec 2009 | A1 |
20090326469 | Rockrohr | Dec 2009 | A1 |
20100168522 | Wenchell | Jul 2010 | A1 |
20100210916 | Hu et al. | Aug 2010 | A1 |
20100234689 | Wagner et al. | Sep 2010 | A1 |
20100234690 | Joie | Sep 2010 | A1 |
20100261970 | Shelton, IV et al. | Oct 2010 | A1 |
20100298646 | Stellon | Nov 2010 | A1 |
20110021879 | Hart et al. | Jan 2011 | A1 |
20110105850 | Voegele et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
100 01 695 | Feb 2001 | DE |
102009014527 | Sep 2010 | DE |
0 177 177 | Apr 1986 | EP |
2 179 699 | Apr 2010 | EP |
2 228 014 | Sep 2010 | EP |
2 228 024 | Sep 2010 | EP |
2228014 | Sep 2010 | EP |
2 238 931 | Oct 2010 | EP |
2 417 922 | Feb 2012 | EP |
2 422 725 | Feb 2012 | EP |
2 462 883 | Jun 2012 | EP |
2 275 420 | Aug 1994 | GB |
WO 9500197 | Jan 1995 | WO |
WO 9515715 | Jun 1995 | WO |
WO 0108563 | Feb 2001 | WO |
WO 03034908 | May 2003 | WO |
WO 2005089655 | Sep 2005 | WO |
WO2010042913 | Apr 2010 | WO |
WO 2010136805 | Dec 2010 | WO |
WO 2011079374 | Jul 2011 | WO |
Entry |
---|
EP Search Report EP 12160423.5 dated Jun. 25, 2012. |
EP Search Report EP 11 18 9987 dated Feb. 15, 2012. |
EP Search Report EP 12 15 4733 dated Jan. 14, 2014. |
EP Search Report EP 11 19 1403 dated Dec. 11, 2013. |
European Search Report corresponding to European Patent Application No. 11 25 0163.0, completed on May 26, 2011 and mailed on Jun. 7, 2011; 5 pages. |
European Search Report corresponding to European Patent Application No. 11 25 0164.8, completed on May 30, 2011 and mailed on Jun. 8, 2011; 6 pages. |
European Search Report corresponding to European Patent Application No. 11 25 0719.9, completed on Nov. 9, 2011 and mailed on Nov. 16, 2011; 7 pages. |
Number | Date | Country | |
---|---|---|---|
20120245433 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61454684 | Mar 2011 | US |