Thoracic aneurysm repair prosthesis and system

Information

  • Patent Grant
  • 7229472
  • Patent Number
    7,229,472
  • Date Filed
    Tuesday, January 8, 2002
    23 years ago
  • Date Issued
    Tuesday, June 12, 2007
    17 years ago
Abstract
The invention is a system, apparatus, and method for treating or repairing, an aneurysm in a large vessel, such as a thoracic aneurysm. The systems, devices, and methods of the present invention include a first prosthesis for anchoring a proximal end of the system in the blood vessel, a second prosthesis for anchoring a distal end of the system, and at least one third second prosthesis for bypassing the aneurysm, the first prosthesis optionally further comprising a seat or the like adapted and configured to receive the third prosthesis.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to devices and methods for repairing aneurysms, and more particularly, to percutaneously and/or intraluminally delivered devices and methods for repairing aneurysms, such as abdominal aortic aneurysms and thoracic aortic aneurysms.


2. Discussion of the Related Art


An aneurysm is an abnormal dilation of a layer or layers of an arterial wall, usually caused by a systemic collagen synthetic or structural defect. An abdominal aortic aneurysm is an aneurysm in the abdominal portion of the aorta, usually located in or near one or both of the two iliac arteries or near the renal arteries. The aneurysm often arises in the infrarenal portion of the diseased aorta, for example, below the kidneys. A thoracic aortic aneurysm is an aneurysm in the thoracic portion of the aorta. When left untreated, the aneurysm may rupture, usually causing rapid fatal hemorrhaging.


Aneurysms may be classified or typed by their position as well as by the number of aneurysms in a cluster. Typically, abdominal aortic aneurysms may be classified into five types. A Type I aneurysm is a single dilation located between the renal arteries and the iliac arteries. Typically, in a Type I aneurysm, the aorta is healthy between the renal arteries and the aneurysm and between the aneurysm and the iliac arteries.


A Type II A aneurysm is a single dilation located between the renal arteries and the iliac arteries. In a Type II A aneurysm, the aorta is healthy between the renal arteries and the aneurysm, but not healthy between the aneurysm and the iliac arteries. In other words, the dilation extends to the aortic bifurcation. A Type II B aneurysm comprises three dilations. One dilation is located between the renal arteries and the iliac arteries. Like a Type II A aneurysm, the aorta is healthy between the aneurysm and the renal arteries, but not healthy between the aneurysm and the iliac arteries. The other two dilations are located in the iliac arteries between the aortic bifurcation and the bifurcations between the external iliacs and the internal iliacs. The iliac arteries are healthy between the iliac bifurcation and the aneurysms. A Type II C aneurysm also comprises three dilations. However, in a Type II C aneurysm, the dilations in the iliac arteries extend to the iliac bifurcation.


A Type III aneurysm is a single dilation located between the renal arteries and the iliac arteries. In a Type III aneurysm, the aorta is not healthy between the renal arteries and the aneurysm. In other words, the dilation extends to the renal arteries.


A ruptured abdominal aortic aneurysm is presently the thirteenth leading cause of death in the United States. The routine management of abdominal aortic aneurysms has been surgical bypass, with the placement of a graft in the involved or dilated segment. Although resection with a synthetic graft via transperitoneal or retroperitoneal procedure has been the standard treatment, it is associated with significant risk. For example, complications include perioperative myocardial ischemia, renal failure, erectile impotence, intestinal ischemia, infection, lower limb ischemia, spinal cord injury with paralysis, aorta-enteric fistula, and death. Surgical treatment of abdominal aortic aneurysms is associated with an overall mortality rate of five percent in asymptomatic patients, sixteen to nineteen percent in symptomatic patients, and is as high as fifty percent in patients with ruptured abdominal aortic aneurysms.


Disadvantages associated with conventional surgery, in addition to the high mortality rate, include an extended recovery period associated with the large surgical incision and the opening of the abdominal cavity, difficulties in suturing the graft to the aorta, the loss of the existing thrombosis to support and reinforce the graft, the unsuitability of the surgery for many patients having abdominal aortic aneurysms, and the problems associated with performing the surgery on an emergency basis after the aneurysm has ruptured. Further, the typical recovery period is from one to two weeks in the hospital, and a convalescence period at home from two to three months or more, if complications ensue. Since many patients having abdominal aortic aneurysms have other chronic illnesses, such as heart, lung, liver and/or kidney disease, coupled with the fact that many of these patients are older, they are less than ideal candidates for surgery.


The occurrence of aneurysms is not confined to the abdominal region. While abdominal aortic aneurysms are generally the most common, aneurysms in other regions of the aorta or one of its branches are possible. For example, aneurysms may occur in the thoracic aorta. As is the case with abdominal aortic aneurysms, the widely accepted approach to treating an aneurysm in the thoracic aorta is surgical repair, involving replacing the aneurysmal segment with a prosthetic device. This surgery, as described above, is a major undertaking, with associated high risks and with significant mortality and morbidity.


Over the past five years, there has been a great deal of research directed at developing less invasive, endovascular, i.e. catheter directed, techniques for the treatment of aneurysms, specifically abdominal aortic aneurysms. This has been facilitated by the development of vascular stents, which can and have been used in conjunction with standard or thin-wall graft material in order to create a stent-graft or endograft. The potential advantages of less invasive treatments have included reduced surgical morbidity and mortality along with shorter hospital and intensive care unit stays.


Stent-grafts or endoprostheses are now FDA approved and commercially available. Their delivery procedure typically involves advanced angiographic techniques performed through vascular accesses gained via surgical cutdown of a remote artery, which may include the common femoral or brachial arteries. Over a guidewire, the appropriate size introducer will be placed. The catheter and guidewire are passed through the aneurysm. Through the introducer, the stent-graft will be advanced to the appropriate position. Typical deployment of the stent-graft device requires withdrawal of an outer sheath while maintaining the position of the stent-graft with an inner-stabilizing device. Most stent-grafts are self-expanding; however, an additional angioplasty procedure, e.g., balloon angioplasty, may be required to secure the position of the stent-graft. Following the placement of the stent-graft, standard angiographic views may be obtained.


Due to the large diameter of the above-described devices, typically greater than twenty French (3F=1 mm), arteriotomy closure typically requires open surgical repair. Some procedures may require additional surgical techniques, such as hypogastric artery embolization, vessel ligation, or surgical bypass, in order to adequately treat the aneurysm or to maintain flow to both lower extremities. Likewise, some procedures will require additional, advanced catheter directed techniques, such as angioplasty, stent placement, and embolization, in order to successfully exclude the aneurysm and efficiently manage leaks.


While the above-described endoprostheses represent a significant improvement over conventional surgical techniques, there is a need to improve the endoprostheses, their method of use and their applicability to varied biological conditions. Accordingly, in order to provide a safe and effective alternate means for treating aneurysms, including abdominal aortic aneurysms and thoracic aortic aneurysms, a number of difficulties associated with currently known endoprostheses and their delivery systems must be overcome. One concern with the use of endoprostheses is the prevention of endo-leaks and the disruption of the normal fluid dynamics of the vasculature. Devices using any technology should preferably be simple to position and reposition as necessary, should preferably provide an acute fluid tight seal, and should preferably be anchored to prevent migration without interfering with normal blood flow in both the aneurysmal vessel as well as branching vessels. In addition, devices using the technology should preferably be able to be anchored, sealed, and maintained in bifurcated vessels, tortuous vessels, highly angulated vessels, partially diseased vessels, calcified vessels, odd shaped vessels, short vessels, and long vessels. In order to accomplish this, the endoprostheses should preferably be extendable and re-configurable while maintaining acute and long term fluid tight seals and anchoring positions.


The endoprostheses should also preferably be able to be delivered percutaneously utilizing catheters, guidewires and other devices which substantially eliminate the need for open surgical intervention. Accordingly, the diameter of the endoprostheses in the catheter is an important factor. This is especially true for aneurysms in the larger vessels, such as the thoracic aorta.


SUMMARY OF THE INVENTION

The thoracic aneurysm repair prosthesis of the present invention provides a means for overcoming the problems associated with percutaneously delivering, anchoring and/or sealing at least one by-pass prosthesis in a large diameter artery as briefly described above.


The present invention is directed to a system including at least one prosthesis for repair or replacement of a mammalian body part or condition. The typical system includes a first prosthesis for sealing a proximal portion of the system within a portion of an artery upstream of an aneurysm; a second prosthesis for anchoring a distal portion of the system within a portion of an artery downstream of the aneurysm; and at least one third prosthesis or bypass matingly engaged within the first prosthesis and extending through and beyond the portion of the artery in need of repair or replacement. In preferred embodiments of the invention, the third prosthesis may also be matingly engaged within the second prosthesis. In a most preferred embodiment of the invention, the system includes two third prostheses.


A typical first prosthesis includes a support or stent structure, and a foam or gasket material supported by the stent, the stent and gasket material being configured to seal the system within an artery. A typical first prosthesis also includes one or more structures or elements for engaging the third prosthesis. In preferred embodiments of the invention, these elements or structures sealingly and/or matingly engage the third prosthesis. The stent is typically a synthetic or natural matrix for supporting the gasket material. In some exemplary embodiments of the stent, the stent is a hollow, substantially cylindrical, and preferably radially expandable matrix having a lumen and two open ends. The typical gasket material is a synthetic or natural fabric, tissue, foam, or the like. In preferred embodiments of the invention, the gasket material covers at least a portion of the lumen, even more preferably, the proximal end of the lumen.


The typical third prosthesis of the present invention includes a support or stent structure, and graft material supported by the stent, the stent and graft material defining a fluid flow path therethrough. The typical graft material is a synthetic or natural fabric, tissue, or the like. The stent is typically a synthetic or natural matrix for supporting the graft and/or positioning the prosthesis in a pre-determined position. In some embodiments of the stent, the stent is a hollow, substantially cylindrical, and preferably radially expandable matrix having a lumen and two open ends. The stent typically comprises a plurality of interconnected struts. In some embodiments of the invention, a graft material may be positioned on an inside and/or outside surface of the matrix; in preferred embodiments of the invention, the graft material may include a plurality of substantially longitudinally directed pleats disposed thereon. In a particularly preferred embodiment, the graft further includes a plurality of radially oriented pleat interruptions. In some embodiments of the invention the graft material may be attached to the stent, preferably by one or more staples or the like.


A system according to the present invention is intended for repairing or bypassing an aneurysm, preferably an aortic aneurysm in the thoracic region. The system may also be used to direct fluid flow from one portion of a fluid pathway to another. The typical system according to the present invention may include multiple system components, e.g., more than one prosthesis, with the first prosthesis typically positioned upstream of an aneurysm. In preferred embodiments of the invention, the first prosthesis, or stent gasket, includes one or more structures or elements that seal the system in the artery, and prevent fluid flow between the system and an arterial wall. The first prosthesis also preferably includes gasket material configured and adapted to facilitate delivery of other system components, to receive and/or position other system components, and/or to seal the system.


For example, a system may include a first prosthesis configured to be positioned in an artery upstream of an aneurysm, and a third prosthesis that matingly engages the first prosthesis and provides a fluid flow path that bypasses the aneurysm. As will be evident from the description below, the system may include a variety of other components all adapted to communicate with another component in the system, with a particular assembly of components designed to establish one or more fluid flow paths that bypass a pre-determined location, e.g., a location that includes an aneurysm and/or an arterial junction.


The accompanying figures show illustrative embodiments of the invention from which these and other of the objectives, novel features and advantages will be readily apparent.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects of the present invention will best be appreciated with reference to the detailed description of the invention in conjunction with the accompanying drawings. Throughout the figures and the description below, like numerals indicate the same element.



FIG. 1 is an elevation view of a fully deployed aortic repair system made in accordance with the present invention.



FIG. 2 is a perspective view of a stent for a first and second prosthesis, shown for clarity in an expanded state.



FIG. 3 is a perspective view of a first and second prosthesis having a stent covered by a gasket material.



FIG. 4 is a side elevation of a third prosthesis having a stent covered by a graft material.



FIG. 5 is an elevation view of a fully deployed first or second prosthesis made in accordance with the present invention and an exemplary delivery system.



FIG. 6 is a side cross section of a first and second prosthesis according to the present invention.



FIG. 7 (a–c) are a top view of alternate embodiments of a cover on a first and second prosthesis according to the present invention.



FIG. 8 is an elevation view of an alternate embodiment of a fully deployed aortic repair system made in accordance with the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The apparatuses, systems, methods, and kits of the present invention may be used in the treatment of aortic aneurysms, preferably a thoracic aortic aneurysm, among other uses noted below. A better understanding of the present device and its use in treating thoracic aortic aneurysms will be achieved by reading the following description in conjunction with the above-incorporated references.


The present invention is directed to a system comprising one or more components for repairing or bypassing an aneurysm, preferably an aneurysm located in a large blood vessel. The system includes one or more prostheses for sealing the system upstream and downstream of the aneurysm. For example, the system may include a first prosthesis for anchoring the system upstream of the aneurysm, a second prosthesis for anchoring the system downstream of the aneurysm, and one or more third prostheses communicating with the first prosthesis and the second prosthesis, and establishing at least one fluid flow path through the aneurysm. In preferred embodiments of the invention, one or more third prostheses may also anchor the system in the artery.


Each of the first and second prostheses may comprise a gasket material engaging a stent, the stent optionally including at least one distally extending leg for positioning the stent in a portion of the artery. Each of the first and second prostheses may also include one or more gaskets or other structures for sealing the system and for sealingly engaging at least one third prosthesis. The third prosthesis may comprise a graft material engaging a stent, said third prosthesis defining a fluid flow path through or bypassing the aneurysm. In a most preferred embodiment of the invention, the system includes two third prostheses. All of the prostheses of the present invention may include a stent comprising a lattice or matrix having diamond shaped structures. A portion of the matrix may or may not include graft material engaging the matrix.


An exemplary embodiment of the present invention includes a first prosthesis, the first prosthesis comprising a gasket material engaging a stent, the stent comprising a matrix of interconnected struts configured to engage a section of an artery upstream of an aneurysm; a second prosthesis, the second prosthesis comprising a gasket material engaging a stent, the stent comprising a matrix of interconnected struts configured to engage a section of an artery downstream of an aneurysm; and a third prosthesis interposed between the first prosthesis and the second prosthesis, and being configured for establishing a fluid flow channel through the aneurysm. In preferred embodiments of the invention, one or both of the first and second prostheses may include gasket material configured to receive at least one third prosthesis. In some embodiments of the invention, the first and second prostheses may be separate components, or the first and second prostheses may communicate with each other through one or more bridges or the like.


In preferred embodiments of the invention, the gasket material is configured to receive two third prosthesis, each of the third prostheses preferably having a proximal end positioned in an artery upstream of the aneurysm, and a distal end positioned in an artery downstream of the aneurysm.


The present invention may also include a first prosthesis for repairing or bypassing an aneurysm, the first prosthesis comprising a gasket material engaging a stent and defining a fluid flow path therethrough, the stent comprising a matrix of interconnected struts, the first prosthesis being configured to engage a section of an artery upstream of an aneurysm; wherein a portion of the gasket material is positioned across the fluid flow path, the portion comprising at least one thread defining a predetermined region within the portion, the predetermined region configured to receive at least one second prosthesis, the second prosthesis being configured for establishing a fluid flow channel through the aneurysm. In preferred embodiments of the invention, the portion includes a first thread defining a first predetermined region configured to receive a first third prosthesis, and a second thread defining a second predetermined region configured to receive a second third prosthesis.


Some embodiments of the invention may further include a portion further comprising a third thread defining a third predetermined region configured to receive a third second prosthesis, and a fourth thread defining a fourth predetermined region configured to receive a fourth second prosthesis. In these embodiments of the invention, the third and/or fourth second prostheses may be configured for establishing a fluid flow channel from a proximal portion of the first prosthesis and into a cross artery, such as the subclavian arteries or other vascular branches in the thoracic aorta.


In a preferred embodiment of the invention, the first and second prostheses may be configured in the same manner, i.e., include the same structures and/or elements.


Any of the prostheses or stents described above may form a component or portion of a system or kit for repairing or bypassing an aneurysm.


Any of the prostheses, stents, systems, or kits described above may be incorporated in a method for treating an aneurysm. In preferred embodiments of the invention, the prostheses, stents, systems, or kits are used to treat an aortic aneurysm, even more preferably, an thoracic aortic aneurysm.


A method of the present invention comprises delivering and deploying a first prosthesis upstream of an aneurysm and a second prosthesis downstream of the aneurysm, the first prosthesis being adapted to receive a proximal portion of at least one third prosthesis; the second prosthesis being adapted to receive a distal portion of the third prosthesis; positioning a proximal end of at least one third prosthesis in a proximal end of the first prosthesis, and positioning a distal end of the third prosthesis in a distal portion of the second prosthesis. In preferred embodiments of the invention, the method includes delivering and deploying two third prostheses within the first and second prostheses.


Exemplary prostheses and methods of the present invention may be configured to repair a thoracic aneurysm. In these embodiments of the invention, the first prosthesis may be positioned in a portion of an artery upstream of the aneurysm, and the second prosthesis may be positioned in a portion of an artery downstream of the aneurysm.


The present invention is also directed to a kit that includes one or more of the following: a sterile or sterilizable enclosure; a first prosthesis; a first prosthesis in an individual sterile enclosure; a second prosthesis; a second prosthesis in an individual sterile enclosure; a third prosthesis; a third prosthesis in an individual sterile enclosure; at least one suture; at least one staple; a collar or catheter tip assembly configured to engage and deliver a first prosthesis, a second prosthesis, and/or a third prosthesis; and at least one marker configured for placement on a first prosthesis, a second prosthesis, a third prosthesis, and/or portions thereof.


The present invention also includes a kit comprising a prosthesis according to the invention, preferably in a sterile or sterilizable enclosure.


A system or kit of the present invention may include one or more modular components. As used herein, a modular component is configured, or adapted to engage, or includes one or more structures that are intended to communicate with or engage a complementary structure on another modular component. The present invention also includes a kit that includes one or more of the following: a sterile or sterilizable enclosure; a first prosthesis; a first prosthesis in an individual sterile enclosure; a second prosthesis; a second prosthesis in an individual sterile enclosure; a third prosthesis; a third prosthesis in an individual sterile enclosure; at least one suture; at least one staple; a collar or catheter tip assembly configured to engage and deliver a first prosthesis, a second prosthesis, and/or a third prosthesis; and at least one marker configured for placement on a first prosthesis, a second prosthesis, a third prosthesis, and/or portions thereof.


Embodiments of the present invention may further include one or more third prostheses configured to matingly engage a first prosthesis and/or a second prosthesis, the third or bypass prosthesis comprising a graft material engaging a stent, the stent comprising a hollow matrix comprising a series of interconnected struts, the matrix being moveable from a first closed position to a second open position; the stent having at least one attachment structure or connector for matingly engaging at least one second complementary structure on the first prosthesis. In some embodiments of the invention, the prosthesis further comprises at least one marker. In preferred embodiments of the invention, the marker or markers are positioned on or formed as part of the stent.


Other exemplary embodiments of the present invention will be evident from the description provided below.


Definitions


As used herein, aortic aneurysm refers to any failure of a conduit, such as an aortic wall, typically characterized by an undesirable dilation of a portion of the artery, vessel malformation, or an occlusion. The system and structures of the present invention may be used to treat, repair, replace, or bypass any blood vessel (e.g., artery, vein, capillary); any fluid carrying vessel (e.g., lymphatic vessels); any organ or portion thereof that includes a blood or fluid vessel; or any junction between blood vessels, between fluid vessels, and between organs and blood vessels. An exemplary use of a system and method of the present invention is to repair an aortic aneurysm, and the use of such term is not intended to limit the use of the structures or systems of the present invention to repair or replace other conduit failures. The prosthesis of the present invention may also be utilized in the thoracic aorta, and may be used to repair thoracic aneurysms or thoracic dissecting aneurysms. Accordingly, use of the term “aortic aneurysm” is intended to relate to and include other aneurysms, including but not limited to both abdominal aortic aneurysms and thoracic aneurysms.


In preferred embodiments of the invention, the system and structures are used to treat, repair, replace, or bypass an aneurysm located in a large blood vessel, e.g., a blood vessel having a diameter of about 36 mm or more, such as a thoracic aneurysm.


As used herein fluid pathway refers to any in vivo structure through which a biological fluid passes. A preferred fluid pathway is an artery. Fluid pathways include, but are not limited to channels formed by an artery, a vein, a capillary, lymph nodes and channels, and arteries, veins, and capillaries within an organ or organelle.


As used herein fluid or biological fluid refers to any fluid produced by an animal, including a human. Exemplary biological fluids include but are not limited to blood, oxygenated blood, de-oxygenated blood, gastric fluids, amniotic fluid, spinal fluid, and lymph. The preferred fluid is blood or oxygenated blood.


As used herein, conduit typically refers to any structure used to convey a biological fluid. The conduit may be formed of natural or synthetic materials, or combinations thereof. Exemplary conduits include but are not limited to an artery, a vein, a capillary, lymph nodes and channels, and arteries, veins, capillaries within an organ or organelle, and a prosthesis or system according to the invention.


As used herein, “biofusion” is a word coined by assignee referring to the ability of cells, proteins, fibrin, and other biological molecules to incorporate into the pore structure of a material, such as a foam or gasket material, or a graft material. It is believed that this feature promotes a long term stable biological interface that cannot be separated about six weeks after implantation.


The biofusion effect has many advantages. It has the potential to obviate late endo-leakage by preventing areas of non-organized clot from being displaced or recanalized. It is also believed that biofusion creates a connective tissue collar around the prosthesis that may prevent the aortic neck from dilating over time. Restricting neck dilation avoids leakage pathways and implant migration that can be caused by an insufficient fit with the aorta.


As used herein, adapted for communication, communicating, or similar terms refer to any means, structures, or methods for establishing operational association between two elements of the system. Similarly, engaging, adapted to engage, or similar terms refer to means, structures, or methods for contacting a first component, structure, or portion thereof with a second component, structure, or portion thereof. Exemplary structures are shown in the figures. Typically, all of these terms and phrases refer to at least one structure in or on a first component configured to engage a complementary structure in or on a second component, and the use of these inter-engaging features to link a first prosthesis or component with a second prosthesis or component. The engagement or communication may be matingly (e.g., permanent) and/or releasably (e.g., temporary). In preferred embodiments of the invention, communication or engagement may be fluid tight, substantially fluid tight, or fluid tight to an extent so as to not substantially compromise the intended function of the structure.


For example, a connector may be adapted to receive or connect to a complementary connector on another prosthesis. As used herein, connector refers to any structure used to form a joint or to join itself to another component or portion thereof. These connectors or connections establish a fluid flow path through various elements of the apparatus, assembly, or system. In a preferred embodiment of the invention, the system is intended to establish at least one fluid flow path through a vessel, conduit, organ, or portions thereof. Typical connections include but are not limited to mating connections, such as Luer-type, screw-type, friction-type, or connectors that are bonded together.


As used herein, distal is used in accordance with its ordinary dictionary definition, e.g., referring to a position farthest from the beginning; in human anatomy, this term is commonly equivalent to caudal or inferior. Proximal is used in accordance with its ordinary dictionary definition, e.g., referring to a position nearest the beginning; in human anatomy, this term is commonly equivalent to cranial or superior. The terms distal and proximal are intended to convey opposite ends or portions of a device, channel, element, or structure. In relation to a fluid flow path, distal will typically refer to a downstream location in the fluid flow path, and proximal will typically refer to an upstream location, unless otherwise specifically noted. Anatomically, distal generally refers to “away from the heart” and proximal generally refers to “toward the heart.”


A system for treating an aortic aneurysm according to the present invention typically includes a first prosthesis, a second prosthesis that may or may not communicate with the first prosthesis, and at least one second prosthesis positioned or anchored by the first and second prostheses. In preferred embodiments of the invention, the components of the system are delivered intraluminally to the site of the aneurysm using a catheter or the like. One skilled in the art will therefore recognize that it is beneficial to deliver the components of the system in a closed or first position, and to deploy the component in its functional location by expanding the component into an open or second position. In some embodiments of the invention, the component is self-expanding; that is, once the component is released from its delivery device, the component automatically moves into its open position. In other embodiments of the invention, the component may be expandable using a balloon or the like, as is well known to those skilled in the art. A typical second prosthesis forms a fluid flow channel that bypasses the aneurysm. The system may also include at least one third prosthesis, typically forming a fluid flow path into a cross artery upstream of the aneurysm.


Each of the components of the system will now be described in more detail. Any references to the figures will be used to illustrate one or more exemplary embodiments of the invention, without intending to limit the invention thereby.


System


A system according to the present invention may include one or more prostheses. In the exemplary system shown in FIG. 1, the system includes a first prosthesis 10a, a second prosthesis 10b, and two third or bypass prostheses 111a and 111b, which, in combination, bypass an aneurysm 100. In preferred embodiments of the invention, a proximal portion of the system may be positioned in a section 101 of an artery upstream of the aneurysm 100, and a distal portion of the system may be positioned in a down stream section 102 of the artery.


A prosthesis used in a system of the present invention typically includes a support, stent, or lattice of interconnected struts defining an interior space or lumen having an open proximal end and an open distal end. The lattice also defines an interior surface and an exterior surface. The interior and/or exterior surfaces of the lattice, or a portion of the lattice, may be covered by or support at least one covering material, such as a foam or graft material.


As noted in more detail below in relation to specific system components, some prostheses of the present invention may be configured to seal and/or anchor the system in place, and/or to receive and position other prostheses. Typically these prostheses do not themselves define a fluid flow path. Other prostheses may be configured to define at least one fluid flow path. Typically, these prostheses define a channel or the like through which fluid, such as blood, flows. This channel or fluid flow path typically begins upstream of, or in an upstream portion of, a component of the system. In some embodiments of the invention, the fluid flow path bypasses the aneurysm.


In preferred embodiments of the invention, a prosthesis is moveable between an expanded or inflated position and an unexpanded or deflated position, and any position therebetween. In some embodiments of the invention, it may be desirable to provide a prosthesis that moves only from fully collapsed to fully expanded. In other embodiments of the invention, it may be desirable to expand the prosthesis, then collapse or partially collapse the prosthesis. Such capability is beneficial to the surgeon to properly position or re-position the prosthesis. In accordance with the present invention, the prosthesis may be self-expanding, or may be expandable using an inflatable device, such as a balloon or the like.


Even further in accordance with the present invention, there is provided a delivery apparatus for a prosthesis. The apparatus includes an outer sheath, comprising an elongated tubular member having distal and proximal ends, and an inner shaft located coaxially within the outer sheath, the shaft having a distal end and a proximal end. The distal end of the shaft further including at least two grooves disposed thereon. The flanges of the first prosthesis are configured to releasably engage the grooves of a portion of the delivery device. An exemplary embodiment of a system for treating a thoracic aneurysm according to the present invention is shown in FIG. 1. For the purpose of this embodiment, the first prosthesis 10a is deployed in a portion 101 of the artery upstream of the aneurysm, and the second prosthesis 10b is deployed in a portion 102 of the artery downstream of the aneurysm. FIG. 1 also shows two third prostheses, 111a and 111b, the proximal ends of which matingly engage a proximal portion of first prosthesis 10a, and the distal ends of which matingly engage a distal portion of second prosthesis 10b. As illustrated, the body of the third prosthesis forms a conduit or fluid flow path that passes through the location of the aneurysm 100. In preferred embodiments of the invention, the components of the system define a fluid flow path that bypasses the section of the artery where the aneurysm is located.


These and other features of the prosthetic devices and systems of the present invention will be described in more detail below.


First Prosthesis or Sealing Prosthesis


In the description that follows, reference will be made only to first prosthesis 10a, but the description applies equally to second prosthesis 10b.


The first prosthesis includes a support matrix or stent that supports a sealing material or foam, at least a portion of which is positioned across a biological fluid flow path, e.g., across a blood flow path. In preferred embodiments of the invention, the first prosthesis, the stent, and the sealing material are radially expandable, and define a hollow space between a proximal portion of the prosthesis and a distal portion of the prosthesis. The first prosthesis may also include one or more structures for positioning and anchoring the prosthesis in the artery, and one or more structures for engaging and fixing at least one second prosthesis in place, e.g., a bypass prosthesis.


The support matrix or stent of the first prosthesis may be formed of a wide variety of materials, may be configured in a wide variety of shapes, and their shapes and uses are well known in the art. Exemplary prior art stents are disclosed in U.S. Pat. No. 4,733,665 (Palmaz); U.S. Pat. No. 4,739,762 (Palmaz); and U.S. Pat. No. 4,776,337 (Palmaz), each of the foregoing patents being incorporated herein by reference.


In preferred embodiments of the invention, the stent of the first and second prosthesis is a collapsible, flexible, and self-expanding lattice or matrix formed from a metal or metal alloy, such as nitinol or stainless steel. Structures formed from stainless steel may be made self-expanding by configuring the stainless steel in a predetermined manner, for example, by twisting it into a braided configuration. More preferably, the stent is a tubular frame that supports a sealing material. The term tubular, as used herein, refers to any shape having a sidewall or sidewalls defining a hollow space or lumen extending therebetween; the cross-sectional shape may be generally cylindrical, elliptic, oval, rectangular, triangular, or any other shape. Furthermore, the shape may change or be deformable as a consequence of various forces that may press against the stent or prosthesis.


The sealing material or gasket member supported by the stent may be formed of a wide variety of materials, may be configured in a wide variety of shapes, and their shapes and uses are well known in the art. Exemplary materials for use with this aspect of the invention are disclosed in U.S. Pat. No. 4,739,762 (Palmaz) and U.S. Pat. No. 4,776,337 (Palmaz), both incorporated herein by reference.


The sealing material or gasket member may comprise any suitable material. Exemplary materials are composed of a biodurable and biocompatible material, including but are not limited to, open cell foam materials and closed cell foam materials. Exemplary materials include polyurethane, polyethylene, polytetrafluroethylene; and other various polymer materials, preferably woven or knitted, that provide a flexible structure, such as Dacron®. Highly compressible foams are particularly preferred, preferably to keep the crimped profile low for better delivery. The sealing material or foam is preferably substantially impervious to blood when in a compressed state.


The sealing material may cover one or more surfaces of the stent i.e., can be located along an interior or exterior wall, or both, and preferably extends across the proximal end or a proximal portion of the stent. The sealing material helps impede any blood trying to flow around the first prosthesis, e.g., between the first prosthesis and the arterial wall, and around one or more third prostheses after they have been deployed within the lumen of the first prosthesis (described in more detail below).


In preferred embodiments of the invention, the sealing material stretches or covers a portion of the proximal end of the stent and along at least a portion of the outside wall of the stent.


In some embodiments of the invention, it may be desirable for the portion of the sealing material covering the proximal portion of the stent to include one or more holes, apertures, points, slits, sleeves, flaps, weakened spots, guides, or the like for positioning a guidewire, for positioning a system component, such as a second prosthesis, and/or for engaging, preferably matingly engaging, one or more system components, such as a second prosthesis. For example, a sealing material configured as a cover or the like, and having a hole, may partially occlude the stent lumen.


These openings may be variously configured, primarily to conform to its use. These structures promote proper side by side placement of one or more, preferably multiple, prostheses within the first prosthesis, and, in some embodiments of the invention, the sealing material may be configured or adapted to assist in maintaining a certain shape of the fully deployed system or component. Further, these openings may exist prior to deployment of the prosthesis, or may be formed in the prosthesis as part of a deployment procedure. The various functions of the openings will be evident from the description below. In exemplary embodiments of the invention, the sealing material is a foam cover that has a single hole.


The sealing material may be attached to the stent by any of a variety of connectors, including a plurality of conventional sutures of polyvinylidene fluoride, polypropylene, Dacron®, or any other suitable material and attached thereto. Other methods of attaching the sealing material to the stent include adhesives, ultrasonic welding, mechanical interference fit and staples.


One or more markers may be optionally disposed in or on the stent between the proximal end and the distal end. Preferably, two or more markers are sized and/or positioned to identify a location on the prosthesis, or to identify the position of the prosthesis, or a portion thereof, in relation to an anatomical feature or another system component.


The first prosthesis is typically deployed in an arterial passageway upstream of an aneurysm, and functions to open and/or expand the artery, to properly position and anchor the various components of the system, and, in combination with other components, seal the system or portions thereof from fluid leaks. Preferably, the first prosthesis seals the system from leakage between the system and the arterial wall, and from leakage between the first prosthesis and the third prosthesis. The second prosthesis is typically deployed in an arterial passageway downstream of an aneurysm, and functions to open and/or expand the artery, to properly position and anchor the various components of the system, and, in combination with other components, seal the system or portions thereof from fluid leaks. Preferably, the second prosthesis seals the system from retrograde flow or leakage.



FIGS. 1–3 show exemplary sealing prostheses 10a, b of the present invention. Sealing prostheses 10a, b include a cylindrical or oval cross-sectional self-expanding lattice, support, or stent 12, typically made from a plurality of interconnected struts 13. Stent 12 defines an interior space or lumen 18 having two open ends, a proximal end 14 and a distal end 16. One or more markers 15 may be optionally disposed in or on the stent between the proximal end 14 and the distal end 16.


Stent 12 may further include at least two, but preferably eight (as shown in FIG. 2), spaced apart longitudinal legs 20. Preferably, there is a leg extending from each apex 11 of diamonds formed by struts 13. At least one leg, but preferably each leg, includes a flange 28 adjacent its distal end which, as is described in greater detail below, allows for the stent to be retrievable into its delivery apparatus after partial or nearly full deployment of stent 12 so that it can be turned, or otherwise repositioned for proper alignment.



FIG. 3 shows the sealing material 30 covering the proximal end of sealing prosthesis 10. In the embodiment shown in FIG. 3, sealing prosthesis 10 includes a sealing material 30 having a first opening or hole 32 and a second opening or slit 33. The sealing or gasket material 30 covers at least a portion of the interior or exterior of the stent 12 and most preferably covers substantially all of the exterior of the stent 12. For example, sealing material 30 may be configured to cover stent 12 from the proximal end 16 to the distal end 14, but preferably not covering longitudinal legs 20.


The sealing material 30 helps impede any blood trying to flow around bypass prostheses 111a and 111b after they have been deployed (as shown in FIG. 1), and from flowing around the stent gasket itself. For this embodiment, sealing material 30 is a compressible member or gasket located along the exterior of the stent 12 and at least a portion of the interior of the stent 12.


Preferred embodiments of the invention are illustrated in FIGS. 6 and 7(a–c). These Figures show a sealing prosthesis 10a having a sealing material 30 that covers at least a portion of the proximal end 14 of the sealing prosthesis 10a. The sealing material 30 preferably includes a partition 71 that extends approximately across the diameter of the cross section of the sealing prosthesis 10a, wherein the partition 71 includes a thicker gasket material, or further includes a foam or the like. The partition 71 may be formed from any of the gasket or foam materials described above.


The exemplary embodiments illustrated in FIGS. 6 and 7(a–c) include a thicker partition 71 in roughly an hourglass shape, although other shapes and sizes may be used. The partition defines at least two sections 72a and 72b within the prosthesis having less material or the like, these sections being configured for receiving a proximal end of a bypass prosthesis, as is described in more detail below. In the exemplary embodiments shown in FIGS. 7(a–c), partition 71 defines a first section 72a and a second section 72b; first section 72a is configured to receive a first prosthesis, 111a and second section 72b is configured to receive a second bypass prosthesis 111b, as described below.


In accordance with the present invention, it may be desirable to include one or more fibers, threads, filaments, straps, or the like for further defining a section. In the description below, the word fiber or thread will be used as a shorthand descriptor for the element that includes fibers, threads, filaments, straps, or the like. In preferred embodiments of the invention, the fiber, etc., assists in positioning a bypass prosthesis 111a, b.


In accordance with the present invention, the fiber or thread may be formed from any material and/or comprise any construction suitable for use in a biological environment, e.g., suitable for use in a blood vessel. The fiber may be woven or non-woven, formed of a synthetic or natural material, and/or single or multi-filament. Exemplary materials for forming the fiber include but are not limited to polyester, Dacron®, Teflon®, polyurethane, porous polyurethane, silicone, polyethylene terephthalate, and expanded polytetrafluoroethylene (ePTFE). The fiber or thread may also take on other forms. For example, the fiber or thread may be formed from glues or adhesives, or by melting sections of the gasket material. In addition, the fibers or thread may comprise struts deformed out of the circumferential plane.


The end or ends of the fiber may be unattached or attached. In a preferred embodiment of the invention, both ends of the fiber are attached or fixed. For example, the ends may be sewn or fixed to a cover 31 formed in the sealing material 30. In a preferred embodiment of the invention, the ends of the fiber are fixed to a strut 13, even more preferably to a proximal portion of stent 12. One or more ends of the fiber may be fixed to the stent 12 or the strut 13 by threading, knotting, sewing, with adhesives, or any other mechanism for fixing the end of the fiber in place.


In the exemplary embodiments of the invention illustrated in FIGS. 7(a–c) the, fiber may be variously configured. In FIG. 7a, fibers 73a and 73b may be interwoven in the cover 31, and define or form first section 72a and a second section 72b, as noted above. As shown, the ends of the fibers may be fixed to a strut; see 74a, 74b, 74c, and 74d. In FIG. 7b, a single fiber 73c may be positioned across the diameter of the cover 31, and is fixed to a strut at 74e and 74f. In FIG. 7c, one or more crossed fibers 73d and 73e may be used to form or define partitions 72a and 72b respectively. In the illustrated embodiments, the ends may be attached to the stent 12 at 74a, 74b, 74c, and 74d.


In some embodiments according to the present invention, it may be desirable to use a fiber that is frangible or breakable. In these exemplary embodiments of the invention, the fiber breaks as the unexpanded prosthesis is expanded to its fully deployed position. Alternately, the ends of the fibers may be releasably fixed to the stent or strut when the prosthesis is in a collapsed condition, with one or more ends releasing as the prosthesis expands to its fully deployed position.


These structures promote proper side by side placement of one or more, preferably multiple bypass, prostheses within the sealing prosthesis.


As noted above, the first and second prostheses may be connected together or unconnected.


In exemplary embodiments of the invention in which the first and second prostheses are connected, the bridge or plurality of struts that connect the two sealing prostheses may be flexible or non-flexible. FIG. 8 illustrates an embodiment wherein the sealing prostheses 10a, 10b are connected by a plurality of struts 800. In preferred embodiments of the invention, the bridge or struts 800 are flexible and capable of elongating longitudinally, i.e., increasing the overall length of the complete system.


Third Prosthesis


The bypass prosthesis is a bypass conduit or the like that is typically deployed in an arterial passageway upstream of an aneurysm, and establishes a fluid flow path through the system or a portion thereof. In some embodiments of the invention, the bypass prosthesis defines a fluid flow path that passes through the arterial segment having the aneurysm, e.g., bypassing the aneurysm. In these embodiments of the invention, the bypass prosthesis extends from a healthy portion of the artery, through the arterial segment having the aneurysm, and into another healthy portion of the artery or another artery. The bypass prosthesis functions to bypass the portion of the conduit containing the aneurysm, and to properly position and/or anchor the proximal end of the system in an artery. In some embodiments of the invention, the bypass prosthesis defines a fluid flow path from one portion of the system, e.g., a proximal portion or end, to another portion, e.g., a distal portion or end, or an intermediate portion. The bypass prosthesis may also include one or more structures for positioning and anchoring the bypass prosthesis in the artery or in the sealing prosthesis. In a preferred embodiment of the invention, the bypass prosthesis is adapted to engage the sealing prostheses 10a and 10b.


One or more markers may be optionally disposed in or on the stent between the proximal end and the distal end. Preferably, two or more markers are sized and/or positioned to identify a location on the prosthesis, or to identify the position of the prosthesis, or a portion thereof, in relation to an anatomical feature or another system component. In preferred embodiments of the invention, fluoroscopically identifiable sutures or staples are used; these sutures or staples may also attach the graft material to the stent.


The bypass prosthesis typically includes a support matrix or stent that supports a graft material. One end of the bypass prosthesis is typically adapted to engage one or more portions of a sealing prosthesis. In preferred embodiments of the invention, the proximal end of bypass prosthesis is adapted to matingly engage a portion of sealing prosthesis 10a, and the distal end of the bypass prosthesis is adapted to matingly engage a portion of sealing prosthesis 10b. The bypass prosthesis may optionally include at least one attachment structure on its distal end for engaging and securing the prosthesis in a portion of an artery downstream of the aneurysm.



FIGS. 1 and 4 show an exemplary bypass prosthesis 111a, b of the present invention. Bypass prosthesis 111a, b includes a substantially cylindrical self-expanding lattice, support, or stent 40, typically made from a plurality of interconnected struts 44. Lattice 40 defines an interior space having two open ends, a proximal end 41 and a distal end 42. The interior and/or exterior surfaces of lattice 40 may be covered by or support at least one graft material 60. These and other features of the bypass prosthesis will be described in more detail below.


Stent


Any of the stents of the present invention form a support or lattice structure suitable for supporting a graft material. In preferred embodiments of the invention, the stent defines a channel through which a fluid, such as blood, may flow. A typical stent comprises an expandable lattice or network of interconnected struts. In preferred embodiments of the invention, the lattice is laser cut from an integral tube of material.


In accordance with the present invention, the stent may be variously configured. For example, the stent may be configured with struts or the like that form repeating geometric shapes. One skilled in the art will readily recognize that a stent may be configured or adapted to include certain features and/or to perform a certain function(s), and that alternate designs may be used to promote that feature or function.


In some exemplary embodiments of the invention, the struts form a matrix having diamond shapes. In the exemplary embodiment of the invention shown in FIG. 2, the matrix or struts of stent 12 are configured into diamond shapes, having approximately eight diamonds. In a preferred embodiment of the invention, the fully expanded diamond pattern of a sealing prosthesis has angles of about forty-five to fifty-five degrees at their distal and proximal ends. In the exemplary embodiment of the invention shown in FIG. 4, the matrix or struts of stent 40 may be configured into at least two hoops 43, each hoop 43 comprising a number of struts 44 having a diamond shape, having approximately nine diamonds. A bypass prosthesis, such as third prosthesis 111a, b, may further include a zig-zag shaped ring 50 for connecting adjacent hoops to one another. The zig-zag shaped rings may be formed from a number of alternating struts 52, wherein each ring 50 has fifty-four struts.


The diamond pattern for the anchors, as well as the other hoops, provide the hoops with radial and longitudinal stiffness. The longitudinal strength provides for better mechanical fixation of stent 40 to a graft material (described below). The radial strength provides a proximal hoop 45 with better attachment and sealing to the graft material, and provides a distal hoop 46 with better fixation and sealing to the arterial wall. Further, the distal hoop may be flared, and may be exposed after the graft material has been attached to the stent.


In one preferred embodiment, the proximal and distal hoops have greater radial and longitudinal strength than the hoops therebetween. This creates a stent graft having stiff ends for anchoring, but a more flexible body for navigation through the vasculature. The stiffer ends can be accomplished by changing the dimensions of the struts for the end hoops, or by varying the heat treatment of the end hoops during manufacture. The rings allow the stent to bend more easily, and generally provide for more flexibility when the stent is being delivered through a tortuous vessel. When a non-compliant graft is attached to a stent, the strength of the diamond hoops scaffolds any graft folding into the blood flow lumen, while maintaining a tight kink radius.


In accordance with some embodiments of the present invention, the proximal and/or distal end of a stent may include one or more anchors and/or one or more struts of the stent configured into an anchor. One or more anchors, commonly referred to as recapture legs, may also be configured to releasably engage a delivery device, such as a catheter, or a portion thereof.


The distal end of the stent is preferably configured to engage a complementary structure on a delivery device, such as a catheter or a portion thereof. For example, the distal end of the stent may include one or more keys that engage, preferably releasably engage, a corresponding latch on the catheter. An exemplary configuration is shown in FIG. 2. It is intended that the invention should not be limited by the precise structures used to engage the stent to the delivery device.


In the exemplary embodiments of the invention shown in FIGS. 1–3, the stent may include one or more flanges or anchors 28 configured to engage a corresponding structure on a delivery device 130 (shown in FIG. 5). In accordance with the present invention, the delivery apparatus may include a collar having one or more grooves or the like adapted to releasably engage one or more complementary structures on a stent or prosthesis of the present invention. Such a flange/delivery device configuration is particularly suited to partially deploying a prosthesis of the present invention, and to position or re-position the prosthesis.


Any of the stents of the present invention may be formed of any material suitable for functioning in vivo as a support for graft material. A stent of the present invention may be formed from a wide variety of materials, all of which are well known to those skilled in the art. In some exemplary embodiments of the invention, the stent is formed from a metal or metal alloy. In preferred embodiments of the invention, the stent is formed from superelastic Nickel Titanium alloys (Nitinol). Descriptions of medical devices which use such alloys can be found in U.S. Pat. No. 4,665,906 and European Patent Application EP 0928606, both of which are hereby incorporated herein by reference. A stent according to the invention is preferably laser cut from a tubular piece of nitinol and thereafter treated so as to exhibit shape memory properties at body temperature. In preferred embodiments of the invention, the stent material is expandable or collapsible, i.e., moveable from a first closed position to a second open position, or vice versa.


Graft Material


An inner or outer surface of a stent of the present invention may be covered by or support a graft material. Graft material 60 can be made from any number of materials known to those skilled in the art, including woven polyester, Dacron®, Teflon®, polyurethane, porous polyurethane, silicone, polyethylene terephthalate, expanded polytetrafluoroethylene (ePTFE) and blends of various materials.


In some embodiments of the invention, it may be desirable to incorporate a biodegradable, or degradable material, such as albumin, collagen, or any type of collagen. A graft material that is biodegradable would erode or dissolve over time; however, it is believed that the eroding graft material may be replaced by one or more biofusion constituents, or alternately, a layer of endothelium may grow as the graft material erodes. It is further believed that these new layers of endothelium may provide a new, fluid impervious lining within the aneurysm.


It is preferred that all of the foregoing materials be porous to allow for an intimal layer to form a biofusion structure or matrix.


The graft material may be variously configured, preferably to achieve predetermined mechanical properties. For example, the graft material may incorporate a single or multiple weaving and/or pleating patterns, or may be pleated or unpleated. For example, the graft may be configured into a plain weave, a satin weave, include continuous longitudinal pleats, interrupted pleats, annular or helical pleats, radially oriented pleats, or combinations thereof. Alternately, the graft material may be knitted or braided. In the exemplary embodiments of the invention in which the graft material is pleated, the pleats may be continuous or discontinuous. Also, the pleats may be oriented longitudinally, circumferentially, or combinations thereof.


As shown in FIG. 4, graft material 60 may include a plurality of longitudinal pleats 61 extending along its surface, generally parallel to the longitudinal axis of the prosthesis. The pleats allow the prosthesis to collapse around its center, much as it would be when it is delivered into a patient. This provides a relatively low profile delivery system, and provides for a controlled and consistent deployment therefrom. It is believed that this configuration minimizes wrinkling and other geometric irregularities. Upon subsequent expansion, the prosthesis assumes its natural cylindrical shape, and the pleats or folds uniformly and symmetrically open.


In addition, pleats 61 help facilitate stent graft manufacture, in that they indicate the direction parallel to the longitudinal axis, allowing stent to graft attachment along these lines, and thereby inhibiting accidental twisting of the graft relative to the stent after attachment. The force required to push the stent-graft out of the delivery system may also be reduced, in that only the pleated edges of the graft make frictional contact with the inner surface of the delivery system. One further advantage of the pleats is that blood tends to coagulate generally uniformly in the troughs of the pleats, discouraging asymmetric or large clot formation on the graft surface, thereby reducing embolus risk.


As shown in FIG. 4, the graft material may also include one or more, and preferably a plurality of, radially oriented pleat interruptions 70. The pleat interruptions are typically substantially circular and are oriented perpendicular to longitudinal axis. Pleat interruptions 70 allow the graft and prosthesis to bend better at selective points. This design provides for a graft material that has good crimpability and improved kink resistance.


The graft material as described above is preferably highly compressible, which also promotes a low crimped profile for better delivery characteristics.


In accordance with the present invention, the graft material may be impervious or substantially impervious to the flow of blood, or may be porous. A graft material is impervious if it prevents blood from passing through the graft material on contact with blood or after the graft material is saturated with blood. Choice of the flow characteristics of a graft material are well known to those skilled in the art, and are tied in part to the intended function of the prosthesis or portion of the prosthesis. For example, it may be desirable for the graft material that forms the cover of the sealing prosthesis to be impervious or substantially impervious to the flow of blood. Alternately, it may be desirable for a graft material to be porous or partially porous to promote biofusion.


In addition, it is preferable that the graft material be substantially impervious to the flow of blood, at least when in a partially compressed state. When used throughout for the present invention, materials which are substantially impervious to the flow of blood include materials which become substantially impervious to the flow of blood after being saturated with blood.


The foregoing graft materials can be knitted or woven, and can be warp or weft knitted. If the material is warp knitted, it may be provided with a velour, or towel like surface, which is believed to speed the formation of blood clots, thereby promoting the integration of a prosthesis or prosthesis component into the surrounding cellular structure.


A graft material can be attached to a stent or to another graft material by any number of structures or methods known to those skilled in the art, including adhesives, such as polyurethane glue; a plurality of conventional sutures of polyvinylidene fluoride, polypropylene, Dacron®, or any other suitable material; ultrasonic welding; mechanical interference fit; and staples.


As stated above, a stent preferably has a graft member attached thereto. The graft member covers at least a portion of the interior or exterior of the stent, and most preferably covers substantially all of the exterior of the stent. In some embodiments of the invention, bypass prostheses 111a and 111b includes graft material 60 that covers only a portion of the distal end 42 of matrix 40. See, for example, FIG. 4.


In an alternate design, graft material may not be utilized on either end of the stent. For example, on any endolegs, prosthesis, extension cuffs, stent gaskets or other converted stents, both ends thereof may be left uncovered. The body has the ability to cover the exposed portions of the stent with endothelial cells and thus these exposed portions become endothelialized or incorporated into the vessel wall. This may be an important factor in the long term stability of the system. Essentially, over long periods of time, the aneurysmal sac can and will shrink if it is totally excluded from blood flow. This shrinkage changes the morphology of the aortic region that has been treated with the bypass prostheses. If all ends of the system are firmly anchored in the actual vessel, as is the case when the ends are covered with endothelium cells, the system will be better able to withstand these morphological changes.


In accordance with the present invention, it may be highly desirable to provide a graft material that limits or eliminates the amount of blood that passes between the graft and the arterial wall, to provide a catheter-delivered graft or prosthesis that extends through a longer portion of an artery, to improving the anchoring mechanisms between two prostheses, to improving the anchoring mechanism between the prosthesis and the arterial wall or an interluminal cavity within an artery, and to improve the fluid dynamic and performance characteristics of the implanted prosthesis.


Marker


As noted above, a stent and/or prosthesis of the present invention may include one or more markers. One skilled in the art will recognize that one or markers may be positioned on the stent, the graft material, or on the prosthesis. In preferred embodiments of the invention, the markers are used to identify the position of the stent or prosthesis in relation to a body part and/or in relation to another stent or prosthesis, and/or to identify the position of one part of the prosthesis relative to another part. In most preferred embodiments of the invention, the marker(s) is used to identify a position in vivo.


As shown in FIGS. 2 and 3, a stent, such as stents 12 and/or 40, preferably includes one or more radiopaque markers 15. Exemplary materials for forming markers include but are not limited to tantalum, platinum, iridium, and gold. As shown, markers 15 are coils of radiopaque metal, wrapped around the struts of the stent. Markers 15 are preferably made from 0.0075 inch diameter tantalum (Ta) wire wrapped tightly around the struts.


The number, location, and size of the marker may vary, and the markers may be used alone or in combination to identify the position of a particular portion of the prosthesis. For example, a proximal marker adjacent opening 32 may be five mm long and the proximal marker opening 33 may be two mm long. Also, two distal markers may be one hundred eighty degrees apart, and a proximal marker may be positioned equidistant from each of the distal markers. In this exemplary configuration, the proximal marker then aids proper rotational positioning of the device.


Connectors


Some exemplary embodiments of a prosthesis according to the present invention may include one or more connectors. In some exemplary embodiments of the invention, the connectors are used to engage or connect one prosthesis or component to another. In some embodiments of the invention, the connectors may be used to attach the gasket material or graft material to a stent or lattice.


As noted above, one skilled in the art will recognize that a variety of materials and methodologies may be used to connect one prosthesis to another, or to attach the graft material to a stent. Exemplary connectors include but are not limited to sutures, staples, rivets, or the like. In preferred embodiments of the invention, the connector is a suture or staple, even more preferably, having a knotted or nub end. Further, a connector may be formed from a radiopaque material or a fluorescent material, each of which allow the connector to be used as a marker.


In accordance with the present invention, it may be desirable to incorporate in a prosthesis a connector adapted for use with a lattice-like stent. As illustrated in FIG. 4, a first connector 54 may be configured for use at an end portion of a stent, preferably at an end portion of a strut 44. A second connector 56 may be configured for use at an internal portion of a stent, preferably at the junction between two struts 44.


Alternately, a connector assembly for receiving a rivet, staple, suture, or the like, may include two apertures, each aperture configured to receive a leg of the rivet, staple, suture, or the like. In this embodiment of the invention, the end of each leg is preferably formed into a knot, nub, or spherical end that is of larger diameter than the diameter of the aperture. Preferably, all of the elements noted above are assembled, the legs are passed through the apertures, and the end of each leg is formed into a nub. Alternately, one end may be formed into a nub prior to placement through the aperture, with the second end being formed into a nub after assembly of all the elements.


The structures and functions of the second connector 56 are similar or the same as those described above for the first connector.


The number of connectors and staples are typically dictated by the size and structure of a particular stent; it is intended that the invention should not be limited thereby. In an exemplary embodiment, the stent may include six first connectors and three second connectors.


The above staple aperture design or connector assembly has many advantages for attaching gasket material or a graft material to a stent. Because the legs of the staple are folded around and imbedded within a pocket or the like, any risk of puncturing an inflation balloon is minimized. In addition, the structural integrity of the prosthesis is increased because staples more securely attach the graft material to the stent, as compared to prior art designs which use suture or adhesives to attach the graft to the stent.


Staples 90 and 120 (in FIG. 4) may be made from any number of materials known in the art, including tantalum alloys, platinum alloys or stainless steel, such as a grade of type 316 stainless steel. The staples may take on other configurations and shapes, and can be coated for lubricity purposes. The staples may be formed from a radiopaque material to identify the location of the staple, and to act as a marker to identify the location of a portion of the prosthesis. Using a different number of radiopaque staples on a distal end of a stent as compared to a proximal end further assists in identifying the position of the prosthesis.


Methods


A method in accordance with the present invention includes delivering and positioning a system or component of a system in a fluid conduit, such as an aorta. The components described above permit intraluminal delivery into an aorta. This is accomplished by percutaneously inserting the prostheses into the same or different arteries, e.g., a femoral artery, and navigating them to the site of the aneurysm. This type of procedure is similar to delivery of angioplasty catheters and guiding catheters into the human vasculature. Upon proper positioning, the system components may be deployed either through a radially, outwardly extending force, e.g., expanding a balloon, or, if a self-expanding stent, by releasing the stent anchors from a constraint. Once fully deployed, at least one passageway is formed bypassing the aneurysm. As shown in FIG. 1, it may be desirable to form two fluid flow paths bypassing the aneurysm, each fluid flow path extending into a separate downstream artery.


In preferred embodiments of the invention, the first sealing prosthesis 10a and the second sealing prosthesis 10b expand automatically against the wall of the artery. As each prosthesis expands, proximal longitudinal legs anchor the sealing prosthesis in place. The method also includes delivering and positioning at least one bypass prosthesis 111a or 111b. In preferred embodiments of the invention, the bypass prosthesis is a bypass conduit for extending through an aneurysm. The proximal end of the bypass prosthesis is typically positioned within the sealing prosthesis, preferably into and through a hole in the sealing prosthesis cover or gasket. The distal end of the bypass prosthesis is typically positioned within the second sealing prosthesis, preferably into and through a hole in the second sealing prosthesis cover or gasket.


In most preferred embodiments of the invention, the hole is slightly smaller in diameter than the expanded diameter of the bypass prosthesis, thus sealingly engaging the bypass prosthesis in the first and second sealing prostheses. The sealed configuration of the bypass prosthesis within the first and second sealing prostheses forms a fluid pathway through the assembly or system, thereby bypassing the aneurysm.



FIGS. 1 and 5 generally show how the system of the present invention may be deployed in vivo. One skilled in the art will readily recognize that a typical delivery device, such as a catheter, includes a guidewire 200 or the like that passes through an aperture in the cover of the first sealing prosthesis, and a collar or the like that releasably engages at least one anchor on the prosthesis. Once the anchors are released from the collar, the sealing prosthesis can expand, preferably automatically. The portion of the delivery device containing the collar can then be removed from the artery, typically leaving the guidewire in place, i.e., still positioned in an aperture of the first prosthesis cover. The guidewire can then be used to guide another prosthesis or prostheses, such as a second prosthesis, into position.


In some embodiments of the present invention, the collar of the delivery device, engaged to the prosthesis, may be positioned within a sheath or the like until the prosthesis is delivered. In preferred embodiments of the invention, a portion of the prosthesis may be partially deployed and/or positioned. Once it is determined that the prosthesis is in its proper position, the collar can be pushed out of the sheath, thereby releasing the anchors from the collar. If the prosthesis is a self-expanding prosthesis, release of the flanges will allow the prosthesis to deploy automatically. If the prosthesis is not self-expanding, a deflated balloon or the like may be delivered to the interior of the prosthesis using the guidewire. When the balloon is inflated, it will expand the prosthesis into its fully deployed position, i.e., fully expanded radially.


A system of the present invention may be delivered as a unit, or may be delivered as components or separate prostheses and assembled in vivo. Typically, the first and second sealing prostheses are delivered first, either as a unitary element or separately. One or more bypass prostheses may then be delivered sequentially.


As is evident to one skilled in the art, precisely placing a component(s) of the system may be critical. The physician must have precise placement of the components to ensure adequate repair of the aneurysm. The present invention allows the physician to fully deploy a component within the body without fully releasing the entire component from the delivery device. The anchors releasably interlock with complementary structures, such as grooves, on the delivery device, and, if the physician decides that the placement of the component is incorrect, the outer member of the delivery device may be moved relative to an inner member, thereby resulting in the prosthesis being retrieved or retracted within the delivery device. The extended legs and anchors allow the physician to temporarily position the prosthesis before full deployment. Once the physician is satisfied with a prosthesis' position, the legs 20 may be released from their engagement with the delivery device.


In order to prevent the physician from prematurely completely deploying a prosthesis, a releasable stop may be preferably placed on the delivery device.


After proper delivery, first sealing prosthesis 10a, second sealing prosthesis 10b, and bypass prostheses 111a and 111b should appear as they do in FIG. 1. First sealing prosthesis 10a, along with its attached gasket material 30, is firmly secured within an arterial section upstream of an aneurysm.


In accordance with the present invention, a system and method for bypassing an aneurysm may establish one, and possible multiple, fluid flow paths through the system. When the system is placed in an artery upstream of a junction with one or more other arteries, the system permits fluid, such as blood, to flow through the proximal end of the system, and a portion of the blood may flow out of the system into one of the cross arteries. Another portion of the fluid will continue within the system, bypassing the aneurysm and out of the system into one or more downstream arteries. A method of the present invention therefore includes establishing one or more fluid flow paths. In a preferred embodiment of the invention, the method includes establishing a first fluid flow path through the system, wherein the first fluid flow path bypasses the aneurysm. The method may further include establishing at least one second fluid flow path, wherein the second fluid flow path passes through a portion of the system, and passes out of an intermediate portion of the system into an artery or arteries.


It is important to note that even though self-expanding stents are utilized, balloons may be utilized for tacking them into position if necessary.


Although shown and described is what is believed to be the most practical and preferred embodiments, it is apparent that departures from specific designs and methods described and shown will suggest themselves to those skilled in the art and may be used without departing from the spirit and scope of the invention. The present invention is not restricted to the particular constructions described and illustrated, but should be constructed to cohere with all modifications that may fall within the scope of the appended claims.

Claims
  • 1. A system for repairing a thoracic aortic aneurysm comprising: a first sealing and anchoring prosthesis, the first sealing and anchoring prosthesis comprising a stent having a substantially tubular body and first and second open ends, gasket material covering at least a portion of the substantially tubular body and at least a portion of both the first and second open ends of the stent, and multiple recapture legs each extending from apexes of the stent and having a flange, the flange including at least two projections extending substantially orthogonal from the each recapture leg, the first sealing and anchoring prosthesis being positionable above an aneurismal section of a first blood vessel;a second sealing and anchoring prosthesis, the second sealing and anchoring prosthesis comprising a stent having a substantially tubular body and first and second open ends, gasket material covering at least a portion of the substantially tubular body and at least a portion of both the first and second open ends of the stent and multiple recapture legs each extending from apexes of the stent and having a flange, the flange including at least two projections extending substantially orthogonal from the each recapture leg, the second sealing and anchoring prosthesis being positionable below an aneurismal section of the first blood vessel, the first and second sealing and anchoring prostheses being configured to be positioned with their respective legs facing the same direction; andat least one bypass prosthesis, the at least one bypass prosthesis comprising a substantially tubular configuration having first and second ends, the first end being matingly engaged with the first sealing and anchoring prosthesis and the second end being matingly engaged with the second sealing and anchoring prosthesis, the first sealing and anchoring prosthesis, the second sealing and anchoring prosthesis and the at least one bypass prosthesis being configured to create a fluid flow path through an aneurismal section of the first blood vessel.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 09/714,093, filed on Nov. 16, 2000; and U.S. application Ser. No. 09/714,079 filed on Nov. 16, 2000 now U.S. Pat. No. 6,482,227.

US Referenced Citations (425)
Number Name Date Kind
3585707 Stevens Jun 1971 A
3598299 Johnson Aug 1971 A
3657744 Ersek Apr 1972 A
4169464 Obrez Oct 1979 A
4187390 Gore Feb 1980 A
4317451 Cerwin et al. Mar 1982 A
4441216 Ionescu et al. Apr 1984 A
RE31618 Mano Jul 1984 E
4503569 Dotter Mar 1985 A
4532927 Miksza, Jr. Aug 1985 A
4553545 Maass Nov 1985 A
4562596 Kornberg Jan 1986 A
4580568 Gianturco Apr 1986 A
4604762 Robinson Aug 1986 A
4617932 Kornberg Oct 1986 A
4627437 Bedi et al. Dec 1986 A
4655771 Wallsten Apr 1987 A
4665906 Jervis May 1987 A
4681110 Wiktor Jul 1987 A
4705517 DiPisa, Jr. Nov 1987 A
4719917 Barrows et al. Jan 1988 A
4728328 Hughes Mar 1988 A
4731073 Robinson Mar 1988 A
4732152 Wallsten Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4769029 Patel Sep 1988 A
4776337 Palmaz Oct 1988 A
4784137 Kulik et al. Nov 1988 A
4787899 Lazarus Nov 1988 A
4800882 Gianturco Jan 1989 A
4822341 Colone Apr 1989 A
4850999 Planck Jul 1989 A
4856516 Hillstead Aug 1989 A
4875480 Imbert Oct 1989 A
4886062 Wiktor Dec 1989 A
4907336 Gianturco Mar 1990 A
4913141 Hillstead Apr 1990 A
4925445 Sakamoto May 1990 A
4950227 Savin Aug 1990 A
4955899 Della Corna Sep 1990 A
4969458 Wiktor Nov 1990 A
4990131 Dardik Feb 1991 A
4990151 Wallsten Feb 1991 A
4990155 Wilkoff Feb 1991 A
4994071 MacGregor Feb 1991 A
5015253 MacGregor May 1991 A
5019085 Hillstead May 1991 A
5026377 Burton Jun 1991 A
5035694 Kasprzyk et al. Jul 1991 A
5035706 Gianturco Jul 1991 A
5041126 Gianturco Aug 1991 A
5045072 Castillo Sep 1991 A
5064435 Porter Nov 1991 A
5078726 Kreamer Jan 1992 A
5084065 Weldon Jan 1992 A
5100422 Berguer Mar 1992 A
5102417 Palmaz Apr 1992 A
5104399 Lazarus Apr 1992 A
5104400 Berguer Apr 1992 A
5104404 Wolff Apr 1992 A
5114423 Kasprzyk et al. May 1992 A
5116365 Hillstead May 1992 A
5122154 Rhodes Jun 1992 A
5123917 Lee Jun 1992 A
5131908 Dardik et al. Jul 1992 A
5133732 Wiktor Jul 1992 A
5135536 Hillstead Aug 1992 A
5151105 Kwan-Gett Sep 1992 A
5152782 Kowligi Oct 1992 A
5156620 Pigott Oct 1992 A
5159920 Cordon Nov 1992 A
5163951 Pinchuk Nov 1992 A
5163958 Pinchuk Nov 1992 A
5171262 MacGregor Dec 1992 A
5176660 Truckai Jan 1993 A
5178618 Kandarpa Jan 1993 A
5192297 Trescony et al. Mar 1993 A
5192307 Wall Mar 1993 A
5195984 Schatz Mar 1993 A
5207695 Trout, III May 1993 A
5209756 Seedhom et al. May 1993 A
5211658 Clouse May 1993 A
5217483 Tower Jun 1993 A
5219355 Parodi Jun 1993 A
5222971 Willard et al. Jun 1993 A
5236447 Kubo Aug 1993 A
5246445 Yachia et al. Sep 1993 A
5246452 Sinnott Sep 1993 A
5254107 Soltesz Oct 1993 A
5258021 Duran Nov 1993 A
5258027 Berghaus Nov 1993 A
5266073 Wall Nov 1993 A
5275622 Lazarus et al. Jan 1994 A
5282823 Schwartz et al. Feb 1994 A
5282824 Gianturco Feb 1994 A
5282847 Trescony et al. Feb 1994 A
5282860 Matsuno Feb 1994 A
5290305 Inoue Mar 1994 A
5292331 Boneau Mar 1994 A
5304197 Pinchuk Apr 1994 A
5304200 Spaulding Apr 1994 A
5306294 Winston Apr 1994 A
5314444 Gianturco May 1994 A
5314472 Fontaine May 1994 A
5316023 Palmaz May 1994 A
5318535 Miraki Jun 1994 A
5321109 Bosse Jun 1994 A
5330490 Wilk Jul 1994 A
5330500 Song Jul 1994 A
5330528 Lazim Jul 1994 A
5334201 Cowan Aug 1994 A
5334301 Heinke et al. Aug 1994 A
5342387 Summersq Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5354257 Roubin et al. Oct 1994 A
5354308 Simon et al. Oct 1994 A
5358493 Schweich, Jr. et al. Oct 1994 A
5360443 Barone Nov 1994 A
5366473 Winston Nov 1994 A
5366504 Andersen et al. Nov 1994 A
5370683 Fontaine Dec 1994 A
5370691 Samson Dec 1994 A
5375612 Cottenceau et al. Dec 1994 A
5376112 Duran Dec 1994 A
5380328 Morgan Jan 1995 A
5382261 Palmaz Jan 1995 A
5383892 Cardon et al. Jan 1995 A
5383927 DeGoicoechea Jan 1995 A
5387235 Chuter Feb 1995 A
5389106 Tower Feb 1995 A
5395390 Simon et al. Mar 1995 A
5397345 Lazarus Mar 1995 A
5397355 Marin et al. Mar 1995 A
5403341 Solar Apr 1995 A
5405322 Lennox et al. Apr 1995 A
5405377 Cragg Apr 1995 A
5411507 Heckele May 1995 A
5411549 Peters May 1995 A
5417708 Hall et al. May 1995 A
5419324 Dillow May 1995 A
D359802 Fontaine Jun 1995 S
5421955 Lau et al. Jun 1995 A
5423885 Williams Jun 1995 A
5439446 Barry Aug 1995 A
5441515 Khosravi et al. Aug 1995 A
5441516 Wang et al. Aug 1995 A
5443477 Marin et al. Aug 1995 A
5443496 Schwartz et al. Aug 1995 A
5443498 Fontaine Aug 1995 A
5443500 Sigwart Aug 1995 A
5449372 Schmaltz et al. Sep 1995 A
5449373 Pinchasik et al. Sep 1995 A
5449382 Dayton Sep 1995 A
5453090 Martinez et al. Sep 1995 A
5453235 Calcote Sep 1995 A
5456713 Chuter Oct 1995 A
5466509 Kowligi Nov 1995 A
5468138 Bosse Nov 1995 A
5476506 Lunn Dec 1995 A
5480423 Ravenscroft Jan 1996 A
5484444 Braunchweiler Jan 1996 A
5489295 Piplani et al. Feb 1996 A
5496365 Fontaine et al. Mar 1996 A
5507767 Maeda et al. Apr 1996 A
5507769 Marin Apr 1996 A
5507771 Gianturco Apr 1996 A
5507995 Schweich, Jr. et al. Apr 1996 A
5512229 Bosse Apr 1996 A
5522880 Barone Jun 1996 A
5522882 Gaterud Jun 1996 A
5527354 Fontaine et al. Jun 1996 A
5549662 Fordenbacher Aug 1996 A
5549663 Cottone, Jr. Aug 1996 A
5562698 Parker Oct 1996 A
5562724 Vorwerk Oct 1996 A
5562726 Chuter Oct 1996 A
5569295 Lam Oct 1996 A
5571170 Palmaz Nov 1996 A
5571171 Barone Nov 1996 A
5571173 Parodi Nov 1996 A
5578071 Parodi Nov 1996 A
5578072 Barone Nov 1996 A
5591196 Marin et al. Jan 1997 A
5591197 Orth et al. Jan 1997 A
5591228 Edoga Jan 1997 A
5591229 Parodi Jan 1997 A
5593412 Martinez et al. Jan 1997 A
5607444 Lam Mar 1997 A
5607464 Trescony et al. Mar 1997 A
5609624 Kalis Mar 1997 A
5609625 Piplani et al. Mar 1997 A
5609627 Goicoechea et al. Mar 1997 A
5617878 Taheri Apr 1997 A
5618300 Marin et al. Apr 1997 A
5628783 Quiachon et al. May 1997 A
5628786 Banas May 1997 A
5628788 Pinchuk May 1997 A
5632763 Glastra May 1997 A
5632778 Goldstein May 1997 A
5639278 Dereume et al. Jun 1997 A
5641443 Calcote et al. Jun 1997 A
5643312 Fischell et al. Jul 1997 A
5645559 Hachtman Jul 1997 A
5649952 Lam Jul 1997 A
5653743 Martin Aug 1997 A
5653745 Trescony et al. Aug 1997 A
5653747 Dereume Aug 1997 A
5662700 Lazarus Sep 1997 A
5662703 Yurek et al. Sep 1997 A
5667523 Bynon Sep 1997 A
5669924 Shaknovich Sep 1997 A
5669936 Lazarus Sep 1997 A
5674241 Bley Oct 1997 A
5674276 Andersen et al. Oct 1997 A
5676696 Marcade Oct 1997 A
5676697 McDonald Oct 1997 A
5681345 Euteneuer Oct 1997 A
5681346 Orth et al. Oct 1997 A
5683448 Cragg Nov 1997 A
5683449 Marcade Nov 1997 A
5683450 Goicoechea et al. Nov 1997 A
5683451 Lenker et al. Nov 1997 A
5685847 Barry Nov 1997 A
5693083 Baker et al. Dec 1997 A
5693084 Chuter Dec 1997 A
5693085 Limon et al. Dec 1997 A
5693086 Goicoechea et al. Dec 1997 A
5695517 Marin et al. Dec 1997 A
5697948 Marin et al. Dec 1997 A
5697971 Fischell et al. Dec 1997 A
5700285 Myers Dec 1997 A
5702418 Ravenscroft Dec 1997 A
5713917 Leonhardt et al. Feb 1998 A
5716365 Goicoechea et al. Feb 1998 A
5718159 Thompson Feb 1998 A
5718724 Goicoechea et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5720776 Chuter et al. Feb 1998 A
5723003 Winston Mar 1998 A
5723004 Dereume et al. Mar 1998 A
5725534 Rasmussen Mar 1998 A
5725568 Hastings Mar 1998 A
5725570 Heath Mar 1998 A
5728065 Follmer et al. Mar 1998 A
5728068 Leone et al. Mar 1998 A
5728131 Frantzen et al. Mar 1998 A
5733328 Fordenbacher Mar 1998 A
5735892 Myers Apr 1998 A
5746709 Rom et al. May 1998 A
5749880 Banas May 1998 A
5749920 Quiachon et al. May 1998 A
5749921 Lenker et al. May 1998 A
5752966 Chang May 1998 A
5755734 Richter et al. May 1998 A
5755735 Richter et al. May 1998 A
5755770 Ravenscroft May 1998 A
5755771 Penn et al. May 1998 A
5755772 Evans et al. May 1998 A
5755773 Evans et al. May 1998 A
5755777 Chuter May 1998 A
5755781 Jayaraman May 1998 A
5758562 Thompson Jun 1998 A
5760006 Shank Jun 1998 A
5766201 Ravenscroft et al. Jun 1998 A
5769882 Fogarty et al. Jun 1998 A
5769885 Quiachon et al. Jun 1998 A
5776180 Goicoechea et al. Jul 1998 A
5782765 Jonkman Jul 1998 A
5782906 Marshall et al. Jul 1998 A
5782909 Quiachon et al. Jul 1998 A
5788626 Thompson Aug 1998 A
5797953 Tekulve Aug 1998 A
5800456 Maeda et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5800516 Fine et al. Sep 1998 A
5800518 Piplani et al. Sep 1998 A
5800520 Fogarty et al. Sep 1998 A
5810870 Myers Sep 1998 A
5824036 Lauterjung Oct 1998 A
5824037 Fogarty et al. Oct 1998 A
5824039 Piplani et al. Oct 1998 A
5824040 Cox et al. Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824042 Lombardi et al. Oct 1998 A
5824043 Cottone, Jr. Oct 1998 A
5824044 Yazici et al. Oct 1998 A
5824046 Smith Oct 1998 A
5824054 Khosravi Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5827310 Marin et al. Oct 1998 A
5827320 Richter et al. Oct 1998 A
5827327 McHaney Oct 1998 A
5830229 Konya et al. Nov 1998 A
5833651 Donovan et al. Nov 1998 A
5840011 Landgrebe et al. Nov 1998 A
5843031 Hermann et al. Dec 1998 A
5843120 Israel Dec 1998 A
5843158 Lenker et al. Dec 1998 A
5843160 Rhodes Dec 1998 A
5855598 Pinchuk Jan 1999 A
5855600 Alt Jan 1999 A
5857998 Barry Jan 1999 A
5858556 Eckert Jan 1999 A
5860998 Robinson et al. Jan 1999 A
5861027 Trapp Jan 1999 A
5868777 Lam Feb 1999 A
5871537 Holman et al. Feb 1999 A
5871538 Dereume Feb 1999 A
5876397 Edelman et al. Mar 1999 A
5893868 Hanson et al. Apr 1999 A
5893887 Jayaraman Apr 1999 A
5899890 Chiang et al. May 1999 A
5902308 Murphy May 1999 A
5904713 Leschinsky May 1999 A
5906619 Olson et al. May 1999 A
5906640 Penn et al. May 1999 A
5906641 Thompson et al. May 1999 A
5908448 Roberts et al. Jun 1999 A
5915615 Bauer Jun 1999 A
5916263 Goicoechea et al. Jun 1999 A
5916264 Von Oepen Jun 1999 A
5919224 Thompson et al. Jul 1999 A
5928260 Chin et al. Jul 1999 A
5931867 Haindl Aug 1999 A
5935667 Calcote Aug 1999 A
5938696 Goicoechea et al. Aug 1999 A
5944726 Blaeser et al. Aug 1999 A
5944750 Tanner et al. Aug 1999 A
5951599 McCrory Sep 1999 A
5954693 Barry Sep 1999 A
5957973 Quiachon et al. Sep 1999 A
5957974 Thompson et al. Sep 1999 A
5961548 Shmulewitz Oct 1999 A
5968069 Dusbabek et al. Oct 1999 A
5968088 Hansen et al. Oct 1999 A
5980552 Pinchasik et al. Nov 1999 A
5980565 Jayaraman Nov 1999 A
5984955 Wisselink Nov 1999 A
5993481 Marcade et al. Nov 1999 A
6007543 Ellis et al. Dec 1999 A
6015431 Thornton et al. Jan 2000 A
6015432 Rakos et al. Jan 2000 A
6016810 Ravenscroft Jan 2000 A
6017363 Hojeibane Jan 2000 A
6017364 Lazarus Jan 2000 A
6019778 Wilson et al. Feb 2000 A
6019786 Thompson Feb 2000 A
6019789 Dinh et al. Feb 2000 A
6024763 Lenker et al. Feb 2000 A
6027526 Limon et al. Feb 2000 A
6027529 Roychowdhury et al. Feb 2000 A
6030413 Lazarus Feb 2000 A
6030415 Chuter Feb 2000 A
6033435 Penn et al. Mar 2000 A
6036697 DiCaprio Mar 2000 A
6036723 Anidjar et al. Mar 2000 A
6036725 Avellanet Mar 2000 A
6039749 Marin et al. Mar 2000 A
6039758 Quiachon et al. Mar 2000 A
6048356 Ravenscroft et al. Apr 2000 A
6051020 Goicoechea et al. Apr 2000 A
6053941 Lindenberg et al. Apr 2000 A
6056775 Borghi et al. May 2000 A
6059821 Anidjar et al. May 2000 A
6059823 Holman et al. May 2000 A
6059824 Taheri May 2000 A
6063111 Hieshima et al. May 2000 A
6068655 Seguin et al. May 2000 A
6070589 Keith et al. Jun 2000 A
6071307 Rhee et al. Jun 2000 A
6077273 Euteneuer et al. Jun 2000 A
6078832 Lenker et al. Jun 2000 A
6083259 Frantzen Jul 2000 A
6086577 Ken et al. Jul 2000 A
6086611 Duffy et al. Jul 2000 A
6090127 Globerman Jul 2000 A
6090128 Douglas Jul 2000 A
6090133 Richter et al. Jul 2000 A
6093199 Brown et al. Jul 2000 A
6097978 Demarais et al. Aug 2000 A
6099558 White et al. Aug 2000 A
6099560 Penn et al. Aug 2000 A
6102938 Evans et al. Aug 2000 A
6102942 Ahari Aug 2000 A
6110191 Dehdashtian et al. Aug 2000 A
6110198 Fogarty et al. Aug 2000 A
6117117 Mauch Sep 2000 A
6117156 Richter et al. Sep 2000 A
6117157 Tekulve Sep 2000 A
6117167 Goicoechea et al. Sep 2000 A
6123722 Fogarty et al. Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6129754 Hanson et al. Oct 2000 A
6132450 Hanson et al. Oct 2000 A
6132459 Piplani et al. Oct 2000 A
6143022 Shull et al. Nov 2000 A
6193745 Fogarty et al. Feb 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6203568 Lombardi et al. Mar 2001 B1
6206911 Milo Mar 2001 B1
6231598 Berry et al. May 2001 B1
6254632 Wu et al. Jul 2001 B1
6270524 Kim Aug 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6306164 Kujawski Oct 2001 B1
6325819 Pavenik et al. Dec 2001 B1
6336938 Kavteladze et al. Jan 2002 B1
6344056 Dehdashtian Feb 2002 B1
6355057 DeMarais et al. Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6395018 Castaneda May 2002 B1
6468300 Freidberg Oct 2002 B1
6485524 Strecker Nov 2002 B2
6547814 Edwin et al. Apr 2003 B2
6554858 Dereume et al. Apr 2003 B2
6579314 Lombardi et al. Jun 2003 B1
6585756 Strecker Jul 2003 B1
6592615 Marcade et al. Jul 2003 B1
6656214 Fogarty et al. Dec 2003 B1
20010003801 Strecker Jun 2001 A1
20010027338 Greenberg Oct 2001 A1
20020082684 Mishaly Jun 2002 A1
20030009212 Kerr Jan 2003 A1
20030120333 Ouriel et al. Jun 2003 A1
Foreign Referenced Citations (61)
Number Date Country
2188233 Oct 1997 CA
2211097 Mar 1998 CA
3205942 Sep 1983 DE
0 540 290 May 1993 EP
0579523 Jan 1994 EP
0657147 Oct 1994 EP
0 667 132 Aug 1995 EP
0686379 Dec 1995 EP
734698 Oct 1996 EP
783873 Jul 1997 EP
0 800 801 Oct 1997 EP
800801 Oct 1997 EP
830853 Mar 1998 EP
832616 Apr 1998 EP
0855170 Jul 1998 EP
880948 Dec 1998 EP
0928606 Jul 1999 EP
937442 Aug 1999 EP
0947179 Oct 1999 EP
1000590 May 2000 EP
1 025 811 Aug 2000 EP
1086665 Mar 2001 EP
0 566 807 Apr 1924 FR
2733682 Nov 1996 FR
2740346 Apr 1997 FR
2743293 Jul 1997 FR
0 662 307 Sep 1948 GB
1 205 743 Sep 1970 GB
5524095 Feb 1980 JP
60220030 Nov 1985 JP
62231657 Mar 1988 JP
464367 Feb 1992 JP
4263852 Apr 1992 JP
5 76603 Mar 1993 JP
5 269199 Oct 1993 JP
7529 Oct 1994 JP
6282730 Oct 1994 JP
7 24072 Jan 1995 JP
7100210 Apr 1995 JP
6 86827 Jun 1998 JP
1680055 May 1988 SU
8704935 Aug 1987 WO
9516406 Jun 1995 WO
9521592 Aug 1995 WO
WO 9532757 Dec 1995 WO
9626689 Sep 1996 WO
9634580 Nov 1996 WO
WO 9712562 Apr 1997 WO
9724081 Jul 1997 WO
9725000 Jul 1997 WO
9733532 Sep 1997 WO
WO 9733532 Sep 1997 WO
9807389 Feb 1998 WO
9819628 May 1998 WO
9823322 Jun 1998 WO
9836709 Aug 1998 WO
9853761 Dec 1998 WO
9908744 Feb 1999 WO
9911199 Mar 1999 WO
WO 0053122 Sep 2000 WO
WO 0174270 Oct 2001 WO
Related Publications (1)
Number Date Country
20020058985 A1 May 2002 US
Continuation in Parts (2)
Number Date Country
Parent 09714079 Nov 2000 US
Child 10041174 US
Parent 09714093 Nov 2000 US
Child 09714079 US