This invention relates to a thoracic aortic stent structure, and more particularly to a thoracic aortic stent structure which is able to simplify the process of placement, save time and provide easy operation.
Thoracic abdominal aortic aneurysm usually results from atherosclerosis or infection which weakens aortic wall and the aortic is gradually swollen under high blood pressure for a long time. Clinically, if the diameter of the aortic aneurysm is larger than 5 centimeter or a patient continues to feel chest pain, it is necessary for the patient to receive surgery.
Conventionally, the surgery is an open surgery and thoracotomy from left posterior and lateral and using vascular clamp to clamp distal and proximal arteries of the thoracic abdominal aortic aneurysm. The thoracic abdominal aortic aneurysm is then being cut after the blood flow is under control, and a pathway of the thoracic, abdominal aorta is reconstructed by connecting an artificial artery with the rest of the original artery. In addition, each visceral aortic vessels originated from the thoracic abdominal aorta has to be connected to the artificial artery with new blood pathway. However, traditional surgery takes long time, the patient loses large amount of blood during operation, and postoperative pulmonary atelectasis causes lung complications.
The development of stents began since the late '90s to reconstruct the normal vascular flow path by inserting the stents to separate the aneurysm. It is so called the endovascular aneurysm repair (EVAR). In clinical endovascular aneurysm repair practice, a metal wire is inserted from both sides of the femoral artery, and an appropriate stent size would be determined by surgery angiography according to the location, length and influential area of the aneurysm. The stent is then guided to an expected destination through the metal wire. After the membrane wrapped outside the stent is removed, the stent can fully extend to reconstruct vascular flow path. According to the clinical study, the endovascular aneurysm, comparing with the conventional surgery, has the following advantages of (1) shorter operative time, (2) small amount of blood loss, and (3) shorter recovery time.
Referring to
However, the preserved holes (for the stents) are usually located at or near the outlets of the first arm artery, left common carotid artery and the left subclavian artery. After the main stent is located at a predetermined position, a metal wire penetrates the preserved hole on the main stent and secured another stent with appropriate size on the main stent in the vessel. Therefore, accurate intraoperative angiography would be necessary in clinical practice. Although it is minimally invasive, it is difficult and complicated in operation.
Therefore, there remains a need for a new and improved thoracic aortic stent structure to overcome the abovementioned issues to effectively to reconstruct vascular pathway.
Conventionally, the preserved holes (for the thoracic aortic stents) are usually located at or near the outlets of the first arm artery, left common carotid artery and the left subclavian artery. After the main stent is located at a predetermined position, a metal wire penetrates the preserved hole on the main stent and secured another stent with appropriate size on the main stent in the vessel. Therefore, accurate intraoperative angiography would be necessary in clinical practice. Although it is minimally invasive, it is difficult and complicated in operation.
The present invention provides a thoracic aortic stent structure, including: (1) a main stent with a diameter similar to that of a human thoracic aorta, having at least one sub-stent formed at said main stent as one piece and diameter of the at least one sub-stent is corresponding to the first arm artery, the left common carotid artery and the left subclavian artery; (2) a membrane, covering outer surfaces of the main stent and the at least one sub-stent and forming at least one, side-opening at free end thereof, wherein the membrane compresses the main stent and the at least one sub-stent to narrow diameters thereof, and upon removing the membrane, the main stent and said at least one sub-stent are extended to reconstruct a vascular pathway.
The detailed description set forth below is intended as a description of the presently exemplary device provided in accordance with aspects of the present invention and is not intended to represent the only forms in which the present invention may be prepared or utilized. It is to be understood, rather, that the same or equivalent functions and components may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described can be used in the practice or testing of the invention, the exemplary methods, devices and materials are now described.
All publications mentioned are incorporated by reference for the purpose of describing and disclosing, for example, the designs and methodologies that are described in the publications which might be used in connection with the presently described invention. The publications listed or discussed above, below and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.
Referring to
Referring to
Referring to
Referring to
Having described the invention by the description and illustrations above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Accordingly, the invention is not to be considered as limited by the foregoing description, but includes any equivalents.