The present invention relates to lateral plates generally, more specifically to thoracolumbar plate assemblies with a cam lock feature to prevent bone fasteners from loosening when installed.
The use of anterior, cervical, lumbar or lateral plates generally is well known in the art. These plates commonly have been constructed with little concentration on providing the correct curvature profile that facilitates attachment to the vertebral bodies in the spine. As such, the surgeon is required to move more muscle material and bone tissue in order to perform a proper fit of the plate. Some plates have adequate curvature, some are provided with some curvature, most do not have the proper curvature. The thickness of the plate also plays a critical role in how well the patient recovers from the surgical procedure. Ideally the plate should be as thin as possible and yet provide as much structural support as feasible. Typically, four bone screws or fasteners are used to attach to adjacent vertebral bodies. In some cases, more than four fasteners are used, and the plate is increased in longitudinal length. To accommodate the required attachment to multiple vertebral bodies. Ideally, to keep the bone fasteners installed without backing out, locking features have been provided with these plates. These locking features typically, in almost all cases, are aligned with the axis of the holes for receiving the bone fasteners. These locking features cover a portion of the holes when installed and provide a symmetrical load upon the exterior heads, in some cases even along the sides, of the bone screws.
The present invention provides a more unique way of maintaining an asymmetric or biased force that causes the locking feature, a cam lock, to stay in position for superior holding power as described hereinafter.
A plate assembly for engaging at least two vertebral bodies of a human spine along the anterior aspect of the spine has a plate and at least two cam locks. The plate has a lower surface for contacting the vertebral bodies and an upper surface opposite to said lower surface. The plate assembly has a plurality of bone fastener receiving holes extending through said plate assembly from said upper surface to said lower surface. The plate has at least a first pair and second pair of said bone fastener receiving holes. The first pair is associated with a first of the vertebral bodies. The second pair is associated with a second of the vertebral bodies. A recess is associated with each of said at least first pair and second pair of said bone fastener receiving holes. The recess has a configuration for retaining one cam lock for locking at least two bone fasteners in each of said at least first pair and second pair of bone fastener receiving holes. The cam lock is pivotally rotatable about an axis in said recess and being offset from a transverse line passing through central longitudinal axes of each of said first or second pair of bone fastener receiving holes. The cam locks when in an open position do not cover the first pair or second pair of bone fastener holes allowing bone fasteners to be held in the bone fastener receiving holes and fastened to the vertebral bodies. Wherein rotation of the cam locks to a closed position partially covering the bone fastener receiving holes applies a downward force locking against upper surfaces of heads of the pair of bone fasteners.
In one embodiment, each cam lock has an outer perimeter having a convex arcuate curvature and a pair of opposing aligned concave arcuate curvatures. The convex arcuate curvatures define a perimeter that partially covers two bone fastener receiving holes. The opposing aligned concave arcuate curvatures when positioned between a pair of bone fastener receiving holes does not cover the holes. A portion of each cam lock adjacent the convex arcuate curvature forms a locking portion. A portion of each cam lock between the opposing aligned concave arcuate curvatures forms an arm extending from the axis of each cam lock, wherein the arm in the open position does not cover a bone fastener receiving hole. Each cam lock in the closed and locked position presses against a top portion of a bone fastener offset from the cam axis and the force causes the arm of the cam lock to tilt against a floor of the recess.
The plate has curved upper and lower surfaces. The plate curved upper and lower surfaces have a high degree of curvature similar to a L5-S1 ALIF plate. This additional curvature allows for the plate to better fit the lumbar anatomy due to the natural shape of the vertebra and lordosis of the spine similar to the L5-S1 ALIF plate.
The plate assembly further comprises fasteners of various sizes along with temporary fixation pins which can be placed into the fastener holes to assist with placing of the plate(s). The fasteners are a self-drilling and self-tapping design to eliminate additional surgical steps in the operating room setting and have a variable angle to allow for better placement due to anatomy or previously implanted devices. The bone fastener sizing is as follows: 05.0 mm, 05.5 mm, 06.0 mm with threaded lengths of one of 25, 30, 35, 40, 45, 50, or 55 mm Each bone fastener uses a robust hexalobular drive feature to prevent stripping and have a strong connecting feature to a driver so as to prevent dropping into the wound cavity or off the sterile field. The plate is sized as follows: 18 mm wide, with end to end lengths of one of 25, 30, 35, or 40 mm and approximately 3 mm thick. Diamond shaped teeth are located on the underside of each end of the lower surface of the plate to enhance grip to the bony surface.
A central cavity is located in the center of the plate to allow for alignment with a guide wire or an additional fixation screw to secure the plate to an interbody device if desired.
The plate assembly can be configured as a thoracolumbar plate assembly which can be a lateral lumbar plate, anterior plate, posterior plate, lateral plate or lumbar plate.
The invention will be described by way of example and with reference to the accompanying drawings in which:
As shown in
With reference to
As illustrated, the heads 110 of the bone fasteners 100 can be provided with a means for inserting a bone fastener driver in such a way that the heads 110 of the bone fasteners 100 can be clipped on or otherwise locked to the driver during assembly. This facilitates the surgeon's ability to insert the fasteners 100 without the risk of the fasteners becoming dislodged. These features are described in a related co-pending application filed concurrently with the present application.
It is believed that the present invention provides a contoured curvature on the inner surface 24 of the plate 20 that will more closely match the contour of the spine on implantation. The plate 20 has curved upper 22 and lower 24 surfaces, the plate curved upper 22 and lower 24 surface have a high degree of curvature similar to a L5-S1 ALIF plate. This additional curvature allows the plate 20 to better fit the lumbar anatomy due to the natural shape of the vertebra and lordosis of the spine. Typically, this radius of curvature is a single radius along the longitudinal axis of the plate 20 and is approximately greater than 1.5 mm. The plate 20 is ideally suited to work with a variety of bone fasteners 100. These bone fasteners 100 can be of any particular size or shape, but preferably have an under surface on the head 110 of the bone fastener 100 that is polyaxial that allows the bone fastener 100 to be tilted in the bone fastener receiving hole 30 relative to the plate 20 in such a way that it facilitates insertion. The plate 20, additionally, on the lower surface 24 or underside at each end has diamond shaped teeth 25 located to enhance the grip to the bony surface of the spine. A central cavity 28 is located in the center of the plate 20 to allow for alignment with a guide wire or an additional fixation screw to secure the plate 20 to an interbody device if desired.
As mentioned above, the bone fasteners 100 are adapted to fit into a hole 30 below the outer surface 22 of the plate 20 sufficiently that the heads 110 of the bone screws 100 are below the recess 32 provided for the cam lock 40. The recess 32 of the cam lock 40 is a depression that allows the cam lock 40 to rest in the recess 32 and keep the profile below the exterior or outer surface 22 of the plate 20. Upon insertion of the fasteners 100 into the plate 20 and into the vertebral bodies, the cam locks 40 can be rotated such that the hemispherical or semicircular portion convex arcuate curvature 46 of the cam lock 40 covers or obstructs the bone fastener receiving opening 30 so that it turns and fits on an outer surface or upper portion of the bone fastener head 110. In doing so, the cam locks 40 provides a downward force and alternatively the fasteners 100 provide an upward force against the cam locks 40. The opposite side of each cam lock 40 has an appendage or arm 44 defined by a pair of opposing aligned concave arcuate curvatures 43 that mimic the shape of the bone fastener receiving holes 30 when the arm 44 is positioned in between the receiving holes 30 in the fully open position as shown in
The present invention is quite different in that it is designed to be biased off center from this transverse line in such a way that all the loads created form a biasing feature that creates a self-locking cam lock that is resistant to movement once installed providing assurances that the bone fasteners will not loosen as a result of backing out of the vertebral bodies.
Variations in the present invention are possible in light of the description of it provided herein. While certain representative embodiments and details have been shown for the purpose of illustrating the subject invention, it will be apparent to those skilled in this art that various changes and modifications can be made therein without departing from the scope of the subject invention. It is, therefore, to be understood that changes can be made in the particular embodiments described which will be within the full intended scope of the invention as defined by the following appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4367970 | Franz | Jan 1983 | A |
5549612 | Yapp et al. | Aug 1996 | A |
5951558 | Fiz | Sep 1999 | A |
6139550 | Michelson | Oct 2000 | A |
6152927 | Farris et al. | Nov 2000 | A |
6193721 | Michelson | Feb 2001 | B1 |
6303139 | Fuentes | Oct 2001 | B1 |
6383186 | Michelson | May 2002 | B1 |
6398783 | Michelson | Jun 2002 | B1 |
6527776 | Michelson | Mar 2003 | B1 |
6620163 | Michelson | Sep 2003 | B1 |
6652525 | Assaker et al. | Nov 2003 | B1 |
6669700 | Farris et al. | Dec 2003 | B1 |
6793658 | LeHuec | Sep 2004 | B2 |
6890335 | Grabowski | May 2005 | B2 |
6926718 | Michelson | Aug 2005 | B1 |
6936050 | Michelson | Aug 2005 | B2 |
6936051 | Michelson | Aug 2005 | B2 |
7001387 | Farris et al. | Feb 2006 | B2 |
7044952 | Michelson | May 2006 | B2 |
7077844 | Michelson | Jul 2006 | B2 |
7137984 | Michelson | Nov 2006 | B2 |
7306605 | Ross | Dec 2007 | B2 |
7662154 | Ribeiro | Feb 2010 | B2 |
7704255 | Michelson | Apr 2010 | B2 |
7803157 | Michelson | Sep 2010 | B2 |
7875062 | Lindeman | Jan 2011 | B2 |
8123788 | Michelson | Feb 2012 | B2 |
8262708 | Michelson | Sep 2012 | B2 |
8277493 | Farris et al. | Oct 2012 | B2 |
8480717 | Michelson | Jul 2013 | B2 |
8641743 | Michelson | Feb 2014 | B2 |
8652182 | Walker et al. | Feb 2014 | B1 |
20070043369 | Wallenstein | Feb 2007 | A1 |
20070162013 | Jacene | Jul 2007 | A1 |
20130060337 | Petersheim | Mar 2013 | A1 |
20130204300 | Michelson | Aug 2013 | A1 |
20150201982 | Altarac | Jul 2015 | A1 |
20160331414 | Etminan | Nov 2016 | A1 |
20170056081 | Langdale | Mar 2017 | A1 |
20170354478 | Adams | Dec 2017 | A1 |
20180070992 | Dabbah | Mar 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20210236176 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62970322 | Feb 2020 | US |