The invention relates to a thread brake with a holding means, a bearing pin, which has an axis, an assembly section disposed in the holding means and a bearing section located in axial direction next to said assembly section and projecting out of the holding means, a first brake element disposed to be axially displaceable on the bearing section and intended for abutment against the holding means, a second brake element disposed to be axially displaceable on the bearing section and intended for abutment against the first brake element, and a pretensioning mechanism, which is intended for adjustment of the braking force and which has a spring and a tension element attached to the bearing section. The invention also relates to a textile machine and a thread feed device with at least one such thread brake.
Known thread brakes of this type are highly prone to soiling, since fluff and lint or residues of oil, paraffin or similar adhering to the threads easily accumulate on the thread contact surfaces or brake surfaces during operation. Therefore, it is known to rotatably dispose the brake elements on a bearing pin (DE 35 04 739 A1) or combine the bearing pin, the brake elements and the usual pretensioning mechanism intended for adjustment of the braking force to form one structural unit disposed to be freely rotatable as a unit in the holding means (DE 197 20 795 A1). The purpose of the rotatable mounting of the brake elements and/or the entire structural unit is to use the tangential forces exerted on the brake elements when the threads are moving to set the brake elements in rotation, and thus cause constant self-cleaning of the brake elements, in particular if their walls are provided preferably with adequately large openings.
In addition, thread brakes are known, in which the brake elements are coupled to a device that generates vibrations (DE 41 04 663 C1) such that a force action promoting the rotational movement of the brake elements results. However, such additional devices in machines, which use or process a large number of threads, are not acceptable from an economic viewpoint, since they involve enormous structural expense.
Apart from this, it has been found that, despite application of the above-described measures, fluff and lint adheres in particular to the pretensioning mechanisms for the brake elements. The pretensioning mechanisms are provided with helical pressure springs, and as a result thereof, the desired braking force can vary during operation of a circular knitting machine or similar, or at least a reproducible adjustment of the braking force can be made more difficult. This leads to frequent cleaning operations and thus to outage times of the machines. To avoid this disadvantage, protective caps are known (DE 41 12 898 A1), which are attached to the pretensioning mechanism and cover the helical pressure springs. However, such protective caps not only increase the structural expense, but also hinder access to the brake elements and their self-cleaning. Known thread brakes, in which the braking force is generated or released with gas pressure (DE 36 29 928 C2), are also associated with high expenditure.
Moreover, it is known (DE 43 01 507 C2, 295 21 428 U1) to adjust the braking force with the assistance of permanent magnets instead of helical pressure springs. The advantage of reduced capacity for dirt to accumulate on the pretensioning mechanisms is offset here by the disadvantage that the pretensioning force of the brake elements, and therefore the braking force exerted on the thread, is only variable by replacing magnetic inserts, which is associated with high time expenditure, and only in comparatively large steps, whereas the springs provided in conventional thread brakes allow continuous adjustment of the braking force. Therefore, the thread brakes used in practice, at least in circular knitting machines, contain pretensioning mechanisms, which are provided with open springs without protective covers, so that despite there being a tendency towards self-cleaning, they have to be cleaned in relatively short time intervals, and in a machine that processes or uses threads with a plurality of thread guides, e.g. a circular knitting machine with 96 systems or more, this necessitates expensive cleaning operations with corresponding machine outage times.
It is, therefore, an object of this invention to provide a thread brake of the kind specified above which reduces the risk of soiling.
A further object of this invention is to so design the thread brake mentioned above that it meets the requirements with respect to design and has the usual spring mechanism for adjustment of the braking force.
Yet another object of the invention is to provide a thread brake having the usual spring mechanism for adjustment of the braking force and which is so designed that the spring mechanism is housed at a location remote from the brake elements.
Further objects of the invention are to provide a textile machine and a thread feeding device being equipped with thread brakes with a reduced risk of soiling but still having a spring mechanism for adjustment of the braking force.
These and other objects are solved by the thread brake, the textile machine and the thread feed device, mentioned above and being characterized in accordance with this invention in that the assembly section is disposed to be axially displaceable in the holding means, the spring axially pretensions the assembly section and the pretensioning mechanism has an adjusting and protecting member, which is disposed to be axially displaceable in the holding means and houses the assembly section and the spring.
The invention has the advantage that the pretensioning mechanism provided with the usual spring and intended for adjustment of the braking force is associated with the assembly section of a bearing pin assembled in the holding means, and not with the bearing section carrying the brake elements. This enables the spring to be housed in an adjusting and protecting member, which, on the one hand, serves to mount the bearing pin on the holding means and to adjust the braking force and, on the other hand, substantially conceals the spring to the outside. In contrast, the brake elements are only subject to the action of a tension element, which is attached to the bearing section of the bearing pin and which, like the brake elements themselves, can be provided with smooth surfaces being little prone to soiling.
Further advantageous features of the invention may be seen from the sub-claims.
The invention shall be explained in more detail below in association with the attached drawings of embodiments:
The thread feed device shown in
A thread brake 7a and a thread feeder 8 located above brake 7a are fastened to the free end of the support 1. A thread feed guide element 9, e.g. an eyelet, arranged between the thread brake 7 and the feed drum 3 is arranged on the underside of the support 1 are provided, which, like the guide element 9, can consist of open or closed eyelets. A thread 12 is directed from a storage bobbin (not shown) through the thread feeder 8, the thread brake 7a and the guide element 9 obliquely upwards and essentially tangentially onto the thread surface of the feed drum 3, is wound on this in at least one, preferably several windings and finally unwound tangentially and fed through the two guide elements 10 and 11 to a processing point (not shown) of a knitting machine or similar. Feelers 14 and 15, which are also attached to the support 1, can serve to monitor the thread 12 in the usual manner.
Thread feed devices of this type are generally known to the person skilled in the art (e.g. DE 197 20 795 A1) and therefore do not need to be explained in more detail.
Details of a first embodiment of the thread brake according to the invention may be seen from
An assembly section 24 of a bearing pin given the general reference 25 is arranged in an inner cavity 23 of the adjusting and protecting member 20, which is coaxial to the longitudinal axis 22 and open to the outside, i.e. to the left in
The assembly section 24, and with it the entire bearing pin 25, are pretensioned by a spring 29, configured in the embodiment as a helical pressure spring, in the direction of the longitudinal axis 22 and in the direction of a side opposed to the bearing section 26. For this, the spring 29 is slipped coaxially onto the assembly section 24, arranged in the part of the cavity 18 remaining between said assembly section and the wall of the adjusting and protecting member 20, and at its ends supported between the projection 28 and the shoulder 27 or another shoulder of the adjusting and projecting member 20 in such a way that it endeavours to press the bearing pin 25 to the left in
In the embodiment, a preferably cylindrical bearing bush 31 is slipped onto the preferably cylindrical bearing section 26, which axially adjoins the assembly section 24 of the bearing pin 25, said bearing bush 31 preferably being made of a wear-resistant material having a low coefficient of friction such as a ceramic or plastic, for example. The bearing bush 31 has an inside diameter, which is slightly larger than the outside diameter of the bearing section 26. Moreover, on a side facing the bearing section 26, the holding means 17 is expediently provided with a preferably cylindrical bearing ring 32 for the bearing bush 31, the inside diameter of said ring being slightly larger than the outside diameter of the bearing bush 31. In this case, the bearing bush 31 is preferably arranged to be easily rotatable both on the bearing section 26 and in the bearing ring 32 by a suitable loose fit of a few tenths of a millimeter. The bearing bush 31 can also be arranged to move on the bearing section 26 in the axial direction. Further, bearing bush 31 preferably extends only as far as a shoulder 17a, which projects into the seat 18 of the holding means and which at the same time serves as a stop for the adjusting and protecting member 20 in the position where it is screwed to the maximum into the seat 18.
A first brake element 33 and a second brake element 34 of the thread brake according to the invention are disposed on a part of the bearing bush 31, through which the bearing section 26 projects, located outside the holding means 17, i.e. on the right of the means 17 in
As a result of the described pretensioning of the bearing pin 25 through the spring 29, to the left in
During the operation of a textile machine using or processing thread 12, the thread 12 exerts a torque onto the brake elements 33, 34. Depending on the diameters of the brake elements 33 and 34, the outside diameter of the bearing bush 31, the sizes of the slide faces 37 and 38 and also the sizes and diameters of the faces on the bearing ring 32 and the tension element 39 interacting with these, the brake elements 33, 34 are additionally set in rotation to conduct a self-cleaning operation in a manner known per se. A particular advantage of the invention results from the circumstance that the brake elements 33 and 34, the holding means 17 with the bearing ring 32 and also the tension element 39 can all be provided with smooth surfaces, which are not prone to soiling through fluff, dust or similar, as shown in particular in
A particularly significant advantage of the described thread brake is ultimately that the spring 29 used for adjustment of the braking force is arranged outside the region of the brake elements 33, 34 and is almost completely concealed by the adjusting and protecting member 20 as well as the projection 28 to the outside. As a result, the penetration of dust and dirt into the areas between the individual windings of the spring 29 is extremely unlikely, and therefore once adjusted, the braking force remains unchanged over and beyond long service periods. Moreover, the braking force can be adjusted in a simply reproducible manner. Finally, access to the brake elements 33, 34 is not hindered in any way, which also assists any possible self-cleaning.
The embodiment according to
In contrast to
In the embodiment according to
Otherwise, the configuration and function of the embodiment according to
The invention is not restricted to the described embodiments, which can be modified in a variety of ways. For example, the bearing bush 31 could be firmly connected to the assembly section 26 or also firmly connected to the holding means 17. Moreover, the brake elements 33, 34 could be arranged to be non-rotatable on the bearing bush 31 or the assembly section 44, if self-cleaning can or should be omitted. Moreover, the bearing pin could be configured in two parts, in particular in the case of
It will be understood, that each of the elements described above or two or more together, may also find a useful application in other types of construction differing from the types described above.
While the invention has been illustrated and described as embodied in a circular knitting machine, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the forgoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention.
What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103 45 369 | Sep 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2283912 | Bushey | May 1942 | A |
4694765 | Diehl | Sep 1987 | A |
4901942 | Beitz et al. | Feb 1990 | A |
5070745 | Lindsey et al. | Dec 1991 | A |
5211122 | Lin | May 1993 | A |
5343983 | Horvath et al. | Sep 1994 | A |
5782424 | Horvath et al. | Jul 1998 | A |
6065711 | Plath | May 2000 | A |
Number | Date | Country |
---|---|---|
315852 | Oct 1956 | CH |
357 008 | Oct 1961 | CH |
913 148 | Jul 1949 | DE |
35 04 739 | Aug 1986 | DE |
36 29 928 | Mar 1988 | DE |
41 04 663 | Aug 1992 | DE |
41 12 898 | Oct 1992 | DE |
43 01 507 | Aug 1994 | DE |
295 21 428 | Apr 1997 | DE |
197 20 795 | Nov 1998 | DE |
299 07 679 | Oct 2000 | DE |
629 319 | Sep 1949 | GB |
Number | Date | Country | |
---|---|---|---|
20050067228 A1 | Mar 2005 | US |